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Abstract  Robots that autonomously navigate real-world 3D 
cluttered environments need to safely traverse terrain with 
abrupt changes in surface normals and elevations. In this paper, 
we present the development of a novel sim-to-real pipeline for a 
mobile robot to effectively learn how to navigate real-world 3D 
rough terrain environments. The pipeline uses a deep 
reinforcement learning architecture to learn a navigation policy 
from training data obtained from the simulated environment and 
a unique combination of strategies to directly address the reality 
gap for such environments. Experiments in the real-world 3D 
cluttered environment verified that the robot successfully 
performed point-to-point navigation from arbitrary start and 
goal locations while traversing rough terrain. A comparison 
study between our DRL method, classical, and deep learning-
based approaches showed that our method performed better in 
terms of success rate, and cumulative travel distance and time in 
a 3D rough terrain environment. 
 

Index Terms  Autonomous Agents; Deep Learning for 
Robotics and Automation; Search and Rescue Robots 

I. INTRODUCTION 

OBILE robots need to autonomously traverse and 
navigate real-world 3D cluttered rough terrain in 
numerous applications including urban search and 

rescue [1] [3], hazardous material clean-up [4], and mining 
and construction [5]. Traversability of such terrain can be 
complex due to the existence of uneven ground, ramps, steps, 
and rocks consisting of varying shapes and sizes. To 
successfully navigate such terrain, a robot must be able to find 
traversable paths within the environment to reach different 
goal locations. 

To date, the most common approaches used for navigating 
rough terrain have focused on either representing terrain 
traversability by using handcrafted heuristics [6] [10] or 
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learning-based models [5], [11] [13]. In general, these 
methods are optimized for terrain traversability by solely 
considering terrain features selected by experts. They do not 

environment, such as wheel positioning and angle of 
approach. Furthermore, these approaches represent terrain 
traversability as a categorical label or a scalar value. These 
simplifications can result in the loss of critical information for 
more challenging 3D terrain with abrupt changes in elevation 
and surface normals, where such robot and environment 

successfully navigate through the rough terrain.  
In our own previous work in [14], we introduced a deep 

reinforcement learning (DRL) approach for robots to learn 
how to traverse unknown rough terrain by explicitly 

 pose in the environment along with 3D 
terrain information. However, similar to [15], [16], both 
training and testing were in simulated 3D environments. 

Sim-to-real is an emerging research area that studies how to 
overcome the discrepancies between the simulated and real-
world environments, known as the reality gap, as a result of 
factors such as sensory noise, lighting conditions, and 
unmodeled dynamics [17]. Sim-to-real has been used in a 
number of robotic applications including aerial vehicles [18], 
manipulators [19], and mobile robots [20] [22]. For mobile 
robot navigation, the environments considered so far have 
been in buildings including hallways and offices, where the 
ground -
to-real approaches have not yet been considered for robot 
navigation in 3D rough terrain environments, which has the 
added challenge of climbable terrain with varying shapes, 
sizes, and steepness. This can introduce additional simulation-
reality discrepancies with respect to the modeling of the 3D 

 
In this paper, we propose a novel sim-to-real pipeline and 

unique strategies to address the challenge of robot navigation 
in 3D cluttered real environments. Our main contributions are: 
1) we are the first to present a sim-to-real approach and overall 
pipeline for autonomous navigation in cluttered 3D terrain, 2) 
we introduce strategies specific to 3D cluttered terrain to 
overcome the reality gap by uniquely considering robot and 
environment interactions when using DRL-based robot 
navigation in such 3D environments, 3) we successfully train 
our DRL policies in simulation and transfer them to a physical 
mobile robot which is able to traverse real-world rough terrain 
without further adaptation, and 4) we present a comparison 
study which highlights the superior performance of our 
navigation method with these strategies over standard classical 
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and deep learning-based techniques in cluttered environments.

II. RELATED WORKS 

Existing navigation methods that have been used for robots 
traversing rough terrain can be classified as: 1) classical 
approaches, 2) learning-based techniques, and 3) sim-to-real 
techniques used to transfer learned navigation behaviors from 
simulations to real-world environments.  

