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Abstract—Time-phased sensor-network deployment refers to 

the delivery of a set of sensors to their predetermined locations at 

exact times by a fleet of vehicles. Applications for such network 

deployments include wilderness search and rescue and wildfire 

monitoring, where desirable resource management would imply 

allowing the vehicles to perform other tasks between deliveries. 

The goal of this paper is, thus, to formulate and solve a vehicle-

routing problem for such just-in-time time-phased sensor-

network deployments.  

The proposed optimization method for the modified vehicle-

routing problem outlined herein has two primary novelties: (i) 

the consideration of spare-time as the objective function, and (ii) 

the use of a targeted local-search method. The spare-time 

objective function was formulated to address the uniqueness of 

the modified routing problem at hand. The targeted local-search 

algorithm, on the other hand, was developed to tangibly improve 

the efficiency of the search for the optimal values of the chosen 

objective function.  

The proposed vehicle-route planning method was validated via 

a range of simulated wilderness search and rescue scenarios, 

some of which are included herein. The robustness of the method 

to variations in problem parameters was also investigated.  

 
Note to Practitioners—The resource-management problem 

addressed in this paper is applicable to scenarios wherein a fleet 

of vehicles visits a set of locations at pre-determined times to 

provide services while carrying out other tasks in-between. Such 

time-phased applications include deployment of sensor networks 

for wilderness search and rescue or wildfire monitoring, patient 

transportation services that can handle emergencies, and courier 

services that can cope with urgent express requests 

The primary inputs to the proposed vehicle-routing algorithm 

are (i) the physical characteristics of the vehicles (i.e., speed, 

capacity, operation time limit, etc.), and (ii) a service plan (i.e., 

service locations and corresponding exact service times). The 

algorithm yields best possible routes (a string of assigned service 

locations) for all the vehicles, by maximizing spare time between 

deliveries (within a reasonable computation time). The method 

also allows for changes in service plan in real-time. 
 

Index Terms—Resource management, vehicle routing, wireless 

sensor networks.  
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I. INTRODUCTION 

IRELESS sensor networks (WSNs) have been 
commonly proposed for environmental monitoring, 

structural health monitoring, search and rescue, and 
surveillance [1]-[17]. Research in this area, however, has 
primarily focused on network-configuration planning [18]-
[23]. For example, [22], [23] focus on planning deployments 
to maximize sensor-network lifetime. The topic of network 
deployment, in terms of how to deliver sensors to their 
planned locations, is often overlooked. In particular, the 
delivery of sensors for time-phased network deployment has 
not been addressed explicitly in the literature.  

Time-phased sensor network deployment examples include 
wilderness search and rescue (WiSAR) and wildfire 
monitoring. In such applications, the subject-of-interest is 
dynamic and optimal sensor deployment locations (i.e., 
network configuration) may vary over time.  

In WiSAR, for example, the goal is to locate an un-
trackable, moving target (missing person) in an unbounded, 
expanding area. Prior work for this application has proposed 
the use of mobile robots with on-board sensors to conduct the 
target search [24]-[26]. The use of WSNs in support of such 
search efforts has also been proposed, where sensor 
deployment locations and times are optimized to maximize 
likelihood of target detection [7].  

In wildfire monitoring, a fleet of autonomous vehicles, such 
as unmanned aerial vehicles (UAVs), could be dispatched to 
track the progress of the firefront [27]-[29]. In addition to 
aerial monitoring, the supplemental use of static sensors has 
also been considered [30]. The UAVs could deploy the static 
sensors at optimized locations on an optimized schedule for 
closely monitoring the moving firefront while also conducting 
aerial surveys between deployments.  

In both above examples, and other similar problems (i.e., 
time-phased deployment of a network), allowing the vehicles 
to perform other tasks between deliveries could be desirable. 
Thus, herein, optimal resource management refers to planning 
routes that maximize vehicle spare times between deliveries.  

A. Traditional Vehicle Routing  

While vehicle routing has been well studied in the literature, 
in a typical problem, vehicles are exclusively used for delivery 
with no idle time. Namely, vehicles move between deliveries 
as fast as possible, even when time-windows are considered. 
Such, vehicle-routing problems (VRPs), typically, belong to 
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the class of NP-hard combinatorial optimization problems 
[31]. As a generalization of the traveling salesperson problem 
(TSP), a VRP involves optimally assigning and sequencing a 
set of customer visits among a fleet of available vehicles [32]-
[43]. 

Most VRPs feature a central depot, from which all routes 
originate and terminate at. A variant of this is the open VRP, 
in which routes may end at any location [44], [45]. 
Furthermore, a multi-depot VRP was addressed in [46], where 
there are multiple locations from which routes may originate.  

Other VRPs have considered variations to the vehicle fleet, 
temporal constraints, and dynamic nature of the problem. Both 
homogeneous and heterogeneous vehicle fleet variants [47], 
[48] have been studied, particularly with respect to capacities, 
maximum speeds, and operating costs. Customer visits are 
often time-constrained, either by time windows [49]-[51], or 
time deadlines [52]. A dynamic version of the VRP has also 
been studied, in which all yet unfulfilled requests are re-
arranged online to optimally accommodate new sporadic 
requests when they arise [53]. Metrics of optimality in the 
abovementioned problems have included distance travelled, 
number of vehicles employed, and arrival times at delivery 
locations [54]-[61]. 

The current state-of-the-art methods for solving VRPs 
include metaheuristic methods that are markedly efficient 
compared to exact methods on large, highly-constrained 
problem instances. These have been categorized into single-
solution methods and population-based methods. Single-
solution methods are those that operate on a single incumbent 
solution, often through modifications known as moves. 
Examples of commonly utilized methods in this category 
include Tabu search [62]-[65], variable neighborhood search 
[66]-[68], and simulated annealing [69], [70]. Population-
based methods are those that operate on a population of 
incumbent solutions, examples of which include ant colony 
optimization [71], [72], genetic algorithms [73]-[77], and 
particle swarm optimization [78].  

