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Abstract—Locating a mobile target, untrackable in real-time, 

is pertinent to numerous time-critical applications, such as 

wilderness search and rescue. This paper proposes a hybrid 

approach to this dynamic problem, where both static and mobile 

sensors are utilized for the goal of detecting the target. The 

approach is novel in that the team of robots utilized to deploy a 

static-sensor network also actively searches for the target, via on-

board sensors. Synergy is achieved through (i) the optimal 

deployment planning of the static-sensor network, as well as (ii) 

the optimal routing and motion planning of the robots for the 

deployment of the network and target-search. 

The static-sensor network is planned first to maximize the 

likelihood of target detection, while ensuring (temporal and 

spatial) unbiasedness in target motion. Robot motions are, 

subsequently, planned in two stages: route planning, and 

trajectory planning. In the first stage, given a static-sensor 

network configuration, robot routes are planned to maximize the 

amount of spare time available to the mobile agents/sensors, for 

target search in between (just-in-time) static-sensor deployments. 

In the second stage, given robot routes (i.e., optimal sequences of 

sensor delivery locations and times), corresponding robot 

trajectories are planned to make effective use of any spare time 

the mobile agents may have to search for the target. 

The proposed search strategy was validated through extensive 

simulations, some of which are detailed herein. Included is also 

an analysis of the method’s performance in terms of target-

search success.  

 
Index Terms—Hybrid search planning, mobile-target search, 

multirobot coordination, wilderness search and rescue (WiSAR), 

wireless sensor networks. 

 

I. INTRODUCTION 

HE mobile-target search problem is pertinent to numerous 

real-world situations, including various forms of search 

and rescue, where the target is, typically, un-trackable (i.e., 

his/her location is unknown in real-time) [1]-[8]. Planning a 

search for such a target would require coordinating the 

available search resources to maximize the likelihood of 

detection [9]-[12]. 

A search for a mobile target is, generally, performed by 

agents who actively move through the search space to locate it 

 
This research was funded in part by the Natural Sciences and Engineering 

Research Council of Canada (NSERC), and the Canada Research Chairs 

program. 

All authors are with the Department of Mechanical and Industrial 
Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada. 

(zendkash@mie.utoronto.ca) 

[12]-[26]. For example, in [22], a method is presented for 

coordinating robot formations sweeping the entirety of a 

search area populated with arbitrarily-shaped obstacles. In 

[23], a technique for dynamically reconfiguring the search 

space is discussed. The technique enables autonomous search, 

as well as the tracking of targets that may move outside of the 

initially defined search boundaries. In [24], a search technique 

guided by recursive Bayesian estimation of the target’s 

location is proposed.  

Mobile robots, while representing a reconfigurable network, 

are expensive to deploy and operate as search resources. Static 

sensors, on the other hand, allow the monitoring of a large 

geographical area at a significantly lower cost.  

There have been research papers that recommend the use of 

only static search resources, for example, in the context of 

surveillance, [27]-[33]. Though, most do not explicitly deal 

with dynamic scenarios, where the target may not be 

guaranteed to pass through the region of interest, nor do they 

consider expanding the search area. As a modified approach, a 

time-phased deployment of the static-sensor network was 

proposed in [34], [35]. It allows for the network deployment 

plan to be changed in mid-search, adapting to new information 

regarding the target, were it to become available. 

The combined use of mobile and static resources has also 

been investigated, though, for applications with mainly static 

elements (e.g., fixed regions of interest, pre-configured static-

sensor networks, etc.) [36]-[42]. For example, in [37], mobile 

agents are used to patrol regions not covered by the static-

sensor network. In [38]-[40], mobile agents are simply used to 

service the static-sensor network. In [41], mobile agents are 

used to deploy and/or acquire data from static sensors, 

eliminating the need for a wirelessly connected network.  

The aforementioned methods, typically, do not consider 

dynamic scenarios wherein the region of interest may change 

over time, and only utilize one of the two resources for search. 

In time-critical applications, however, it is essential to 

maximize resource utilization and efficiency to increase the 

likelihood of the target being located as soon as possible. 

This paper, thus, presents a novel mobile-target search 

method that uses a dynamically deployed static-sensor 

network supported by a robot team. The strategy is unique in 

that the robot team deploying the sensor-network also actively 

searches for the target between sensor deliveries. 

The proposed method was developed with, primarily, 

application to real-time wilderness search and rescue 

(WiSAR) planning in mind. Namely, it considers the problem 
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in which the objective is to locate a lost person, wandering in 

the wilderness, as soon as possible [19], [43]-[45]. The 

generalized method, however, can be applied to any mobile-

target search problem in which knowledge regarding the 

target’s motion can change in real-time. Some examples of 

other similar search problems include surveillance [46], 

wildlife search [47], target pursuit [48], [49], and urban search 

and rescue [50]-[54]. In target pursuit, for example, the aim is 

to locate an evading target. Similarly, in urban search and 

rescue, the aim is to locate a disaster survivor who may be 

wandering in the aftermath. In each case, search is time-

critical and dynamic such that it could benefit from maximum 

resource use and adaptability.  

The proposed method first plans an optimal static-sensor 

network, maximizing its flexibility and likelihood of locating 

the target. Thereafter, it plans the motion of the mobile agents 

(i.e., robots) to deliver sensors and to also actively search for 

the target.  

II. MOBILE-TARGET SEARCH PROBLEM 

This paper addresses the mobile-target search problem, 

within a region that grows with time, using a dynamically 

deployed static-sensor network supported by an autonomous 

robot team (e.g., WiSAR). The latter performs both target 

search and deployment of the static-sensor network to 

maximize resource utilization. Section II.A below presents the 

overall system model and assumptions made. It is followed by 

the problem formulation in Section II.B. 