A. Classical Approaches for Rough Terrain Environments 

In general, classical navigation approaches for robots in 
rough terrain environments have utilized a combination of a 
terrain traversability classifier and a path planner. In [23], an 
extensive survey on classical terrain assessment approaches 
was presented. The most common approach utilizes geometric 
information with statistical processing techniques to extract 
traversability features [7] [10]. In particular, statistical values 
such as terrain roughness, plane slope, and height were 
extracted from 3D point clouds to determine a traversability 
assessment measure based on heuristics, or a scalar cost. 
These measures were used in conjunction with 1) rapidly 
exploring random trees, 2) D*-Lite, or 3) probabilistic 
roadmap method for navigation. 

Classical approaches utilized either heuristic rules or cost 
functions that were manually designed and tuned for 
traversability assessment. Such manual design can be time 
consuming, requires expert knowledge, and is difficult to 

physical characteristics. Moreover, these approaches classify 
terrain into either a binary [7], [8], [10], or a scalar [9] 
measure. This simplification can result in the loss of critical 
information for representing traversability (e.g., robot's 
relative pose, angle of approach to the terrain, and previous 
navigation actions). As a result, these methods are not able to 
generalize well to varying real-world cluttered terrain. 

B. Learning Approaches for Rough Terrain Navigation 

Learning based techniques have also been used to determine 
traversability in rough terrain environments, e.g. [5], [11]
[13]. For example, in [5], a traversability cost function was 
learned from a manually-labeled cost map and human 
navigation demonstrations. In [11], a support vector machine 
was retrained online for binary ground classification in 
outdoor forest terrain using texture and color features from 3D 
point clouds. In [12], [13], a deep learning based approach 
used convolutional neural networks (CNNs) to classify terrain 
to produce binary traversability measures. Compared to the 
classical approaches, the learning-based terrain traversability 
classification methods can be applied to real-world terrain 
while avoiding the need for manually designed and tuned rules. 
However, many of these methods require a large amount of 
manually labeled data. Unfortunately, they also simplify 
traversability into discrete classes or numerical values, 
resulting in the potential loss of information. 

End-to-end DRL approaches were presented in [14] [16] to 
directly map sensory modalities to robot motion commands 
without simplifying the terrain traversability representation. In 
[15], zero to local-range sensing was used within a rainbow 
DRL architecture. In [16], 2D laser scans, RGB images, and 
3D point cloud were fused using a three-branch network 
architecture. However, both training and testing were only 
conducted in 3D cluttered simulated environments, therefore 
these works do not address the reality gap. 

C. Sim-to-Real Strategies for Robot Navigation

Sim-to-real strategies have been developed for robot 
navigation tasks [18], [20] [22]. For example, in [18], domain 
randomization was applied to visual parameters such as 
texture, lighting, and furniture placement of a set of synthetic 
hallway environments during training for learning collision-
avoidance actions for a quadcopter. 

Lidar distance measurements or semantic features 
extracted from RGB images were used as inputs to learn robot 
velocity or navigation commands using Asynchronous Deep 
Deterministic Policy Gradient network [20], Probabilistic 
Road Map Reinforcement Learning [21], or Asynchronous 
Advantage Actor-Critic (A3C) network [22].  

The aforementioned learning-based navigation approaches 
demonstrate the feasibility of using DRL to learn 2D 
navigation behaviors in structured environments (e.g., 
hallways and offices) and using sim-to-real strategies to 
transfer the learned policy to real-world environments. In this 
paper, we propose a novel pipeline that utilizes a unique 
combination of sim-to-real strategies for a mobile robot to 
navigate real-world 3D cluttered rough terrain environments 

consider 3D rough terrain environments in sim-to-real 
applications. We have developed new sim-to-real strategies to 
directly address the reality gap for such 3D environments. 
Using this novel sim-to-real pipeline, we extend our A3C 
DRL-based rough terrain navigation method developed in [14] 
so that it can be directly applied to real-world 3D cluttered 
environments. 

III. METHODOLOGY 

Our proposed sim-to-real architecture for robot navigation 
in 3D cluttered rough terrain is presented in Fig. 1. Using 
RGB-D, 3D lidar, and IMU information as Perception inputs, 
a 3D point cloud map of the real environment is first generated 
by the 3D Mapping module. This map is then reconstructed 
into a 3D mesh by the 3D Meshing module to represent the 
surface geometry of the terrain. The simulated environment 
provides the simulated robot sensory data that is used as input 
to the Deep Reinforcement Learning (DRL) module. 