B. Vehicle Routing for Resource Management 

In this paper, a unique resource-management problem, for 
time-phased network deployments, is addressed. Namely, a 
fixed-size fleet of mobile vehicles is coordinated to make a 
series of just-in-time deliveries, while maximizing the 
vehicles’ ability to perform other tasks between deliveries. 
The vehicles are assumed to have heterogeneous capacities, 
speeds, and starting locations.  

The above problem can be formulated as a variant of the 
traditional VRP. Though, it must consider maximizing a 
spare-time type objective function for optimal route planning. 
This contrasts with classical VRPs, where the objective is to 
minimize the cost of deliveries. The new spare-time metric 
must also have both spatial and temporal components. Past 
metrics have been, typically, formulated only spatially (e.g., 
considering total travel distance or fuel consumption), with 
temporal constraints (e.g., deadlines or windows for delivery) 
[21]-[62]. 

A novel solution method to the new variant VRP outlined 
above is proposed in this paper. Specifically, a targeted local-
search method is proposed to effectively maximize spare-time 
available to vehicles. The targeted search only considers 
moves that involve replacing the arc with the minimum spare-
time value. When compared to traditional local-search 
techniques, which search the entire local neighborhood of the 
current solution, a targeted local-search reduces computational 
complexity by an order of magnitude (i.e., from O(n2) to 
O(n)). 

The new variant VRP was inspired by emerging research on 
autonomous robotic deployment of sensor networks. However, 
the proposed solution method can be adapted to other similar 
applications. Examples include a patient transportation service 
that also handles emergencies [79], or a courier service that 
also handles urgent express requests [80].  

II. PROBLEM DEFINITION 

The variant VRP addressed in this paper considers optimal 
resource management in the time-phased deployment of 
sensor-networks. In this problem, a fleet of vehicles is 
required to deliver a set of sensors to specified deployment 
locations just-in-time. The focus is to maximize the fleet’s 
effectiveness in performing other tasks, while carrying out its 
primary task of sensor delivery. This is achieved by 
maximizing the spare-time available to vehicles between 
sensor deliveries. 

Maximization of spare time, however, should not unfairly 
favor any part of the deployment. Thus, in order to achieve an 
unbiased maximization of the objective function, herein, we 
propose maximizing the minimum spare time between any 
two deliveries while considering all vehicles.  

A. Time-Phased Sensor Delivery 

Let us consider the deployment of n sensors. Each sensor is 
associated with a deployment location, xi, and time, ti, i ∈ {1, 
⋯, n}. The set {x1, ⋯, xn}, thus, denotes the set of all 
deployment locations and {t1, ⋯, tn} denotes the ordered set of 
all deployment times (i.e., t1 < ⋯ < tn). These act as constraints 
to the route-optimization problem as they cannot be altered. 
One can note that, even if a vehicle could arrive at a 
deployment location early, it may not leave before the 
associated specific sensor-delivery time.  

Optimal sensor-deployment locations and corresponding 
deployment times are determined by an external network-
planning methodology. For example, the algorithm outlined in 
[7] plans sensor locations that maximize the likelihood of 
target detection in a WiSAR scenario. Corresponding 
deployment times are determined to spread the sensor-
network’s search effort uniformly over time. 

During vehicle-route planning, the set of all sensor-
deployment locations and times are divided into non-
intersecting subsets – one for each robot. For example, if a 
robot is assigned to deploy Sensors 1, 6, and 9, the 
corresponding subset of deployment locations would be {x1, 
x6, x9} with deployment times {t1, t6, t9}. One can note that t1 
< t6 < t9 since, in general, ti < tj for i < j, i, j ∈ {1, ⋯, n}. 
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Herein, it is assumed that a fleet of K vehicles is available – 
each with a distinct capacity of sensors that it can deploy, qk, 
and a distinct speed, vk, k ∈ {1, ⋯, K}. It is also assumed that 
the vehicle would maintain a constant speed throughout the 
execution of the planned route. The vehicles’ routes may 
originate from different locations, xn+k, at different times, tn+k.  

For the variant VRP, each vehicle may be assumed to have 
an operating time limit, based on fuel or energy consumption. 
This could impact route planning by, for example, requiring 
robots to refuel during sensor deployment. Herein, however, it 
is assumed that the time of the last delivery, tn, is chosen to be 
less than the smallest maximum operating time of any vehicle. 
This eliminates the need to consider restrictions imposed by a 
limited robot battery life/fuel capacity.  

B. Problem Formulation 

The deployment of n sensors by K vehicles can be 
represented spatially on a Euclidean graph, G = (N, A), where 
N = {1, ⋯, n + K} is the set of sensor deployment nodes ({1, 
⋯, n}) and robot origin nodes ({n + 1, ⋯, n + K}) and � is the 
set of arcs connecting them. Each Arc traversed by robot k, (i, 
j, k) ∈ A, connecting Locations i and j, is associated with a 
spare time value, ���� . This is the spare time that Vehicle k has 

before reaching Location j, at Time tj, having made a delivery 
at Location i immediately before, at Time ti. The spare time, 
���� , is calculated assuming the vehicle travels the path, from 

Location i to Location j, with the shortest possible travel time:  

���� = 
� − �
� + ���� �, (1) 

where ����  is the minimum travel time for Vehicle k between 

Locations i and j. In our work, this travel time is deterministic 
and a function of distance, terrain, and vehicle speed, vk.  

In a WiSAR scenario, for example, the travel time would be 
estimated by considering the robot specifications, distance 
between locations and terrain information. The minimum 
travel time could, then, be approximated by, using a shortest 
path algorithm such as Dijkstra’s on a discretized terrain map. 

Above, a negative ����  value would imply that the vehicle 

will be late for the delivery of the sensor at Location j, if Arc 
(i, j, k) were to be taken.  