A. System Model and Assumptions 

In WiSAR-type problems, the objective is to locate a lost 

person in a search area expanding with time. Planning a search 

would, thus, require effective coordination of search resources 

(mobile robots and static sensors in our case) to locate the 

target as soon as possible based on the available information 

prior to and during the search [55], [56]. Herein, the search is 

modelled to occur in 2D continuous space. The target is 

modelled as a point of interest and follows an unknown 

trajectory through the search area. Namely, its exact location 

is unknown until it is detected. When the target is detected, the 

search terminates. Robots and static-sensors are also modelled 

as points for the sake of simplicity. Furthermore, robot and 

sensor coverage of the search area is modelled with a Boolean 

disc coverage model. Namely, a target is detected if it passes 

within a given distance of a static sensor or robot. It should be 

noted that, while the search is modelled to be in a 2D space, 

3D constructs such as terrain (elevation, vegetation, etc.) are 

considered when planning search. 

The assumptions made in our work include: 

Assumption 1: Static sensors are deployed by robots. 

Namely, sensors cannot move on their own. Furthermore, they 

are non-retrievable, once deployed, and can thus not be 

relocated.  

Assumption 2: All robots/sensors are assumed to have 

global access to a central controller coordinating the hybrid 

search. Namely, the proposed method is a centralized one in 

which robots and static sensors do not communicate with each 

other directly. Instead, they all communicate with a central 

controller that coordinates their movements and receives 

reports regarding search observations. Furthermore, the 

communication is assumed to be flawless such that all units 

are always connected, and all messages are transmitted 

perfectly. 

Assumption 3: Search scenario information known at the 

start of the search includes the target demographics, its motion 

characteristics and last known position (LKP), as well as 

search-area terrain, and search-resource availability. This 

information is assumed to either be publicly available or 

provided by individuals requesting the search. Additional 

information about the target can be discovered at any time 

during the search. For example, a clue left by the target (e.g., 

an article of clothing) could serve as a new LKP. New 

information can change the optimal search plan.  

Assumption 4: A mobility model that can generate realistic 

target motion is available. Herein, it is assumed that the target 

propagates outward from the LKP while ‘wandering’. Target 

motion is specified by two parameters, dmax and σθ. dmax, 

specifies the maximum distance the target can move before 

changing directions; while σθ specifies the degree to which the 

target wanders as it propagates away from the LKP. Values for 

dmax and σθ can be inferred from search-scenario information. 

This target model was adopted from [35] and is based on lost-

person behaviour in the wilderness. Other motion models 

could also be used (e.g., [2], [35], [43], [57], [58]). 

Assumption 5: A model for determining the effect of terrain 

(e.g., slopes, vegetation, etc.) on the target’s and robots’ 

speeds is available. 

Assumption 6: The search area increases in size with time, 

as the target propagates outwards. However, the target always 

remains within the sensing field (i.e., search area) throughout 

the search. Namely, the proposed method plans robot search 

and static-sensor deployment at increasingly larger radii away 

from the LKP over time to account for the growing of the 

search area. 

B. Problem Formulation 

The overall problem of planning a hybrid search can be 

divided into three interconnected sub-problems (phases): (i) 

sensor-network deployment planning, (ii) sensor-delivery 

route planning, and (iii) robot-trajectory planning. These are 

individually detailed and formulated below. 

1) Static-Sensor-Network Deployment Planning 

In this phase, the goal is to determine an optimal network 

configuration for n sensors, defined by their deployment 

locations, {(x1, y1), ⋯, (xn, yn)}, and corresponding 

deployment times, {t1, ⋯, tn}. The latter refer to times at 

which sensors should be delivered to their corresponding 

optimal locations by a robot. 

In the optimal network configuration, the search effort needs 

to be spread throughout the search unbiasedly, while 

maximizing the likelihood of target detection [35]. Namely, 

the network must account for all possible target-motion 

directions since this would be a priori unknown.  
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Network-deployment planning can be carried out in two 

stages. In the first stage, sensor-deployment times need to be 

determined such that the rate of deployment does not favor 

any specific period of time. In the second stage, sensor-

deployment locations need to be determined to maximize 

time-cumulative likelihood of detection in a spatiotemporally 

unbiased manner. 

Stage 1: Determining optimal sensor-deployment times 

As static sensors cannot be relocated after deployment, a 

fully-deployed network would not be reconfigurable to adapt 

to any new information that may become available during the 

search. Thus, deploying sensors in a time-phased manner 

during the search would allow the (undeployed part of the) 

network to be reconfigured using the sensors not yet deployed.  

In order to maximize the network’s ability to adapt to target 

information obtained during the search, deployment times 

must be optimized such that the network is temporally 

unbiased. Temporally-unbiased sensor-deployment times are 

ones that spread search effort uniformly. This can be achieved 

by determining placement times that approximate a uniform 

rate of search-effort deployment, up to time t: i.e., a linear 

cumulative effort function, E(t). 

The objective of deployment-time optimization, then, can be 

formulated as a minimization of error between the empirical 

E(t) and its ideal form: 

minimize	 �	
�_
��
 	� � |���� � ��� � ��|

�


�
��, (1) 

where A and B are constants.  

 Deployment times, {t1, ⋯, tn}, are varied and optimized to 

minimize Eq. (1). The optimization requires the first and last 

deployment times, t1 and tn, to be known as they need to be 

fixed. Otherwise, this problem would be an unconstrained 

optimization problem.  

Stage 2: Determining optimal sensor-deployment locations 

Once deployment times have been determined, the 

corresponding sensor-deployment locations that maximize the 

likelihood of target detection in a directionally unbiased 

manner need to be determined. This problem can be 

formulated as two independent optimizations: (1) determining 

unique radial locations for sensors that maximize the 

likelihood of target detection over a sensor’s lifetime, and (2) 

determining unique angular locations for sensors that best 

approximate an ideal spatiotemporal sensor distribution for 

spatiotemporal unbiasedness. 

In order to formulate an expression for the likelihood of 

target detection over a sensor’s lifetime, i.e., the time-

cumulative likelihood of target detection, let us assume there 

exists a probability density function describing where the 

target may be in the search area at any given time, t, ρ(x, y, t). 

The first objective function is, then, defined by: 

maximize	 �	
�_!"# � � $�%, &, ��

'


(
��,	 (2) 

where ti is the deployment time of the ith sensor and te is the 

end of search time. 