 
Figure 1. Proposed sim-to-real pipeline for rough terrain robot navigation. 
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The DRL model uses an elevation map, which provides a 2D 
representation 
as inputs. The DRL module then learns a policy for the robot 
to navigate the environment. For real-world deployment, the 
Perception inputs are used in the Robot Pose Estimation 

s 6 degrees-of-freedom (DOF) 
pose within the real world. 
information are then used by the Elevation Mapping module to 
generate the real-time elevation map. Similar to the Simulated 
Environment used for training, the pose and elevation map are 
used as inputs to the DRL module. Based on the trained policy, 
the DRL module determines the desired robot actions, which 

Closed-Loop Controller to be 
Actuators. The 

main modules of the pipeline are discussed in details below. 

A. 3D Mapping & 3D Meshing 

A 3D map of the real environment is created using the 
RGBDSLAMv2 method [24] within the Real-Time 
Appearance-Based Mapping (RTAB-MAP) package in ROS 
[25]. It uses simultaneous localization and mapping (SLAM) 
to construct and update a 3D point cloud map of the 
environment using information from an RGB-D sensor with 
an onboard IMU [25]. This 3D map is reconstructed into a 3D 
continuous mesh surface using a Poisson surface 
reconstruction approach [25]. Meshlab [26] is also used to fill 
any holes in the mesh and filter out any floating surfaces. The 
mesh provides a continuous surface for a robot to interact with 
in the Simulated Environment. 

B. Observation Space 

The observation space represents the inputs to the DRL in 
both the Simulated Environment and the Real-World 
Environment. It consists of the elevation map from the 
Elevation Mapping  to the goal 

entation , where the 
robot heading,  is relative to the target goal location on the 
terrain.  and  are determined by the pose provided 
by the Robot Pose Estimation module. The elevation map, and 

ion towards and distance to the goal 
location are domain invariant and do not include raw sensory 
data. This data representation prevents the DRL model from 
overfitting to features that are only present in the Simulated 
Environment, namely, color, texture, lighting conditions, and 
sensor noise patterns [17]. 
1) Elevation Mapping: An elevation map centered around the 
robot is generated using the ROS Elevation Mapping package 
[27]. The map consists of a  by  2D grid, where each 
grid cell represents the average height of a squared area. 
2) Robot Pose Estimation: In the Simulated Environment, the 

simulator [28] which uses a transform tree structure to 
maintain the spatial relationship between objects and 
coordinate frames. For real-world deployment, RGB-D 
images, IMU, and the 3D map of the environment are used to 
estimate the robot pose  using RGBDSLAMv2 [24]. 

C. Simulated Environment 

We developed a 3D simulated environment in Gazebo using 
the 3D mesh of the real environment. We used the 3D physics 
model for the wheeled mobile platform developed in [14] to 
represent the real robot. The cluttered real-world 3D terrain 
consists of a combination of changes in elevation including 

ramps and steps, sharp corners, and climbable and 
unclimbable obstacles of different shapes and sizes.

D. DRL Module 

The DRL module uses the A3C DRL method [29] to learn 
the policy and the state-value function for rough terrain 
navigation to determine the optimal robot navigation action 
under a given reward. At each discrete time step , the robot in 
state  executes a navigation action  according to the policy 

 This action transitions the robot to state  to 
maximize expected future rewards. The policy  is 
determined by a neural network parameterized with weights . 
The navigation actions consist of the robot moving forward or 
backward for a travel distance , or turning right or left for a 
yaw rotation angle . A state-value function  which 
is the expected future cumulative reward starting from state 

is estimated by a state-value network parameterized with 
weights  to help update the policy [30]. Rewards are used to 
compute the gradients with respect to  and  at every step. 
Stochastic gradient descent (SGD) is used to update the  and 

 as follows [29], [31]: 

, (1) 

, (2) 

where, 

, (3) 

and where  is the advantage function and  is the 
discount factor.  is the number of steps to the end of a 
training episode.  is the entropy term to encourage the robot 
to explore different navigation actions, and the 
hyperparameter  determines the strength of .  