A solution to the routing problem, S, could consist of a 
selection of n arcs in A. Let a set of binary arc selection 
variables, ���� , be equal to 1, if Arc (i, j, k) is selected in S, or 0, 

otherwise. Namely, a selection of Arc (i, j, k) implies that 
Vehicle k travels directly from Location i to Location j in the 
solution. An optimal solution maximizes the spare-time 
available, while ensuring that the opportunity for focusing on 
other tasks is also distributed uniformly. The objective 
function, f, can, then, be expressed as the minimum ����  

selected in S: 

� = min�,�,� ���� , ���� ≠ 0. (2) 

 The overall route-optimization problem at hand is, thus, 
defined as:  

Maximize � , (3) 

subject to the following constraints:  

� ���
 

�!"
= 1, ∀ % ∈ &,                                              (4) 
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�!"

'

�!"

'( 

�!"
= ),                                                        (5) 

� ���� = ���
'( 

�!"
, ∀* ∈ +1, … , )-, ∀. ∈ +1, … , /-, (6) 

      � ����
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�!"
≤ ���  , ∀% ∈ &, ∀. ∈ +1, … , /-,    and          (7) 

� ���
'

�!"
≤ 2� , ∀. ∈ +1, … , /-.                              (8) 

Above, ���, is equal to 1, if Vehicle k visits Location i in S, and 
0, otherwise. Eq. (4) represents the constraint that each sensor-
deployment location is to be visited by exactly one vehicle, 
where. Eq. (5) represents the constraint that exactly n arcs are 
selected in S, defined as n – K delivery-to-delivery arcs, and K 
arcs from vehicle start locations to their first deliveries. Eq. (6) 
represents the constraint that each delivery location must be 
arrived only once. Eq. (7) represents the constraint that each 
location, whether it is a vehicle start location or a delivery 
location, must be departed from at most once. The terminal 
location of each route is not departed from. It is assumed that 
each vehicle will remain at or near the location of its final 
delivery. Further instructions could be provided to the vehicle 
after completing deployment. Eq. (8) represents the constraint 
that no vehicle can be assigned more deliveries than for which 
it has capacity.  

C. Late Deliveries 

A negative objective function value, f, indicates that at least 
one sensor is deployed late. In this case, an optimal solution 
per Eq. (2) is one for which the maximum lateness of any 
delivery is minimized.  

If late delivery is not acceptable, one approach that can be 
taken is to modify the fleet to enable the on-time delivery of 
all sensors. Alternatively, one could find the largest subset of 
the first n′ sensors that can be deployed on-time (i.e., such that 
the objective function in Eq. (2) is positive): 

� > 0, %, * ∈ +1, ⋯ , )4-. (9) 

Also, the formulation of ���� , as per Eq. (1), assumes that 

Vehicle k leaves Location i on-time. If this is not the case and 
spare time for the vehicle arriving at Location i is negative, a 
push-forward must be calculated, if it is desired to determine 
the actual delivery times resulting from lateness.  

D. NP-hardness 

The new variant VRP can be shown to be NP-hard by 
establishing equivalence to a problem known to be NP-hard. 
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Herein, we choose to show equivalence to the bottleneck 
travelling salesman problem (BTSP) [61]. The BTSP is solved 
by minimizing the maximum edge cost in a Hamiltonian tour. 

Proof: Let us define the graph on which we would like to 
solve the BTSP by G. Additionally, an edge cost function 
is defined such that the cost of going from node u to node v 
is c(u, v). 

Our max-min variant VRP, with a fleet of one vehicle 
on the graph G and with a cost function of –c(u, v), is 
equivalent to the original BTSP described above. The max-
min VRP instance specifies the problem of finding a 
Hamiltonian tour of the graph G that maximizes the 
minimum edge cost –c(u, v) used in the tour. This is 
equivalent to the original BTSP, since the objective of 
maximizing the minimum of –c(u, v) in the tour is 
equivalent to minimizing the maximum of c(u, v) in the 
tour. The BTSP is, therefore, a special case of our max-
min VRP, thus, showing that the max-min VRP is at least 
as complex as the BTSP. Since the BTSP is known to be 
NP-hard, this indicates that the max-min VRP being 
addressed in this paper is also NP-hard. 

III. PROPOSED RESOURCE-MANAGEMENT METHOD 

A novel solution method is proposed herein for the unique 
variant VRP formulated above, Eq. (2) to (8). Route planning 
starts with a set of inputs, including a list of sensor 
deployment locations, corresponding deployment times, and 
parameters of the available fleet. Fleet parameters may include 
the number of vehicles, individual capacities, speeds, and 
maximum operating times, etc.  

An illustration of the proposed method is given in Fig. 1. 

A. Route-Planning Algorithm 

There are a range of approaches and techniques for 
addressing the route-planning problem at hand, including 
evolutionary ones that recombine high-quality route plans 
(parents) to create even higher quality plans (offspring). 
During our research, we investigated and compared several 
different approaches to route optimization. These included 
Simulated Annealing, Ant Colony Optimization, Genetic 
Algorithm, and Variable Neighborhood Search (VNS) and 
Tabu Search (TS). The comparisons revealed that the local-
search based VNS and TS yielded the best results.  

We propose the use of VNS and TS metaheuristic methods 
to determine vehicle routes. Our novel targeted local-search 
algorithm will be used in these methods for optimal resource 
management. The proposed algorithm repeatedly finds and 
removes the arc in the solution representing the lowest spare 
time, replacing it with arcs of higher value. Typically, local 
search operates via moves, in which a set of arcs is removed 
and replaced by a different set of arcs, monotonically 
improving the objective function until a local optimum is 
reached. The metaheuristic methods guide the local search 
from prematurely converging to local optima.  

It should be noted, however, that neither TS nor VNS are 
polynomial-time approximation algorithms and, thus, have no 

performance or convergence guarantees (e.g., approximation 
ratios and worst-case computation time). Both methods can 
run indefinitely, searching the solution space. It can be 
claimed, therefore, that their theoretical approximation ratio 
approaches 1, as their search time tends to infinity. Namely, 
given an unlimited amount of computation time, the 
probability that the search methods will find the global 
optimum solution approaches 1. However, this is not a 
particularly useful result as there is, typically, always a time-
critical element to problems like WiSAR. Thus, it would be 
more instructive to investigate what the approximation ratio is 
for a given finite-time limit. Such an investigation is carried 
out in Section IV using realistic simulated experiments. 