The second objective function is defined by:  

minimize	 �	
�_")* � � � +,�-, �� � ,.�-, ��+/

�


�

/0

1
���-,	 (3) 

where F and F̂ are the ideal and empirical spatiotemporal 

distributions of sensor deployment locations and times..  

The combined optimization is, thus, one in which radial 

sensor deployment locations are optimized to maximize Eq. 

(2), fDep_rad, and angular deployment locations are optimized to 

minimize Eq. (3), fDep_ang. The outcome would yield a set of 

optimal deployment locations, {(x1, y1), ⋯, (xn, yn)}, 

maximizing the time-cumulative likelihood of target detection 

in a spatiotemporally unbiased manner. Optimizing sensor 

deployment locations for spatiotemporal unbiasedness has the 

side effect of spatially spreading sensors such that redundant 

coverage of the search area is minimized. Both optimizations 

are unconstrained as sensors may be deployed anywhere in the 

search area as long as their coverage areas do not overlap.  

2) Robot-Route Planning 

In robot-route planning, the goal is to determine optimal 

routes for the k search robots that would deploy the optimal 

static-sensor network. The problem involves task-allocation 

(i.e., deciding which robots will deploy which sensors) as well 

as determining the individual robot routes (i.e., 

strings/sequences of sensor nodes to be visited) [59], [60].  

For the optimization, the primary objective function is the 

maximization of spare times between sensor deployments. 

Spare time refers to how early a robot can arrive at a sensor 

deployment location. The more spare time a robot would have, 

the more time it could spend searching for the target, while 

still arriving at the next delivery node just-in-time. 

Let us assume a robot is tasked to deploy Sensor j, 

following its previous deployment of Sensor i, at times tj and ti, 

respectively. Also, let the earliest time a robot can arrive at the 

deployment location (xj, yj) be denoted by taj, travelling at the 

fastest speed possible for a duration of Δtji. Then, spare time 

can be calculated as: 

2�3 � �3 � �"3 , (4) 

where 

�"3 � �� � Δ��3 . (5) 

The objective function for route planning can, then, be 

defined as the maximization of the minimum spare time over 

all sensors: 

maximize	 �678

 � 9:;3∈=>,⋯,)? 2�3, (6) 

and/or, alternatively, as the maximization of the total spare 

time over all sensors: 

maximize	 �678

_"@
 � A 2�3
3∈=>,⋯,)?

. (7) 

The above optimization, thus, is one in which a set of 

deployment sequences of sensor nodes, one per each robot, S 

= {S1, ⋯, Sk}, is chosen to maximize spare time. Here, Sr 

denotes the sequence of sensors to be visited by Robot r (e.g., 

S1 = {1, 3, 8} denotes that Robot 1 will deliver Sensors 1, 3, 



This is the author's version of an article that has been published in IEEE Transactions on Cybernetics. 

DOI: 10.1109/TCYB.2018.2875625 

The final version of the paper is available at https://ieeexplore.ieee.org/document/8509163 

© 2018 IEEE 

4

and 8, in this given order). There are no constraints on this 

optimization in the context of this work. 

3) Robot-Trajectory Planning 

In robot-motion trajectory planning, after optimal robot 

routes have been obtained, the goal is to determine the 

respective trajectories for optimal target search. Namely, once 

a robot has been assigned to deploy Sensor j, after deploying 

Sensor i, its corresponding motion is planned such that it 

optimally searches for the target between these deployments. 

The optimal search trajectory, planned herein, is one that 

has the robot searching for the target while remaining on its 

respective iso-probability curve that is propagating forward 

with time [21], [61]. Iso-probability curves are constructed 

assuming a probability distribution describing probable target 

propagation speeds away from the LKP. In brief, the P% iso-

probability curve delimits the extent to which the slowest Pth 

percentile target could travel away from the LKP. This 

boundary propagates with time, as targets would have more 

time to travel further away from the LKP.  

A set of iso-probability curves would be selected for robots 

to remain on during the search (e.g., Robot 1 staying on the 

10% curve, Robot 2 staying on the 30% curve, etc.). Fig. 1(a) 

and 1(b) show examples of (propagating) 30%, 50%, and 70% 

iso-probability curves at times t and t+Δt, respectively. 

 

Fig. 1.  Three example iso-probability curves at (a) Time t, and (b) Time t+Δt. 

 

Searching for the target while remaining on these curves 

allows for the distribution of search effort to increase the 

likelihood of target detection. One can note that, 

remaining/travelling on the propagating curves that encircle 

the LKP allows robots to look for the target in all possible 

directions of target motion. This is desired since, herein, there 

are no assumptions made on the target travel direction. 

However, robots cannot always remain on their respective 

iso-probability curve due to their need to deploy sensors at 

specified times, which cannot be synced with the passing of 

the curves through the sensors nodes’ optimal locations. Thus, 

a robot trajectory between deployments needs to be divided 

into three segments: (i) a segment leading from Sensor-node i 

to the (earliest possible) starting point on the iso-probability 

curve, (ii) a segment defining the (optimal) search trajectory 

(i.e., the trajectory followed by the robot while remaining on 

its respective iso-probability curve), and (iii) a segment 

connecting the (latest possible) departure point from the iso-

probability curve moving toward Sensor-node j, Fig. 2. 

Segment ii in Fig. 2, represents a time-phased collection of a 

robot’s positions while remaining on its respective iso-

probability curve that is propagating with time. 

 
Fig. 2.  An example overall robot trajectory between two sensor nodes. 

 

Since the optimal search trajectory begins when the robot 

intercepts its assigned iso-probability curve and ends when it 

departs from this curve, the three segments connect four 

waypoints: the Sensor i location, xi, the iso-probability curve 

interception location, xinterception, the iso-probability curve 

departure location, xdeparture, and the Sensor j location, xj. Two 

of the four waypoints are known. Thus, the problem consists 

of optimizing the intermediate waypoints to maximize the 

time spent on the optimal search trajectory. 