Our developed A3C structure is presented in Fig. 2. A long 
short-term memory (LSTM) recurrent layer [32] is used to 
capture information from previous robot states. The output of 
the network consists of both the navigation policy  
and the state-value function  
Rewards: Positive rewards are given to encourage the 
following actions: 1) move closer to the goal location, 2) 
explore surrounding terrain for alternative routes to the goal, 
when an existing route is not traversable, and 3) reach the state 

 by arriving at the navigation goal within a certain 
distance tolerance  Negative rewards are given to 
discourage the robot from reaching an undesirable terminal 
state  Undesirable terminal states include the robot 
getting stuck on obstacles, flipping over, and/or reaching a 
time-out limit. 

After executing a navigation action at time step , the robot 
receives a reward  determined as follows:  

, (4) 

where distance  is the closest distance that the robot has 
navigated to with respect to the target goal location up to the 
current time step   is the explored area of the 
environment at time step . To keep track of the explored area, 
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the robot maintains a 2D binary grid map where each cell 
represents a square area with values that represent 
whether the robot has visited the cell. All grid cell values 
initiate with 0, representing unexplored cells. Cells that are 
explored have a value of 1.  and  represent the 
changes in  and , with respect to the previous time 
step,  

0.1-0.3
0.001-0.01

 
1) Closing the Reality Gap 

To address the reality gap [17], we uniquely incorporate 
three sim-to-real strategies during training. The first two 
strategies were developed to address challenges that are 
unique to 3D terrain navigation, while the third focuses on 
robot pose estimation errors. 

a)  Varying Terrain Steepness: The accumulation of depth 
camera measurement errors from 3D Mapping can result in the 
height of the 3D mesh deviating from its real-world 
counterpart. Consequently, the steepness and the traversability 
of the simulated terrain may not reflect the real-world 
accurately. Therefore, robots trained in the simulated terrain 
may execute inappropriate navigation actions in the real-world 
such as attempting to climb steep slopes or not following 
traversable paths. To alleviate this issue, we vary terrain 
steepness by scaling the mesh height  by a uniform 
distribution  with lower bound and upper 
bound . Uniform distribution is used to expose the CNN to 
a broad distribution of randomized parameters to increase the 
likelihood of the real-world values being present during 
training, as the terrain steepness measurement error cannot be 
accurately modeled. This allows the CNN to cover a wide 
range of variations during training in order for it to be 
generalizable to the real-world, as the real-world may appear 
to the model as such a variation [17], [18]. This new height of 
the mesh is represented as: 

, (5) 

where  is the original height of the mesh obtained from 3D 
Meshing. If the height of the terrain is scaled by a factor larger 
than one, the steepness across the terrain is increased, while a 

smaller number decreases the steepness.
b) Robot Motion Disturbance: When a robot navigates 

over rough terrain, its interactions with the environment may 
not result in the intended actions. For example, slippage could 
occur when climbing an obstacle or rotating without sufficient 
traction. To improve the robustness of our DRL navigation 
system to such interactions with the environment, movement 

 
and yaw rotation angle  These movement disturbances are 
represented by uniform distributions  and 

 where  and  are the lower bounds and 
 and  are the upper bounds, respectively. 

In addition to disturbances from 3D terrain interactions, 
robot movements are also affected by the network latency and 
the latency due to obtaining measurements from visual 
odometry when executing control commands. These 
disturbances are also represented as uniform distributions, 

 and  with  and  as lower 

bounds and  and  as upper bounds. 
The main difference between these two types of 

disturbances is that the interaction disturbances happen at 
random instances during rough terrain navigation, and the 
latency disturbances occur at every time step. Therefore, the 

 

, (6) 

, (7) 

where  follows a Bernoulli distribution,  to 
represent that movement disturbance from 3D terrain 
interactions can happen at random instances.  is the 
probability of successfully applying this disturbance. 

c)  Robot Pose Estimation Error: Robot pose errors exist 
due to occurrences of both image errors and feature 
association errors. The former are a result of lens distortion 
effects and biases in the image rectification process, while the 
latter is a result of the inclusion of ambiguous and spurious 
features [33]. Inaccurate association of visual features for 
localization can result in the estimated robot 6 DOF pose  

 deviat from the true values [33]. These 
errors are reflected in the inputs to the DRL network, as 

 and  are obtained directly from  and the 
elevation map uses . To ensure the robustness of our DRL 
navigation to real-world pose estimation errors, we represent 
pose errors by adding a Gaussian distribution  with 
standard deviation   

 (8) 

where  is the current 6 DOF robot pose. 