 

 

Fig. 1.  Overview of the proposed route-planning method. 

 
1) Local-Search Moves 

In order to address the objective of maximizing minimum 

spare time, we propose a local search (LS) with three types of 
moves: swap, relocate, and 2opt*, each of which has a 
neighborhood of cardinality approximately n2. Each move is 
illustrated in Fig. 2. Delivery locations are represented by 
circles and vehicle starting locations by squares, respectively. 
Red arcs represent those removed by the move, ARmove, and 
green arcs represent those added by the move, AAmove.  

An iteration of a typical LS would involve, examination of 
every possible move that could be made, computation of the 
objective function value of each potential move, and the 
execution of the move with the highest value. 

 
2) Targeted-Local Search 

As per Eq. (2), the value of the objective function of a 
solution (set of routes) is defined by its lowest-value arc. 

Route Planning 

Route Plan 
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from late deliveries 

Calculate largest )′ 
deliverable on time 
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Deployment Plan (), �,  �,  
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Therefore, in our novel target local-search, we only search for 
improving moves that remove the lowest-value arc. In this 
manner, each neighborhood can be evaluated in O(n) rather 
than O(n2). 

 

 

 

 

(a) (b) (c) 

Fig. 2.  Illustration of (a) swap of B and E, (b) relocation of B after E, and (c) 
2opt* move between A-B and D-E. 

As an example, let us consider the route given in Fig. 3, 
which contains the lowest-value arc in the solution, (B, C, k). 
A single iteration of targeted swap LS considers every pair of 
locations containing B or C, and every other location Y in the 
remaining routes. Namely, potential moves are those in which 
Y is exchanged with B, or Y is exchanged with C. An iteration 
of targeted relocate LS, similarly, considers moves in which B 

is relocated after Y, C is relocated after Y, and Y is relocated 
after B. An iteration of targeted 2opt* LS evaluates moves in 
which the tails of B and Y are exchanged. Pseudocode 
describing each type of LS is given in Appendix A. 

 
Fig. 3.  Route with lowest-value arc (B, C, k). 

Evaluating the quality of a move can also be simplified 
when using targeted LS. Namely, since potential moves are 
restricted to those that remove the lowest-value arc, the value 
of a move can be computed as the minimum value of the 
added arcs: 

�::;<=> = min(�,�,�)∈?@ABCD
���� . (10) 

This reduces the computational complexity of move 
evaluation from O(n) to O(1) since only a fixed number of 
arcs are added for every move made. 

 
3) Variable-Neighborhood Search 

In the method proposed in this paper, variable-
neighborhood search (VNS) is one of two metaheuristic 
methods within which the targeted local search was 
embedded. In the implementation described here, VNS 
involves a variable neighborhood descent (VND) subroutine 
that operates as follows: 

1. Perform LS with the swap move until no further 
improvement is possible. 

2. Perform LS with the relocate move until no further 
improvement is possible. If any improvement is made 

by a relocate move, return to Step 1. Otherwise, 
continue to Step 3. 

3. Perform LS with the 2opt* move until no further 
improvement is possible. If any improvement is made 
by a 2opt* move, return to Step 1. Otherwise, exit. 

First, the swap neighborhood is explored, as it maintains the 
same number of locations assigned to each route and, thus, 
does not violate the constraint in Eq. (8). Then, the relocate 
neighborhood is explored before the 2opt* neighborhood, as 
the latter reassigns a larger number of locations between 
routes. Finally, each iteration of VND is alternated with a 
shaking move, consisting of one of: 

• a randomly chosen move from one of the three LS 
neighborhoods, or 

• a random 3opt* move, in which the tails of three routes 
are exchanged, or 

• a 4-relocate, in which four locations are removed and 
re-inserted at random. 

Iterations of VND and shaking are repeated until a stopping 
condition, such as a time limit, iteration limit, or convergence 
criterion, is met. 

 
4) Tabu Search 

Tabu search (TS) is another metaheuristic method used to 
evaluate the performance of the targeted local search. It is 
implemented as a fully deterministic method, relying on a 
memory structure to avoid premature convergence, as opposed 
to randomization. In our proposed TS, local search is carried 
out by exploring the three LS neighborhoods (swap, relocate, 
and 2opt*) before taking the highest-value non-Tabu move. 

After every move made by the TS, arcs involved in the 
move are marked Tabu, or prohibited, for a limited number of 
iterations, known as the Tabu tenure. The Tabu search, 
therefore, operates as follows: 

1. Perform local search by exploring swap, relocate, and 
2opt* neighborhoods. 

2. Carry out the best (highest objective function value) 
move that does not involve any arc on the Tabu list. 

3. Mark all arcs involved in the move as Tabu and assign 
each a Tabu tenure value. 

The above three steps are repeated until a stopping condition, 
such as a time limit, iteration limit, or convergence criterion, is 
met. 

B. The Case of Insufficient Vehicles for On-Time Delivery 

of Entire Network 

Due to the sensor network being provided by an external 
source and the limited availability of delivery resources, it is 
possible a network cannot be optimally deployed in its 
entirety. If late delivery of sensors is unacceptable and routes 
delivering all sensors on-time are not found, one approach that 
can be taken is to modify the delivery fleet to make on-time 
delivery of all sensors possible. For example, the vehicle 
speeds or their numbers could be increased to allow for the 
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deployment of the complete optimal network. 
If the robot fleet could not be modified, an approach of 

guaranteeing the on-time deployment of the first n' sensors 
could be taken. This method is, especially, suitable for 
problems that are dynamic, where the optimal sensor-network 
configuration could change at any time during the search. It 
would be, therefore, beneficial to deploy the first n' sensors 
on-time since they are more likely to be delivered before a 
change in network configuration occurs.  

The above latter approach could be carried out in two 
phases. Namely, routes would be first planned, during Phase 1 
to maximize the minimum spare time for only the first n' 
sensors, all of which can be deployed on-time. In Phase 2, 
routes would be planned for the remainder of the network, i.e., 
(n – n') sensors. Robots would start Phase 2 at their last 
sensor-deployment locations at the end of Phase 1.  