Let tinterception be the time at which the robot starts the 

optimal search segment at xinterception (i.e., the time at which the 

robot intercepts the iso-probability curve), and tdeparture be the 

time at which the robot departs it from xdeparture, Fig. 2. The 

objective function to maximize, then, is the time spent, 

searching for the target, while remaining on the iso-probability 

curve: 

maximize	 �B!"3 � �#
�"!
8!
 � ��)

!C
�
�7) . (8) 

The above optimization is carried out by varying the iso-

probability curve interception and departure locations, 

xinterception and xdeparture, respectively. After waypoints are 

optimized, trajectory segments between them would be 

planned to maximize the likelihood of target detection. Both 

xinterception and xdeparture are restricted to be on iso-probability 

curves as the optimal search trajectory begins and ends on the 

iso-probability curve. 

Furthermore, since, there would be multiple robots, with 

multiple possible corresponding iso-probability curves to 

assign them to, there exists the additional problem of 

determining optimal robot-to-curve assignments. An optimal 

assignment can be achieved by minimizing the variance in the 

search effort assigned to different iso-probability curves. For 

example, they can be calculated via the linear density of the 

number of the robots, nc, per length of the curve, lc, λc = nc/lc, 

for each curve. In this case, the objective function would be: 
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minimize	 �DEE�*) � AFGC � G̅I/
J

K

CL>
, (9) 

where N is the total number of curves and: 

G̅ � AGC
J

K

CL>
. (10) 

The above optimization varies robot-to-curve assignments, 

denoted by the binary variable arc, which is 1 if Robot r is 

assigned to Curve c, and 0, otherwise, to minimize Eq. (9). In 

the optimization, each robot can only be assigned to one 

curve, but multiple robots may be assigned to any single 

curve. 

III. HYBRID SEARCH-PLANNING METHOD 

The proposed three-phase planning method first plans the 

time-phased deployment of the optimal static-sensor network 

based on available search-scenario information. Next, the 

optimal robot routes are planned, for making the scheduled 

static-sensor deliveries. Lastly, the robot-motion trajectories 

are planned, such that the robots actively search for the target 

while deploying the static-sensor network according to the 

planned routes. The planning method is illustrated in Fig. 3. 

The overall search is planned such that the target always 

remains within the ‘sensing field’ of the searchers. Namely, 

the search keeps pace with the moving target to maximize the 

likelihood of its detection. The optimal static-sensor-network 

configuration and the optimal robot routes and trajectories 

together comprise the complete hybrid search plan.  

 

Fig. 3.  The proposed hybrid search-planning method. 

A. Static-Sensor Network Deployment Planning 

The solution method presented herein for the network-

planning problem is an extension of the one outlined in [35]. 

The proposed method first determines optimal sensor-

deployment times, followed by determining the sensor-

placement locations (i.e., nodes) that maximize the likelihood 

of target detection in a directionally unbiased manner.  

Three main modifications to the original method had to be 

implemented: (i) the first sensor deployment time, t1, is now 

calculated, instead of being assumed to be given, (ii) the 

possible existence of redundant sensors is considered directly 

in the planning of the network, and (iii) sensor placement 

locations are optimized for spatiotemporal unbiasedness rather 

than just spatial spread. 

 (i) Modification 1 (Reformulation of t1): In the original 

method, t1 was set to be the start of search time and assumed 

to be a priori known. However, when considering physical 

delivery, robots require time to reach their respective first 

sensor-deployment location from their initial location. In 

order to account for this reality, the first sensor deployment 

time can be calculated as: 

�> � �E � 2��, (11) 

where ts is the (given) start of search time, when robots can 

begin the search, and δtm > 0 is the time to allow the robots 

to reach their first deployments on time. Namely, it is the 

longest time required for any robot to reach any potential 

deployment location for Sensor 1. 

(ii) Modification 2 (Extended sensor-network planning): In 

order to provide maximum flexibility, in deploying a static-

sensor network optimally, it is assumed here that the robots 

can be loaded with extra (redundant) sensors. Redundant 

sensors can facilitate optimal routing if there were to be a 

need to re-plan the network. Namely, since sensors cannot 

be transferred between robots after the search has started, 

the redundant sensors would allow robots to have some 

flexibility in the number of sensors they deploy in a 

reconfigured network. In order to utilize potentially 

available redundant search resources, we propose to deploy 

the set of redundant sensors only after the main network of 

n sensors has been deployed. The redundant sensors’ 

deployment times can be determined by extrapolation. 

Namely, given the last two sensor deployment times, tn-1 

and tn, the deployment time for the ith redundant sensor 

would be: 

�!� � �) � :��) � �)M>�, : ∈ =1,⋯ , ;!?, (12) 

where nr is the number of redundant sensors.  

(iii) Modification 3 (Spatiotemporal unbiasedness): Herein, 

the network-deployment optimization is designed to 

consider temporal unbiasedness in addition to just spatial 

unbiasedness considered in the past. A spatiotemporally 

unbiased sensor deployment ensures that the sensors in the 

network are distributed temporally unbiased in all directions 

throughout the (already spatially unbiased) search. Namely, 

the network is ‘spread’ such that all directions are covered 

homogeneously with respect to time. Such a deployment 

strategy would also assist in maximizing the spare time 

available for robots to search for the target. 

 As described in Section II, spatiotemporal unbiasedness 
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can be achieved by minimizing the difference between the 

ideal and empirical distribution of sensor-deployment 

angular-locations and times. The ideal distribution of 

sensors, F(θ, t) in Eq. (3), is a joint distribution between two 

independent variables, one of space and one of time: 

,�-, �� � O�P ≤ -, R ≤ ��	
� O�P ≤ -�O�R ≤ ��,	 (13) 

where Θ is the random variable defining the angular 

location of the sensor and T is the random variable for the 

deployment time of the sensor. 