 
Figure 2. Neural network structure with CNN hidden layer configuration details. CONV represents a convolutional layer with filter size F, stride S, and padding 
P. FCL represents a fully connected layer. 
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2) Training
The training was conducted by randomly generating 

different robot starting locations and headings, and goal 
locations within the simulated environment. Nine agent 
threads were simultaneously used to run nine independent 
simulations. A robot executed a series of navigation actions in 
each of the simulation environments based on the latest policy 
determined by the A3C network and received rewards to 
update the weights of the A3C network.  

The general parameter values used in training are as 
follows: ; ; ; ; 

; ; ; and . The learning rate 
was set to 0.0001 [31]. The parameter values utilized in the 
three sim-to-real strategies are detailed below: 

a)  Terrain Steepness Parameter: A  scaling was 
added to the mesh height, i.e.,  and . 
This scaling was determined based on the translational errors 
obtained along the height direction of the environment in 
RTAB-Map [25]. 

b)  Robot Motion Disturbance Parameters: , 
, ,  and  were 

used to apply a large enough disturbance to knock the robot 
off its original trajectory at expected intervals of 60 time steps 
based on .  and  were chosen based on  and  
of the robot length. , ,  and 

 were used to model movement errors caused by 
latency. They were measured on the physical robot in an 
arbitrary environment. The deviations of the actual travel 
distance  and yaw rotation angle  from the desired values 
after the robot finished executing an action were obtained 
using visual odometry [25]. 

c)  Robot Pose Estimation Errors: We used 
and . These error values were selected based on 

the translation and orientation errors that can be expected 
when mapping similar-sized environments using Visual 
SLAM [24], [25]. 

An AMD Threadripper 2990wx CPU was used to train the 
DRL network. The total training time was about 16.4 days. 
Figure 3 presents the cumulative rewards per episode averaged 
across 2,000 episodes. As can be seen by the figure, the A3C 
network started to converge after 200,000 episodes for an 
average cumulative reward of 7.5. 

 

E. Closed-Loop-Controller 

A two-layer closed-loop controller has been designed 
consisting of a bang-bang controller [34] for position control 
using visual odometry, and a proportional controller [35] to 
control the wheel-spin rate using wheel encoders. This two-
layer system compensates for wheel slippage caused by terrain 
surface roughness. The bang-bang controller outputs a 

constant linear and angular robot velocity until the robot has 
traveled a distance and rotated by yaw angle . The linear 
and angular velocities are converted into individual wheel spin 
rates using the kinematic model of skid steering robots [36]. 
The spin rates are then sent to the proportional controller for 
each wheel to track the setpoint spin rate. 

F. Real-World Environment 

The learned navigation policy is transferred to the Real-
World Environment from the DRL module into a wheeled 
robot without requiring any training in the real-world.  

IV. EXPERIMENTS 

The experiments consist of: 1) physical robot experiments 
in the real-world environment to determine the success rate of 
reaching goal locations autonomously, 2) a comparison study 
of our proposed DRL method for 3D rough terrain with 
respect to both a classical navigation approach and a learning-
based terrain traversability classification method, and 3) a 
sensitivity analysis on the effect of the sim-to-real strategies. 

A. Real-World-Experiments 

1) Mobile Robot 
The Jaguar 4x4 skid-steered mobile robot is equipped with 

a Velodyne VLP-16 3D LiDAR, and a Stereo Labs ZED Mini 
sensor containing a stereo camera and IMU, Fig. 4. The robot 
has two computing units. The primary unit is an Intel Mini PC 
(NUC) with a Core i5 CPU and the secondary unit is an 
Nvidia Jetson TX2 mobile GPU. The Jetson TX2 mobile GPU 
is used to obtain RGB images and IMU data collected from 
the ZED Mini sensor for obtaining robot poses. The NUC uses 
these poses, the 3D Lidar point clouds, and encoder data to 
obtain an elevation map and execute robot navigation actions 
via the Closed-Loop Controller module. A server equipped 
with an Intel i7-7700K CPU runs the DRL module which 
generates the navigation action commands sent to the NUC, 
using the elevation maps and robot poses. 