For both abovementioned approaches, a one-dimensional 
optimization is required to find the minimum number of 
additional robots required, or the maximum number of sensors 
that can be deployed on-time, respectively. The one-
dimensional optimization can be performed via a simple 
search algorithm, such as the golden-section search algorithm. 

It should be noted that each iteration of the one-dimensional 
search algorithm would require running our proposed targeted 
local-search method, to verify whether the number of robots, 
or sensors, considered, is feasible. Since we propose the use of 
a metaheuristic optimization method, the proposed algorithm 
would be run for at most a fixed amount of time every 
iteration of the one-dimensional search.  Thus, the algorithm 
for addressing the problem of insufficient vehicles has an 
estimated runtime of the original optimization runtime 
multiplied by the computational complexity of the one-
dimensional optimization algorithm.  

For example, if using the golden-section search to 
determine the maximum number of sensors that can be 
deployed on-time, the runtime estimate would be equal to the 
optimization algorithm runtime multiplied by O(log(n)). 

 If a user decides to forgo the one-dimensional optimization 
(e.g., due to time constraints) and accept the outcome to 
simply deploying sensors late, the computational performance 
of our method would not be impacted. However, by deploying 
sensors late, this would be equivalent to deploying a sensor 
network that is suboptimal. Namely, the ability of the sensor 
network to search for the mobile target would have added 
uncertainty. 

IV. SIMULATED EXPERIMENTS FOR WISAR 

Numerous route-planning experiments were performed to 
validate the effectiveness and robustness of our resource-
management method. Two detailed examples are presented in 
Section IV.A, followed by the presentation and discussion of 
extensive numerical experiments in Section IV.B. All 
experiments were performed with the proposed route planning 
method implemented in MATLAB® 2016a on a Microsoft 
Windows 10 computer with an Intel® CoreTM i7-4770 CPU 
and 16GB of RAM. 

The experiments involved planning routes for a team of 
robots deploying a static-sensor network, as determined via 
the method described in [7], in a WiSAR operation, where 
both sensor deployment times and locations are specified. 
Thus, maximizing spare time between deployments would 
improve the ability of the robots to search for the lost target 
between sensor deliveries.  

The sensor network planning method in [7] determines 
optimal static-sensor deployment times and locations given 
specific search scenario. The search scenario information at 
hand is used to predict target motion in the search area, such 
that sensors can be deployed at locations that maximize the 
likelihood of target detection. Sensor deployment times are 
optimized to spread sensor-network’s search effort uniformly 
over time. 

Search-scenario information includes the search-area terrain 
and the characteristics of target motion. Random, realistic 
terrain information was generated in our work for each 
scenario using the Terragen 3 software package [81]. This 
terrain was, then, used to both compute realistic robot travel 
times and influence target motion in sensor-network planning. 
For example, elevation and vegetation information was used to 
estimate target and robot motion speeds as they moved 
through the search area. Additionally, large impassable 
obstacles such as lakes, cliffs, and large boulders were 
included to impede and direct target and robot movement 
through the search area.  

Target motion characteristics can depend on many factors 
including age, physical condition, and familiarity with 
wilderness travel. In [7], the characteristics of target motion 
were consolidated into three numerical parameters, mean 
target speed (how fast the target can move), μ, variance of the 
target’s heading (how much the target can wander), σθ, and the 
maximum distance for which the target maintains a given 
heading (how decisive the target is), dm. For example, a target 
with a small μ, small σθ, and large dm would be slow, but 
wander relatively little, and likely to persist in a direction 
away from their last known position (LKP). In contrast, a 
target with a larger μ, larger σθ, and smaller dm would be 
faster, but move more erratically and, thus, likely to propagate 
outwards at a slower rate. Consequently, the spatial and 
temporal distribution of sensors in the networks planned for 
the two different targets would differ. The combined use of 
realistic terrain to influence target motion and a realistic target 
motion model results in a sensor network plan that could be 
deployed for real lost-person search in WiSAR. 

Once sensor deployment locations and times are optimized, 
the method proposed herein is used to determine (near-
optimal) robot routes for the (time-phased) deployment of the 
sensors. 

A. Detailed Examples 

1) Example 1 

In this example, optimal resource management is achieved 
by planning routes for 15 robots tasked with deploying a 
network comprising 450 sensors configured to maximize the 
likelihood of finding a lost target. The target was characterized 
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by parameters μ = 0.1 m/s, σθ = π/4 rad, dm = 200 m. The 
network is shown in Fig. 4. While not shown in the figure, 
each sensor deployment location (blue dot) has a 
corresponding sensor deployment time. 

The robots all begin delivery from a central location, the 
target’s LKP, (red square in Fig. 4) and have identical carrying 
capacities of 33 sensors each such that the total capacity is 
10% more than the network to be deployed (i.e., 45 extra 
sensors). Robot speeds were randomly defined between 0.7 
m/s and 1.3 m/s.  

In order to evaluate the effectiveness of our route planning 
method, we utilized both VNS and TS metaheuristics, where 
we re-ran each search 30 times (with a time limit of 1800 s) 
and chose the worst result, respectively, Table I. For 
comparison purposes, we also obtained (1) a brute-force 
optimal solution by running the VNS for 12-hours, as well as 
(2) the best of 1000 random solutions, Table I.  
 

 
Fig. 4.  The sensor network for Example 1. 

TABLE I  
MINIMUM SPARE TIME VALUES FOR EXAMPLE 1 

Worst of 30 

VNS (s) 

Worst of 30 

TS (s) 

Brute-force 

Optimal (s) 

Best of 1000 

Random (s) 

−1468 −2056 −392 −20487 

 
The quality of each solution was assessed based on its 

proximity to the brute-force (near-global) optimal value 
normalized with respect to its proximity to the best random 
value: 

E = 100 F �<GH − �;>HI<J
�<GH − �KL'J<;

%, (11) 

where τmethod is the minimum spare time achieved by using our 
method, τopt is the minimum spare time of the (near-global) 
optimal solution, and τrandom is the minimum spare time of the 
best random solution. One may note that a smaller Q value is 
better, with Q = 0% implying that the method achieved the 
global optimum spare-time value.  