The ideal distribution of sensor deployment times, P(T ≤ 

t), is the distribution of all deployment times. The ideal 

distribution of sensor angular locations, P(Θ ≤ θ) can be 

determined by considering that an ideal distribution would 

have identical levels of coverage in all directions. Namely, 

sensors would ideally be uniformly distributed in the region 

of interest such that all directions of target travel have 

similar levels of coverage. Since the region of interest in this 

case is the area between the deployment curve for the first 

deployment time, t1, and the deployment curve of the last 

deployment time, tn, the ideal CDF of angular sensor 

positions can be defined as:  

O�Θ ≤ -� � ��-�
��2U�, (14) 

where A(θ) is the area bounded by the initial and final 

deployment curves in a sector covering the angles [0, θ].  

Sensor positions on curves minimizing the objective 

function fDep_ang in Eq. (3) could be determined through a 

search engine, such as particle swarm optimization [35]. 

An example network of 150 sensors, planned according to 

the modified (spatiotemporally unbiased) configuration-

planning technique, is shown in Fig. 4. Blue points in the 

figure denote sensor-deployment positions, while the black 

cross represents the target LKP. The network was designed 

based on the demographics of a lost person, in a given search 

region, with known deployment-time constraints. Namely, the 

network was designed to optimally search for a target 

propagating away from the LKP with the first sensor being 

deployed at t1 = 4367 s and the last sensor being deployed at 

t150 = 11,377 s, respectively.  Here, t = 0 s is the time at which 

the target was at the LKP (the center). The center is, therefore, 

‘empty’ since it is assumed that the target has already 

propagated some distance away from the LKP. Furthermore, 

static sensors are deployed progressively away from the LKP 

as the search advances. 

The sensor network is approximately an annulus. The inner 

circle is defined by the time that has passed before the search 

starts and the outward propagation pace of the target. The 

outer circle is defined by the allotted total search time and the 

outward propagation pace of the target.  

B. Robot-Route Planning 

Given an optimal static-sensor network and the number of 

robots available and their specifications (e.g., carrying 

capacity and speed), the optimal robot routes need to be  

 

Fig. 4.  An example spatiotemporally optimized sensor network. 

determined. The primary goal is to maximize the (minimum) 

spare time over all sensor nodes, objective function fRoute in 

Eq. (6). A secondary goal of maximizing average spare time 

over all sensors can also be invoked, objective function fRoute_alt 

in Eq. (7). The primary and secondary goals are formulated as 

a two-tier objective function [59], [60]. The max-min objective 

function ensures that all sensors are deployed, at their 

specified deployment locations, as close as possible to their 

optimal deployment times. Furthermore, it ensures that the 

maximized spare-times are distributed in an unbiased way 

between robots and throughout their routes. 

Robot routes are planned for the main network deployment 

first, while disregarding the redundant sensors. It is followed 

by route planning for the redundant network, with robots’ new 

starting points and times being defined by their respective last 

(main-network) sensor placements. The combinatoric problem 

of determining optimal routes can, for example, be solved 

using a Genetic Algorithm [62].  

Fig. 5 shows an example set of routes planned for ten robots 

to deploy the network of 150 sensors shown in Fig. 4. Every 

robot route (i.e., a sequence of corresponding sensor 

deliveries) is shown with a different color. Robots start their 

motion at a central location (i.e., the LKP) and move outwards 

while deploying sensors progressively. It should be noted that 

the routes shown in Fig. 5 only indicate the orders (i.e., 

sequences) that the robots will deploy their respective sensors. 

 

Fig. 5.  Optimal delivery routes for ten robots delivering 150 sensors. 
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C. Mobile-Robot Trajectory Planning 

In an ideal target search, robots would be deployed to and 

remain on their respective (propagating) iso-probability curves 

to maximize the likelihood of target detection. An optimal 

search trajectory is, therefore, one that keeps a robot on its 

assigned iso-probability curve for as long as possible during 

the spare time available to it between sensor placements. 

Namely, the optimal trajectory is one that maximizes the time 

spent by the robot on the optimal search path. It should be 

noted that this method could be adapted to utilize any existing 

mobile-search path-planning algorithm.  

Iso-probability curves are constructed by examining the 

estimated target location likelihood along rays extending from 

the LKP. Namely, the distribution of targets along rays are 

taken as estimates of the one-dimensional target-location PDF 

described in [61]. Equal cumulative probability points on 

corresponding CDFs along rays can, then, be connected to 

form the iso-probability curves, [61]. Fig. 6 illustrates the iso-

probability curve creation process. First, Fig. 6(a) shows the 

target-location likelihood and an example ray (white) 

extending outwards from the LKP. Brighter (yellower) colors 

on the target-location likelihood function indicate a higher 

likelihood of target detection while darker (bluer) colors 

indicate a lower likelihood of target detection. Fig. 6(b) shows 

the one-dimensional target-location PDF along the example 

ray. Fig. 6(c) illustrates where the 10% (red) and 50% (green) 

points along the ray would be found. Finally, Fig. 6(d) shows 

the result of connecting equal cumulative probability points 

along multiple rays. The red curve represents the 10% iso-

probability curve and the green curve represents the 50% iso-

probability curve. 

 
Fig. 6.  The iso-probability curve creation process: (a) target location 

likelihood estimate, (b) a target-location PDF along the ray, (c) a target-

location CDF with the 10% (red) and 50% (green) cumulative points 
indicated, and (d) the 10% (red) and 50% (green) iso-probability curves. 

 

However, as abovementioned in Section II, robots are 

required to deploy sensors while searching for the target in the 

proposed method. Thus, as formulated in Section II, the robot 

trajectory is divided into three segments, Fig. 2. An illustrative 

example in which a robot moves from Sensor i to Sensor j is 

shown in Fig. 7. In the figure, the robot (black square) begins 

at Sensor i (blue dot), Fig. 7(a); it, then, intercepts its iso-

probability curve (black curve), Fig. 7(b); and remains on the 

iso-probability curve as it is propagating with time, Figs. 7(c) 

and 7(d); and, finally, it leaves the curve and reaches Sensor j, 

Fig. 7(e). The green curve is the total robot path. 
 

 
Fig. 7.  An example in which a robot travels from Sensor i to Sensor j. 