 
2) Cluttered 3D Environment 

We developed a 36m2 cluttered rough terrain environment 
in our lab with multiple levels and ramps made from wooden 
pallets, with scattered objects such as pylons, boxes, and 
rocks, Fig. 5(a). The environment was divided into 22 separate 
regions with different types of transitions between neighboring 
regions. These transitions included full steps, half steps, and 
ramps, Fig. 5(b) and (c). Full steps had a height of 0.13m. A 
half step had a height between 0.05 to 0.08m. The slopes and 
lengths of the ramps ranged between 20°-40° and 0.3-0.9m, 
respectively. The traversability of the terrain was dependent 

position and angle of approach, as well 
as its intended action. 

 

 
Figure 3. Cumulative reward per episode averaged per 2000 episodes. 

 

 
Figure 4. The Jaguar robot sends pose estimation and elevation map data 
to the server and receives navigation action commands over Wi-Fi. 
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3) Procedure 

For each experiment, random start and goal locations were 
selected for the robot to traverse. Each trial was considered 
successful only if the robot navigated autonomously to the 
goal, within a position tolerance of 0.3m and a timeframe of 
10 minutes. Twenty combinations of start and goal locations 
were randomly chosen across the environment, and repeated 
three times, for a total of 60 trials. The trajectories for these 
location pairs are shown in Fig. 6. 

 
4) Results 

The success rate for all 20 location pairs is presented in 
Table I, where the percentage is the average across three trials 
per test (60 trials in total). Overall, the robot achieved a 
success rate of 86.67% in the environment. In general, the 
robot was able to traverse the multi-leveled cluttered scene 
using what it had learned during training. Some of the 
navigation strategies learned include making use of adjacent 
half steps to climb full steps with better success and keeping a 
minimum distance from walls to avoid collisions, even at the 
cost of having to travel on uneven climbable portions of the 
terrain. When becoming stuck in a portion of the environment, 
the robot would also learn to try a different heading direction. 
A video of our robot navigating rough terrain in simulation 
and in the real-world with the trained policy is presented at 
https://youtu.be/dtYlNWvK-7k. 

A successful trial in the cluttered environment is shown in 
Test 10 as presented in Fig. 7(a) in yellow. While navigating 
from the start location in region 10 to the goal location in 
region 9, the robot was able to: 1) climb a ramp while 
avoiding an obstacle on it (Fig. 7(b)), 2) use an adjacent ramp 
to aid in climbing over a full step (Fig. 7(c)), and 3) descend a 
ramp without falling (Fig. 7(d)). In Tests 3, 5 and 7, the robot 
successfully navigated to the goal in some but not all trials. 
Unsuccessful trials in these tests were due to repeated 
vibrations along trajectories with sudden drops and bumps 
between the wheels and the pallets which led to variability in 
robot decisions. Another reason was due to the deviation 

between the simulated and real-world maps caused by limited 
resolution from both the RTAB-Map and the 3D mesh. This 
deviation caused certain gaps to appear smaller in simulation 
which led the DRL algorithm to learn incorrect traversability. 
In Test 20, the simulated robot trajectory (purple) was able to 
reach the goal; however, the robot failed to complete this path 
during the real experiment (orange) because the angle of 
approach caused the ramp to be unclimbable in the real world. 
This ultimately stopped the robot at the terminal pose seen in 
Fig. 7(a) after it timed out. 

We also implemented the 20 pairs of locations in the 
simulated environment and compared the total average success 
rates. The simulation and real-world experiments had a 
success rate of 90.0% and 86.67%, respectively. 

 

B. Comparison Study 

We conducted a comparison study between our DRL 
method, a classical binary traversability method [10], and a 
deep learning-based terrain traversability classification method 
[13] within our 3D cluttered environment. The following 
performance metrics were used: 1) success rate, 2) cumulative 
travel distance to account for terrain and path variability, 3) 
cumulative travel time for successful trials, and 4) replanning 

 

Figure 5. Real-world environment with: (a) its different regions (1 to 22) and 
transitions between regions labeled; zoomed in views on two pallets stacked 
with (b) full and half steps, and (c) wooden obstacles on a ramp. 

 
Figure 6. Top view of experiment environment with trajectories from 20 
start and goal locations represented by color-unique lines. 

 
Figure 7. (a) 3D map of the environment with 3 different trajectories 
shown; Test 10 real trajectory (yellow), Test 20 real trajectory (orange), 
Test 20 simulated trajectory (purple). A, B and C are the zoomed in views 
in (b)-(d). 