The results obtained show that the proposed method yields 
routes that are within about 8% of the brute-force (near-
global) optimal solution. Plots of the optimization progress for 
the TS and VNS implementations, respectively, are given in 
Fig. 5. It can be observed that the quality of our solution (an 

approximation of the global optimum) improves sub-linearly 
with increased search time. 

 
Fig. 5.  Optimization progress of the (a) VNS and (b) TS implementation of 

the method in solving Example 1. 
 

As noted above, in our example, all 15 robots begin their 
routes, respectively, at a central location (shown by a red 
square centered at (0,0) in Fig. 6). They move radially 
outward, as sensors further away from the origin tend to have 
later deployment times. The routing solution obtained via 
VNS is shown in Fig. 6a. The solution obtained via TS is 
shown in Fig. 6b. Both solutions minimize travel distance 
between subsequent sensor deployments. However, in some 
cases the routes backtrack toward the origin. The brute-force 
optimal solution is shown in Fig. 6c, where the robots remain 
in their respective sectors and monotonically move outward to 
maximize minimum spare-time. Lastly, a set of disorganized 
routes obtained via a random solution is shown in Fig. 6d. 

 
Fig. 6.  Routes depicting the solutions obtained for Example 1 from (a) worst 
of solution 30 VNS trials, (b) worst of 30 TS trials, (c) brute-force optimal, 

and (d) best of 1000 random routes. 
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It should be noted that, in general, while the visual quality 
of the solutions can give some indication of the quality of the 
solution, it is difficult to visually assess the optimality of a set 
of routes. Namely, since edge values are a combination of 
spatial and temporal quantities, crossovers in paths do not 
necessarily imply sub-optimality of the solution. 

2) Example 2 

This example considers a re-planning situation. Namely, the 
configuration of the WiSAR sensor network is changed (due 
to finding a clue regarding target motion) while the robots are 
in mid-delivery, requiring route re-planning. At the time of re-
planning, the 15 robots (red squares) have still need to deploy 
150 sensors, and have their delivery routes starting from their 
most recent locations, Fig. 7.  

As in Example 1, while not shown in the figure, each sensor 
deployment location (blue dot) has a corresponding sensor 
deployment time. Furthermore, each robot has on-board a 
different number of sensors available to deploy, in this 
example ranging from 8 to 14 sensors with a total number of 
sensors carried being 165 (i.e., there are still 15 redundant 
sensors distributed amongst the robots). The search area in this 
example contains a rough terrain, while the target was 
characterized by parameters μ = 0.12 m/s, σθ = π/3 rad, dm = 
100 m. Robot speeds ranged between 0.99 m/s and 1.48 m/s.  

 
Fig. 7.  Illustration of the sensor network being deployed in Example 2. 

 
As in Example 1, the performance of our method in its two 

implementations was compared to an optimal solution 
obtained through using an exact method (an integer linear 
program (ILP) solver) and the best of 1000 random solutions, 
Table II. In this example, the worst results produced by the 
method given a 600 s time limit were within <1% of the brute-
force optimal solution (as calculated using Eq. (11)). 

 
TABLE II  

MINIMUM SPARE TIME VALUES FOR EXAMPLE 2 

Worst of 30 

VNS (s) 

Worst of 30 

TS (s) 

Brute-force 

optimal (s) 

Best of 1000 

Random (s) 

274 276 287 −5100 

 

Fig. 8 shows the optimization progress for both 
implementations of the proposed method. The actual routes for 
the robots are shown in Fig. 9. As in Fig. 6, robots begin their 
respective route at a central location and move outwards. The 
routes in Figs. 9a and 9b are solutions obtained by VNS and 
TS, respectively. Fig. 9c shows the brute-force optimal 
solution and Fig. 9d shows the disorganized random solution, 
respectively. 

 
Fig. 8.  Optimization progress of the (a) VNS and (b) TS implementation of 

the method in solving Example 2. 

 
Fig. 9.  Routes depicting the solutions obtained for Example 2 from (a) worst 
of solution 30 VNS trials, (b) worst of 30 TS trials, (c) brute-force optimal, 

and (d) best of 1000 random routes. 

B. Summary of Simulated Experiments 

Twenty-seven distinct combinatorial cases were 
investigated for each of initial planning and re-planning 
situations to show the robustness of our proposed method. As 
indicated in the detailed examples above, initial planning 
scenarios have all robots starting at the same location with 



This is the author's version of an article that has been published in IEEE Transactions on Automation Science and 
Engineering. 
DOI: 10.1109/TASE.2018.2857630 
The final version of the paper is available at https://ieeexplore.ieee.org/document/8425715 

© 2018 IEEE 

9

equal capacities for deployment, while re-planning situations 
have robots starting at different locations with differing 
capacities for deployment. The 27 respective cases covered all 
combinations of three WiSAR scenarios, three network sizes, 
and three robot fleet sizes, Table III. The three search 
scenarios are outlined in Table IV. 

TABLE III  
PARAMETERS FOR EXPERIMENT CASES 

 Scenario 1 Scenario 2 Scenario 3 

Network Size 150 300 450 
Fleet Size 10 15 20 

 
TABLE IV  

PARAMETERS OF THREE SEARCH SCENARIOS 

 Scenario 1 Scenario 2 Scenario 3 

Terrain Flat Uneven Uneven 
Obstacles None Several None 

μ (m/s) 0.1 0.12 0.8 
σθ (rad) π/4 π/3 2π/3 
dm (m) 200 100 50 

 

As in the two examples detailed above in Section IV.A, 
both the VNS and TS implementations of our method were 
compared to a brute-force (near-global) optimal solution and 
to the best of 1000 random solutions. Furthermore, the time 
taken on each problem case to reach within 10% of the brute-
force optimal solution was also evaluated to investigate how 
the performance of the method scales with problem size. 