1) Optimizing xinterception 

Optimizing xinterception requires determining the location at 

which the iso-probability curve interception time, tinterception, is 

minimized such that the objective function fTraj is maximized, 

Eq. (8). One may note that an iso-probability curve cannot be 

intercepted unless the robot can arrive at a location before the 

curve does, tearliest_arrival. Namely, a feasible curve interception 

location is one at which:  

�
"!@�
E
_"!!�V"@ ≤ ��)

!C
�
�7) . (15) 

The earliest robot arrival time, tearliest_arrival, can be found by 

determining the time required to traverse the fastest path from 

Sensor i to the location. The fastest path can be determined, 

for example, using a shortest path algorithm such as Dijkstra’s 

algorithm on a graph representing discretized terrain in the 

search area [63]. The optimal curve-interception point, 

xinterception, then, is the location at which we find the earliest 

feasible tinterception. 

 

 



This is the author's version of an article that has been published in IEEE Transactions on Cybernetics. 

DOI: 10.1109/TCYB.2018.2875625 

The final version of the paper is available at https://ieeexplore.ieee.org/document/8509163 

© 2018 IEEE 

8

2) Optimizing xdeparture 

Optimizing xdeparture follows a similar logic and process as 

the optimization of xinterception. Namely, the curve-departure 

location must be optimized such that the corresponding 

departure time, tdeparture, is such that the objective function fTraj 

is maximized, Eq. (8).  

One may note that the robot must arrive at the Sensor j 

deployment location in time. Namely, a feasible curve 

departure location is one at which: 

�@"

E
_#
�"!
8!
 ≥ �#
�"!
8!
 . (16) 

The latest robot departure time, tlatest_departure, can be found 

by determining the time required to traverse the fastest path 

from the departure location to Sensor j. As above, the fastest 

path can be determined, for example, using a shortest path 

algorithm such as Dijkstra’s algorithm [63]. The optimal curve 

interception point, xintercept, then, is the location at which we 

find the latest feasible tdeparture. 

3) Search-Trajectory Planning 

The optimal robot trajectory would need the robot to 

intercept its iso-probability curve at xinterception at time tinterception 

and, while remaining on it for as long as it is possible, reach 

xdeparture at time tdeparture, Fig. 8, below. As abovementioned, an 

ideal search trajectory would also cover as much of the search 

area as possible between sensor deployments. While there are 

many possible trajectories connecting xinterception and xdeparture, 

not all of them satisfy the above requirements. For example, if 

a robot were to move at its maximum speed in one direction 

along the iso-probability curve, it would, typically, overshoot 

xdeparture. In contrast, if it were to move at a slower speed, it 

could get to xdeparture, at exactly tdeparture, but, its potential to 

search for the target between deployments would be wasted. 

Thus, we propose herein to allow the robot to move at its 

maximum speed, but, prolong its path by reversing directions 

as it moves on its respective iso-probability curve.  

In order to achieve the above objective, we define an 

intermediate-goal point, labelled as a turning point, xturning, at 

which the robot reverses direction. Namely, the robot would 

first move towards xturning from xinterception, and it would, then, 

reverse its direction, while still remaining on its respective iso-

probability curve, to head toward xdeparture, Fig. 8. The turning 

point can be optimized to ensure the robot arrives at xdeparture 

just in time for tdeparture while achieving a maximum search 

path, maximizing search area coverage. 

In order to plan an optimal robot trajectory, while meeting 

the above objective, let us assume xinterception, xturning, and 

xdeparture have corresponding angular positions θinterception, θturning 

and θdeparture, respectively. Namely, after the robot travels from 

θinterception to θturning the robot would move from θturning to 

θdeparture, all while following the iso-probability curve, Fig. 8.  

The radial progress of the robot as it moves angularly from 

θinterception to θturning to θdeparture is defined by its angular 

progress. Namely, let as assume that the robot angularly 

moves a total distance of αTOT. Then, the robot’s radial 

progress between the search curve at tinterception and the search 

curve at tdeparture is given by: 

X�Y� � Y
YBZB

. (17) 

Here, α is the total angular distance travelled up to a point 

on the robot path and r is the radial progress between the two 

search curves. For example, if the robot is halfway through its 

path angularly, it should also be halfway between the two 

search curves radially. This approximates the robot following 

the search curve as it propagates without having to generate 

the search curve at times between tinterception and tdeparture, which 

can be computationally prohibitive.  

The above-described planning process is suitable for 

determining the optimal trajectory for a single robot travelling 

between its consecutive deployments. Typically, however, 

there would be multiple robots participating in the search. As 

such, the problem of optimally assigning robots to curves 

during search and deployment must be addressed. Herein, we 

propose to determine optimal robot-curve assignments using a 

Blackboard architecture [64]. An optimal assignment, thus, 

refers to one in which robots are distributed such that all iso-

probability curves are searched, minimizing fAssign in Eq. (9).  

 
 

Fig. 8.  An example optimal search path (green line) starting at xinterception and ending at xdeparture. 
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D. Re-Planning 

It can be noted that the hybrid-search planning process can 

be re-initiated at any time during the search if new information 

regarding target motion is to become available. For example, 

when a clue regarding the target’s location is found during 

search and deployment, it would be used to update the target’s 

LKP. Search and deployment would, then, be temporarily 

halted to allow for re-planning. The sensor network would be 

re-planned, the robots re-routed, and search trajectories re-

planned to account for the new information.  

This would involve first re-planning the sensor network 

based on the new information while also considering the 

already deployed set of sensors. Namely, ensuring there are no 

redundant sensor deployments. One can note that, during 

sensor-network planning, the locations of the redundant 

sensors relative to the new LKP would need to be translated to 

corresponding spatiotemporal coordinates to be considered in 

the optimization. Namely, it is necessary to compute which 

deployment curve the sensor would be deployed on to 

determine the temporal component and what angular position 

it is relative to the new LKP to determine the spatial 

component. Further details on sensor-network re-planning can 

be found in [35].  