TABLE I. SUCCESS RATES OF ALL TRIALS IN THE REAL 
ENVIRONMENT 

Test  Start x, y, yaw 
(m,m,rad), Region 

Goal x, y 
(m,m), Region 

Success % 

1 [-0.18, 0.27, -3.14], 12 [-0.33, -1.86], 10 100 
2 [-0.45, -1.9, 1.57], 10 [-0.16, 0.22], 12 100 
3 [-2.56, -1.65, 0], 1 [-0.17, 2.47], 14 66.67 
4 [-0.34, 2.62, 3.12], 14 [-2.28, -1.85], 1 100 
5 [-2.22, 1.39, -1.46], 4 [1.1, -0.2], 16 66.67 
6 [1.33, -0.27, 0.13], 16 [-2.3, 1.42], 4 100 
7 [-1.85, 0.25, -0.12], 7 [-0.17, 2.47], 14 33.33 
8 [-0.20, 2.77, 3.05], 14 [-1.3, 0.1], 7 100 
9 [-1.45, 2.71, -1.76], 9 [-0.33, -1.86], 10 100 

10 [-0.38, -2.06, 1.47], 10 [-1.2, 2.31], 9 100 
11 [-1.74, 2.51, -1.23], 9 [1.99, -1.49], 19 100 
12 [2.22, -1.67, 2.98], 19 [-1.2, 2.31], 9 100 
13 [-0.45, -1.76, 0.14], 10 [1.99, -1.49], 19 100 
14 [2.16, -1.48, 1.78], 19 [-0.33, -1.86], 10 100 
15 [1.38, 0.35, -1.57], 16 [-0.33, -1.86], 10 100 
16 [-0.45, -1.96, 1.88], 10 [1.1, 0.2], 16 100 
17 [-0.39, 0.46, -0.11], 12 [1.99, -1.49], 19 100 
18 [2.26, -1.49, 2.57], 19 [-0.16, 0.22], 12 100 
19 [-0.25, 0.38, 1.55], 12 [1.66, 1.96], 22 100 
20 [1.95, 2.11, 3.12], 22 [-0.16, 0.22], 12 0 

Average Total Success Rate 86.67% 
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rate. The same 20 location pairs were used in this experiment.
1) Comparison Methods 
Classical Method: We choose a common heuristic rule-based 
method for comparison, e.g. [7], [8], [10]. This method 
computes a binary traversability value using a linear 
combination of height, slope, and roughness of the terrain, 
which is then compared against a set threshold. 
Deep Learning (DL) Method: We choose the DL method in 
[13] as it incorporates the standard CNN architecture for 
terrain traversability estimation. The CNN architecture 
consists of a 60 px by 60 px image input layer, two 
consecutive 3×3 CONV layers, a 2×2 max-pooling layer, a 
3×3 CONV layer, a 128 output FCL layer, a 2 output FCL, 
and a softmax output. 

The output of both methods is a 2D traversability map. To 
ensure a fair comparison, the heuristic parameters in [10] and 
the hyperparameters in [13] were used. A* was used on the 
traversability maps to search for paths to the 20 goal locations. 
The robot executed the navigation plans for all three methods 
using the Closed-Loop Controller module. 
2) Comparison Results 

The performance metrics for all three methods are presented 
in Fig. 8. The classical method had the lowest success rate of 
18%, followed by the DL method at 43%. Our DRL approach 
had the highest success rate of 87%. Amongst the three 
methods compared, our DRL method had the shortest 
cumulative distance traveled and travel time among the 
successful trials with a distance of 14.51m in 227s versus 
15.26m in 379s for the DL method and 15.47m in 451s for the 
classical method, respectively. In general, both the classical 
and DL methods had lower performance than our DRL 
method as they use a multi-stage approach, while our DRL 
method uses a single stage approach that directly maps the 
observation space to an action output. As the multi-stage 
approaches first estimate traversability, then use a search 
algorithm to find a path, they are known to suffer from 
cascading errors [37], where errors from the traversability 
estimation are transferred to the path planning stage. Namely, 
since the traversability estimation stage produces a simplified 
representation of traversability (e.g., categorical label or scalar 
value), it does not consider the robot-terrain interactions that 
are present when navigating 3D rough terrain environments. 
However, our DRL method directly considers these 
interactions. 