 

1) Initial Route-Planning Results 

The proposed method in both of its implementations was 
used to solve 27 initial-planning cases, consisting of all 
combinations of network sizes, fleet sizes, and search 
scenarios presented in Tables III and IV. Each case was solved 
for 30 trials. For every trial, the method was allowed to run for 
600 s before termination. The quality of each solution 
obtained was calculated according to Eq. (11), showing the 
proximity of the solution obtained to the global optimum.  

In the 150-sensor network cases, the global optimum was 
obtained using an exact solution method (an ILP solver). For 
the larger problems with 300- and 450-sensor networks, 
however, it was infeasible to obtain exact solutions using an 
ILP solver. Thus, near-global brute-force optimal solutions 
were obtained by running VNS for 12 hours. 

Despite the variety of search scenario, sensor network size, 
and fleet size combinations tested, the method was able to 
consistently produce high quality solutions that maximized the 
minimum spare time.  The results are summarized in Table V. 
Each entry in the table represents the range of results obtained 
for each case using our method. No distinction is made 
between results obtained from the TS or VNS implementation 
as the two implementations performed similarly. 

The primary trend that can be observed from the results 
presented in Table V is that the quality of the solutions 
diminishes with increasing sensor-network size. Namely, the 
proposed method can find an approximation to the global 
optimal solution that deviate at most 1%, 10%, and 30% from 
the global optimum objective function value in the 150-, 300-, 

and 450-sensor network cases, respectively. This indicates that 
the most significant factor influencing the quality of the 
solution achieved by our method, given a fixed computational 
time limit, is the number of sensors in the problem. 

TABLE V 
 SUMMARY OF INITIAL PLANNING TEST RESULTS 

Fleet Size 150 Sensors 300 Sensors 450 Sensors 

 Scenario 1:  Q Values (%) 

10 0–1  3–5 15–23 
15 0 2–6 15–29 
20 0–1 1–7 18–28 

 Scenario 2:  Q Values (%) 

10 0 3–6 14–24 
15 0 1–6 16–27 
20 0 1–4 17–26 

 Scenario 3:  Q Values (%) 

10 0 0–5 13–23 
15 0 0–3 15–27 
20 0 0 15–26 

 
Namely, the achieved spare time value is closer to the (global) 
optimal value, if there are fewer sensors to route. This is due 
to a larger number of sensors increasing computation time and 
slowing the search engine, as well as the search space 
increasing in size. Variations in solution quality across fleet 
size and scenarios, however, are comparatively small. This 
suggests that the sensor-network configuration, the spare-time 
values, and the number of robots have comparatively minor 
impacts on the method’s ability to optimize routes. 

Further investigation of how the search scenario, sensor 
network size, and fleet size influence the method’s 
performance was carried out by investigating the time required 
to achieve 10% proximity to the optimal solution. Fig. 10 
shows the results of the experiments. Each line in the graph 
indicates a different fleet size as indicated by the legend. Data 
points indicate the latest time of achieving 10% for a given 
network and fleet size aggregated over the two 
implementations of the method and search scenarios. 
Aggregation was performed over the implementation and 
search scenarios as there was no significant difference in 
performance over these parameters. This indicates that our 
proposed method performs similarly among different spatial 
and temporal distributions of the sensor networks. 

 
Fig. 10.  Time to reach within 10% the optimal solution for various cases of 

initial planning. 
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From Fig. 10, it can also be noted that the number of 
sensors influences the time required to achieve a given quality 
solution more than the fleet size. Furthermore, the results 
indicate that the time required scales super-linearly with the 
number of sensors. 

2) Route Re-Planning Results 

Both implementations of the proposed method were also 
used to obtain solutions to 27 re-planning cases, consisting of 
all combinations of network sizes, fleet sizes, and search 
scenarios presented in Tables III and IV. Each case was solved 
for 30 trials with a time limit of 600 s. On may recall that re-
planning cases have robots starting at unique locations with 
different capacities for deployment as shown in the second 
detailed example. The solution quality values were again 
calculated according to Eq. (11) to show solution proximity to 
the global optimum.  

As in the initial planning cases, the global optimum for the 
150-sensor network cases was obtained using an ILP solver. 
Similarly, near-global brute-force optimal solutions were 
obtained by running VNS for 12 hours for the 300- and 450-
sensor network cases. A summary of the worst results 
obtained from using the proposed method is presented in 
Table VI.  

TABLE VI 
 SUMMARY OF RE-PLANNING TEST RESULTS (%) 

Fleet Size 150 Sensors 300 Sensors 450 Sensors 

 Scenario 1:  Q Values (%) 

10 0–1 3–5 16–23 
15 0–1 5–6 14–27 
20 1–2 2–9 17–24 

 Scenario 2:  Q Values (%) 

10 4–5 3–6 15–24 
15 0 1–7 16–27 
20 0 1–8 16–26 

 Scenario 3:  Q Values (%) 

10 0–1 0–5 17–22 
15 0 0–6 15–22 
20 0 0–1 15–23 

 
As with the initial planning case, the results suggest that the 

primary influence on the quality of solution is the number of 
sensors in the network being deployed. Similarly, variations in 
quality across fleet sizes and scenarios is small as in the initial 
planning case. This further indicates that the network 
configuration, spare-time values, and number of robots have 
minor impacts on route-planning performance. Furthermore, 
comparing the results presented in Table V with those in Table 
VI, it is possible to note that whether the problem is one of 
initial planning vs re-planning has also comparatively little 
impact on route-planning performance. 

Overall, the results indicate that the proposed method is 
capable of effectively optimizing routes given both initial 
planning and re-planning situations in addition to various 
sensor numbers, fleet sizes, and search scenarios.  

Additional investigation revealed that the worst-case time 
required by the method to achieve a value within 10% of the 

 optimal varies is again super-linearly related to the number 
of sensors in the network, Fig. 11. 

 
Fig. 11.  Time to reach within 10% the optimal solution for various cases of 

re-planning. 