Next, robot routes would be re-planned, with robots 

beginning where they halted (at the time of re-planning 

initiation). Route re-planning would be carried out as 

described in Section III.B. However, the additional constraint 

of robot sensor-deployment capacity would be added to route 

optimization. There was no capacity constraint in the original 

route planning since any number of sensors could be loaded 

on to the robots prior to the start of the search. During re-

planning, however, sensors cannot be re-distributed among the 

robots. Namely, each robot can only deploy up to a finite 

number of sensors.  

Finally, robot search trajectories would be re-planned based 

on the planned routes. The process is identical to that 

described in Section III.C. Paths are planned to maximize the 

likelihood of target detection based on the re-estimated target 

motion and a new set of iso-probability curves.  

IV. DEPLOYMENT EXAMPLES 

The proposed hybrid search-planning method was validated 

by simulating a variety of search scenarios. Two 

comprehensive examples are first detailed in Sub-sections 

IV.A and IV.B. Sub-section IV.C, in turn, presents an analysis 

of the performance of the proposed hybrid method. 

A. Search Example 1 

In this first WiSAR example scenario, the target walking 

speed was assumed to be distributed according to (μ = 0.24 

m/s, σ = 0.08 m/s), where the target motion model was 

simulated using σθ = π/3 rad and dm = 100 m. σθ represents the 

degree to which the target wanders and dm represents the 

maximum distance for which the target will maintain a given 

heading as detailed in [35]. The search area, with varying 

terrain, shown in Fig. 9, was used for the examples. In the 

figure, darker colors denote higher elevation and solid orange-

colored shapes denote impassable obstacles. 

 

Fig. 9.  Terrain of the search area experiments. 

The resources available for the search included 150 static 

sensors, 135 sensors for the main network and 15 redundant 

sensors. Ten robots capable of moving at up to 2.4 m/s were 

available as mobile agents. The static sensors were assumed to 

have a sensing radius of 60 m, while (mobile) sensors onboard 

the robots had a sensing radius of 20 m. 

It was assumed that the search begins at 2,000 s after the 

distress call. Consequently, the placement time of the first 

sensor was calculated to be t1 = 2,321 s. The placement of the 

last sensor in the main network, t135, was set to 16,000 s, and 

the overall search end time, te, was set to 20,000 s.  

Fig. 10 shows the complete planned 150-sensor network, 

per the method described in Section III.A, with sensors shown 

as blue points. Based on optimal routes planned, the robots 

had a minimum spare time of about 220 s to search for the 

target between sensor deployments, with an average spare 

time of about 930 s.  

 

Fig. 10.  The planned static-sensor network for Example 1. 

The optimal network-deployment and robot-routing plan 

was, then, tested for numerous simulated target-motion 

scenarios, two of which are illustrated in Figs. 11 and 12, 

respectively. In the two scenarios, the search plan was 

identical, but the target being sought took a different 

trajectory. In the first scenario, the target was detected by a 
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sensor while a robot detected the target in the second scenario.  

Fig. 11 shows a snapshot of the end of search scenario 1, 

where the target (green ×) is found at t = 5,307 s by Sensor #3 

(red dot), that was deployed earlier by Robot #2 at time t = 

2,646 s. In this figure, the target path is shown by a purple-

colored line, the already deployed 22 sensors are shown by 

blue dots (except for Sensor #3 shown in red), and all robots 

are shown on black squares. 

 

Fig. 11.  End of search Scenario 1 in Example 1. 

Fig. 12 shows a snapshot of the end of search scenario 2, 

where the target is found at t = 4,678 s by Robot #1. The robot 

was on its way from having deployed Sensor #8 moving 

toward Sensor #20 location. 

 

Fig. 12.  End of search Scenario 2 in Example 1. 

B. Search Example 2 

In this example, demographics information was used to 

infer that the target would likely have a walking speed 

distributed according to (μ = 1.0 m/s, σ = 0.33 m/s). 

Furthermore, a target motion model with σθ = π/2 rad and dm = 

50 m was assumed. The search began 1000 s after the target 

was known to be at the LKP and was planned to continue until 

t = 10,000 s. A total of 100 sensors (80 main, 20 redundant) 

were deployed between t1 = 1221 s and t100 = 6,985 s by 15 

robots. It was assumed that the robots can travel at 10 m/s and 

had a sensing radius of 60 m. Static sensors were assumed to 

have a sensing radius of 20 m.  

Fig. 13 shows the planned sensor network with robot routes. 

Route optimization provided robots with a minimum spare 

time of 121 s and a mean spare time of 804 s.  

 

Fig. 13.  The planned static-sensor network for Example 2. 

Fig. 14 shows a snapshot of the end of a search where the 

target was detected by mobile-robot #7 on its way between 

Sensors #70 and #82. This target was found at t = 6003 s. 

 

Fig. 14.  End of search scenario in Example 2. 

C. Method-Performance Analysis  

In order to analyze the performance of the proposed search-

planning method, numerous searches were planned and 1,000 

different target motions were simulated for each search plan. 

Search plans considered various combinations of resource 

quality (e.g., detection radius) and quantity (e.g., number of 

sensors and robots). Different sensor detection radii, ranging 

between 2 m and 100 m, were investigated while mobile 

robot-team sizes investigated ranged from 8 to 20 robots and 

sensor-network sizes ranged from 50 to 300 sensors. 

One may note that past work has established the 

effectiveness of the mobile-robot search, static-sensor network 

search, and route-planning individually. Namely, the work in 

[21] demonstrated the superiority of the proposed path 

planning approach when compared to a more typical grid-

search like path planning approach. The work in [35] 

compared a preliminary version of the static-sensor network 

deployment method to a uniform coverage method. The 
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comparison showed that the proposed method significantly 

improves both target detection likelihood and mean detection 

time over the uniform coverage approach. The work in [60] 

similarly compared the proposed route-planning method to 

multiple well-known alternatives such as genetic algorithms, 

ant colony optimization, and simulated annealing. The 

comparisons showed that the proposed method resulted in 

significantly better routes given the same amount of 

computation time. Since no work has yet considered a hybrid 

approach, like the one proposed in this paper, the analysis 

below compares the performance of the proposed hybrid 

search to that of a static-sensor only search. 