 
Figure 9(a) shows the paths that the robot traveled for all 

classical method abruptly ended at location A, Fig. 9(b). This 
was due to the method misidentifying traversable paths 
surrounding the robot as non-traversable in region A. 
Therefore, the robot was not able to determine a long-range 
traversable path to the goal location and became stuck. Using 
the DL method, the robot flipped over at location C due to it 

not being able to execute its planned path. Specifically, the 

in its intended action due to an undesirable lateral shift that 
caused it to overshoot the rotation, Fig. 9(c). Subsequent 
motion errors also caused the robot to diverge further from the 
plan. Alternatively, the robot using our DRL method 
successfully reached its goal location. Our DRL method 
inherently accounts for the robot-terrain interactions during 
the learning process via its single stage end-to-end approach 
and the aforementioned reality gap strategies. 

 
The overall replanning rate of our method was 3.2Hz versus 

1.8Hz for the classical method, and 3.8 Hz for the DL method. 
Our replanning rate was slightly slower than the DL method 
due to its requirement of larger input images (i.e., 200px by 
200px vs 60px by 60px) and a larger network architecture 
with additional CONV and FLC layers (Fig. 2). 

C. Sensitivity Analysis 

We conducted a sensitivity analysis of the hyperparameters 
of the sim-to-real strategies in generalizing to increasingly 
complex terrain in simulation. We evaluated the performance 
of models that were trained 1) with all three strategies, and 2) 
in the absence of one of these strategies by increasing the 
hyperparameter values until they were 8 times the values in 
Section III.D.2, Table II. No external movement disturbance 
was applied to the robot during evaluation. 

The results are presented in Fig. 10. The E+MD+P 
(elevation steepness + motion disturbance + pose estimation 
errors) model was trained with all three strategies. As seen 
from the figure, this model was able to consistently maximize 
the cumulative reward for each set of hyperparameter values. 
The E+MD and MD+P models performed worse under larger 
parameter variations, emphasizing the importance of both the E 
and P strategies in improving performance with respect to 
reward maximization, and generalizing to large terrain 
variations and robot pose estimation errors. 

 

Figure 8.  Performance metrics: (a) success rate, (b) cumulative travel 
distance, (c) cumulative travel time, and (d) path replanning rate. 

 

Figure 9. Test 3: (a) robot path using classical method (orange), DL method 
(light green), and DRL method (blue), and DL planned path (dark green), 
(b) Traversability map for classical method for region A, and (c) Robot-
terrain interactions at region B. 

TABLE II. EVALUATION PARAMETERS 

 BASELINE X2 X4 X8 

STEEPNESS ±5% ±10% ±20% ±40% 

LATENCY 0~0.03m, 0°~3° 0~0.06m, 0°~6° 0~0.12m, 
0°~12° 

0~0.24m, 
0°~24° 

POSE ERROR 0.06m, 5° 0.12m, 10° 0.24m, 20° 0.48m, 40° 
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V. CONCLUSION 

In this paper, we present the sim-to-real pipeline that 
teaches a robot to navigate 3D cluttered real-world terrains 
which can have abrupt changes in surface normals and 
elevations. Namely, we use a unique combination of sim-to-
real strategies to allow for the transfer of the DRL navigation 
policies learned in simulation to be successfully deployed to 
the real-world environment without additional training in the 
real-world. Experiments with a mobile robot showed that the 
robot had a high success rate in navigating the 3D cluttered 
environment. Furthermore, a comparison study against a 
classical and a deep learning method verified that an end-to-
end DRL approach performed better in terms of success rate 
as well as cumulative travel distance and time. DRL has the 
potential limitation of overfitting to a training environment. 
Thus, it can have difficulty generalizing to other real-world 
unstructured environments that contain dissimilar terrain from 
the training environment. To overcome this limitation would 
require: 1) representing the vast variability in terrain within 
the training stage, or 2) extending the CNN architecture to 
include techniques such as regularization and dropout layers. 
This is currently a part of our future work. Additionally, we 
will improve the robustness of the sim-to-real pipeline for the 
failure cases observed. We will also incorporate our 
navigation system with our previously developed exploration 
method [38], where the exploration method can provide goal 
locations to our proposed rough terrain navigation system. 
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Figure 10. Sensitivity analysis of model performances. E: trained with 
elevation steepness, MD: trained with motion disturbance, and P: trained 
with pose estimation errors. 