C. Comparisons 

We compared several different approaches to route 
optimization including Simulated Annealing, Ant Colony 
Optimization, Genetic Algorithm, and Variable Neighborhood 
Search (VNS) and Tabu Search (TS). The comparisons 
revealed that the local-search based VNS and TS yielded the 
best results. The comparative results are shown in Table VII 
for initial planning, and Table VIII for re-planning. As can be 
noted from the tables, best Q results were obtained using 
VNS/TS with targeted local search. 

TABLE VII 
 COMPARISON OF OPTIMIZATION METHODOLOGIES FOR INITIAL PLANNING 

# Sensors,  

# Robots, 

Scenario # 

Best 

of 

SA 

(%) 

Best 

of 

ACO 

(%) 

Best 

of 

GA 

(%) 

Best of 

Proposed 

VNS/TS 

(%) 

Worst of 

Proposed 

VNS/TS 

(%) 

150,  10,  3 1 56 5 ≈0 ≈0 

150,  20,  2 1 62 12 ≈0 ≈0 

300,  10,  1 28 64 17 1 4 

300,  15,  2 30 67 12 ≈0 1 

450,  15,  3 49 73 4 ≈0 9 

  

TABLE VIII 
 COMPARISON OF OPTIMIZATION METHODOLOGIES FOR RE-PLANNING 

# Sensors,  

# Robots, 

Scenario # 

Best 

of       

SA 

(%) 

Best 

of    

ACO 

(%) 

Best 

of 

GA 

(%) 

Best of   

Proposed 

VNS/TS 

(%) 

Worst of 

Proposed 

VNS/TS 

(%) 

150,  15,  1 11 63 18 ≈0 1 

300,  20,  3 34 68 6 ≈0 1 

450,  10,  2 43 69 11 2 6 

450,  20,  1 52 77 21 4 8 

 
Additional simulations were run comparing the proposed 

method to a greedy algorithm for optimizing routes. In the 
greedy algorithm, sensors were assigned to robots 
sequentially, starting with Sensor 1 and continuing until 
Sensor n. The assignment that results in the maximum spare 
time is selected at every step. The results indicated that our 
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proposed VNS/TS method consistently outperforms the 
greedy algorithm for reasonable-sized problem, e.g., the 150-
sensor/10-robot and the 300-sensor/15-robot cases. However, 
the greedy algorithm would outperform our method for large-
sized problems, e.g., the 450-sensor/20-robot case, unless the 
latter is given significantly more computation time, which 
would not be realistic for most applications. 

V. CONCLUSIONS 

In this paper, we address the resource-management problem 
for time-phased sensor-network deployments, for applications 
such as wilderness search and rescue and wildfire monitoring. 
In these applications, it would be beneficial to maximize the 
spare time available to the delivery vehicles, between 
scheduled deployments, such that they can perform other 
tasks. Since the sensors need to be deployed to specific 
locations at predetermined corresponding times, the problem 
at hand is unique and necessitates a novel vehicle route-
planning formulation that includes our spare-time objective 
function. Furthermore, achieving an unbiased distribution of 
spare time over the course of network deployment requires the 
use of an effective objective function, in our case, maximizing 
minimum spare time between sensor deliveries.  

In order to address this problem, we developed a method 
that includes a novel targeted local search algorithm for route 
planning. The proposed algorithm is novel in that it targets a 
single arc in the solution to improve upon, narrowing the 
search space significantly. This algorithm can be used as a 
basis for metaheuristic solution methods, as has been 
demonstrated by its incorporation into the frameworks of both 
variable neighborhood search and Tabu search.  

Experiments in the context of a WiSAR operation were 
presented to validate the proposed method, to illustrate its 
efficiency, as well as its robustness to a variety of parameter 
values and conditions. The obtained (worst-case) solutions 
were compared to brute-force and (best-case) random 
solutions.  

Although demonstrated in the context of WiSAR, the 
proposed method can be adapted to various time-constrained 
route-planning problems. 

A topic of interest that can be considered for future work is 
having robots with limited battery life. This could be 
addressed in several ways, including incorporating re-charging 
trips to a re-charging station during delivery or having other 
robots rendezvous with the delivery robots to offer re-
charging. Limited sensor carrying capacity could also be 
addressed in a similar manner.  
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Appendix A 
The algorithm for each type of Local Search (LS) is 

presented below. 
 

Algorithm A1: Targeted Swap LS 

1. while bestImprovement > 0 
2.     bestImprovement = 0 
3.     find lowest arc value, minVal, identify surrounding nodes B and C 
4.     for every node Y in other routes 
5.         if fswap(B, Y) – minVal > bestImprovement  
6.             bestImprovement = fswap(B, Y) – minVal 

7.             record swap(B, Y) as bestMove 
8.         if fswap(C, Y) – minVal > bestImprovement 

9.             bestImprovement = fswap(C, Y) – minVal 

10.             record swap(C, Y) as bestMove 
11.      if bestImprovement > 0 
12.          execute bestMove 
 

Algorithm A2: Targeted Relocate LS 

1. while bestImprovement > 0 
2.     bestImprovement = 0 
3.     find lowest arc value, minVal, identify surrounding nodes B and C 
4.     for every node Y in other routes 
5.         if frelocate(B, Y) – minVal > bestImprovement  
6.             bestImprovement = frelocate(B, Y) – minVal 
7.             record relocate(B, Y) as bestMove 
8.         if frelocate(C, Y) – minVal > bestImprovement 
9.             bestImprovement = frelocate(C, Y) – minVal 
10.             record relocate(C, Y) as bestMove 
11.         if frelocate(Y, B) – minVal > bestImprovement 
12.             bestImprovement = frelocate(Y, B) – minVal 
13.             record relocate(Y, B) as bestMove 
14.      if bestImprovement > 0 
15.          execute bestMove 
 

Algorithm A3: Targeted 2OPT* LS 

1. while bestImprovement > 0 
2.     bestImprovement = 0 
3.     find lowest arc value, minVal, identify predecessor node B 
4.     for every node Y in other routes  
5.        if f2opt*(B, Y) – minVal > bestImprovement 
6.            bestImprovement = f2opt*(B, Y) – minVal 
7.            record 2opt*(B, Y) as bestMove 
8.     if bestImprovement > 0 
9.         execute bestMove 

 

 