1) Sensor-Network-Delivery Planning Performance 

Planning performance was evaluated in terms of the number 

of sensors deployed on-time and the spare time available to 

robots during sensor deployment. A summary of four 

representative search plans are presented below in Table I. As 

can be noted, a lower sensor/robot ratio results in a higher 

likelihood of sensors being deployed on-time, i.e., with more 

spare time between sensor deployments.  

When the sensor/robot ratio is lower, each robot would have 

fewer sensors to deploy. This results in the average time 

between deployments to be larger. As robots would have more 

time between deployments, they would have a higher 

likelihood of deploying the sensors on-time as well as more 

spare time to search for the target. 

TABLE I: SENSOR NETWORKS 

Number of: 

Sensors /  

Robots 

Number of Late Sensors: 

Main / Redundant / Total 

Spare Time 

Min / Mean / Max  

(s) 

  50 / 10 0 / 0 /  0 96 / 1,235 / 3,097  

100 / 10 0 / 0 /  0      52 / 572 / 2,539  

150 / 10  9 / 2 / 11   −85 / 351/ 1,159  

200 / 10 33 / 8 / 41 −102 / 225 / 877  

2) Overall Search Performance Comparison 

The overall search performance of the proposed search 

method was compared to that of a search carried out solely by 

a static-sensor network. Namely, 1,000 simulated searches 

were performed on 1,000 different targets according to plans 

made by the two methods for each of the four sensor network 

sizes. The results of those searches were, then, compared to 

investigate the improvement in search performance when 

using the proposed hybrid approach. The performance of the 

searches was evaluated by computing target detection rates 

(i.e., how many of the 1,000 simulated searches were 

successful) and mean detection times (i.e., mean time to target 

detection over the 1,000 searches). In each simulated search, 

targets moved until discovered by either a static sensor or a 

mobile sensor on a robot or until the end of search time.  

Tables II below shows results wherein the static sensors had 

a sensing radius of 60 m and the robots had a sensing radius of 

20 m. Table III shows results wherein the static sensors had a 

sensing radius of 20 m and the robots had a sensing radius of 

60 m. As in Table I, the first column shows the four sensor-

robot ratios considered. The second column shows the total 

number of targets found in each hybrid-search (HS) case. The 

third column shows the number of targets found by the static-

sensor network (SN). The fourth column indicates the amount 

of coverage provided by the sensor network and the fifth 

column indicates the hybrid-search (HS) improvement over 

the static search (SN). 

The results indicate that utilizing mobile agents to search 

for the target while deploying the static-sensor network can 

tangibly improve target detection rates over a static-sensor 

network only search. Improvements above 400% were 

observed, where the smaller the static-sensor network 

coverage of the search area is, the better the improvement. As 

the static-sensor network grows larger, the improvement falls 

with robots detecting less targets. This trend was observed for 

both cases in which the static-sensors had a larger sensing 

radius and in cases where mobile-robots had a larger sensing 

radius. The trend indicates that, for large networks, the robots 

detect targets first, which would have been detected later by 

the static-sensor network. However, as expected, it was noted 

that, adding a robot team to support the static-sensor network 

does not lead to detecting targets earlier.  

The trend of diminishing returns also suggests that there is 

an optimal hybridization problem that could be addressed in 

future work. While not relevant to this work, wherein 

improvement in search performance is considered desirable at 

any cost, there could be a cost-performance optimization 

problem that is relevant to less critical applications. 

TABLE II: DETECTION RATE PERFORMANCE FOR STATIC 60 - MOBILE 20 

SCENARIOS 

# of: 

Sensors /  

Robots 

# Targets 

Found by 

HS 

# Targets 

Found by 

SN 

Coverage by 

Sensors 

(%) 

Improvement 

of HS over SN 

(%) 

200 / 10 705 676 35   4 

150 / 10 699 634 26 10 

100 / 10 687 567 18 21 

  50 / 10 637 396   9 61 

TABLE III: DETECTION RATE PERFORMANCE FOR STATIC 20 - MOBILE 60 

SCENARIOS 

# of: 

Sensors /  

Robots 

# Targets 

Found by 

HS 

# Targets 

Found by 

SS 

Coverage by 

Sensors 

(%) 

Improvement 

of HS over SS 

(%) 

200 / 10 745 426 4   75 

150 / 10 728 366 3   99 

100 / 10 741 269 2 175 

  50 / 10 754 147 1 413 

V. CONCLUSIONS 

This paper presents a novel hybrid target-search strategy, 

where a static-sensor network is supported by a mobile search 

effort. The corresponding proposed planning method first 

determines a spatiotemporally optimized static-sensor network 

deployment plan to facilitate physical deployment and 

maximize the likelihood of target detection. Thereafter, robot 

routes and trajectories are planned to deliver the sensors to 

optimal static-sensor locations just-in-time.  

The strategy is novel in that robots that deploy sensors also 
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actively search for the target between deliveries. This is in 

contrast to most other mobile target-search methods that, 

typically, only use robots for one purpose at a time (e.g., 

robots only search for the target after sensor deployment is 

completed). Additionally, the method uniquely plans sensor 

networks to facilitate physical delivery to improve the ability 

of robots to search between deliveries. 

The proposed method was illustrated via simulated WiSAR 

experiments. Simulations were also performed to investigate 

the effect of mobile and static search resource availability on 

planning and search performance. Results showed that using 

robots to search, while deploying a static-senor network, could 

tangibly improve success in locating the mobile-target. 

While the method presented herein was, primarily, 

developed for real-time WiSAR, it could be applied to any 

mobile-target search problem in which a target-motion model 

is available and a target-location likelihood function can be 

estimated. Also, although this paper focuses on the overall 

search-planning method, it does not propose the use of any 

specific optimization search engine. Thus, future work could 

include an investigation for determining a suitable search 

engine to efficiently optimize sensor-network configurations 

and robot trajectories.  
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