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Robotic Exploration of Unknown Disaster Scenes
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Abstract—Semi-autonomous control schemes can address the
limitations of both teleoperation and fully autonomous robotic
control of rescue robots in disaster environments by allowing a
human operator to cooperate and share such tasks with a rescue
robot as navigation, exploration, and victim identification. In this
paper, we present a unique hierarchical reinforcement learning-
based semi-autonomous control architecture for rescue robots
operating in cluttered and unknown urban search and rescue
(USAR) environments. The aim of the controller is to enable a
rescue robot to continuously learn from its own experiences in an
environment in order to improve its overall performance in explo-
ration of unknown disaster scenes. A direction-based exploration
technique is integrated in the controller to expand the search area
of the robot via the classification of regions and the rubble piles
within these regions. Both simulations and physical experiments
in USAR-like environments verify the robustness of the proposed
HRL-based semi-autonomous controller to unknown cluttered
scenes with different sizes and varying types of configurations.

Index Terms—Hierarchical reinforcement learning, rescue
robots, semi-autonomous control, urban search and rescue.

I. INTRODUCTION

SEARCH and rescue operations in urban disaster scenes
are extremely challenging due to the highly cluttered and

unstructured nature of these environments. Moreover, in some
scenarios, the task of rescuing victims from collapsed struc-
tures can be extremely hazardous due to the instability of
damaged structures, and/or the presence of dust, toxic chemi-
cals, or radiation. Furthermore, accessing a collapsed structure
sometimes requires entering voids, which may be too small
or too deep for rescue workers and rescue dogs [1], [2]. To
address these challenges, rescue robots are being developed
to assist rescue workers in urban search and rescue (USAR)
operations.

Current applications of rescue robots require a team
of human operators to remotely guide them in a disas-
ter scene [1], [3]. However, teleoperation of robots while
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also searching for victims in USAR environments can be a
very stressful task, leading to cognitive and physical fatigue.
Furthermore, human operators can have perceptual difficulties
in trying to understand an environment via remote visual feed-
back. As a result, operators can suffer low levels of alertness,
lack of memory and concentration, and become disoriented
and lose situational awareness during these time-critical situ-
ations [4].

Autonomous controllers provide an alternative to teleop-
erated control for rescue robots, which eliminates the need
of constant human supervision. However, deploying fully
autonomous rescue robots in a USAR scene requires address-
ing a number of challenges. First, rescue personnel do not
generally trust an autonomous robot to perform such criti-
cal tasks without any human supervision [2]. Second, rescue
robots have very demanding hardware and software require-
ments. Namely, autonomous navigation can be very difficult
due to rough terrain conditions; and victim identification can
be particularly challenging due to the presence of debris, dust,
poor lighting conditions, and extreme heat sources in disaster
scenes [2].

To address the challenges and limitations of both teleoper-
ated and fully autonomous control of rescue robots in USAR
missions, recent efforts have been made toward developing
semi-autonomous controllers that allow rescue robots to share
tasks with human operators [5]–[9].

Alternatively, our work uniquely focuses on developing
learning-based semi-autonomous controllers for rescue robots
in USAR applications [10], [11]. In this paper, we present the
overall development of our unique hierarchical reinforcement
learning (HRL)-based semi-autonomous control architecture
for a rescue robot to both explore cluttered environments
and search for victims. The HRL-based controller allows a
rescue robot to learn and make decisions regarding which
rescue tasks need to be carried out at a specific time and
if the robot or the human operator should perform these
tasks to achieve optimal results. This decision making ability
enables the robot to continuously learn from its surround-
ing environment, and its own previous experiences in order
to improve its task performance in unknown disaster envi-
ronments. A new direction-based exploration technique which
directly takes into account terrain information is incorporated
into the HRL controller to expand the search area of the
robot via the classification of regions and the rubble piles
within them.
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II. RELATED WORK

In this section, semi-autonomous controllers, HRL tech-
niques and robot exploration methods, as applied to mobile
robots, are reviewed briefly.

A. Semi-Autonomous Control

To date, the semi-autonomous controllers developed for
mobile robotic applications have mainly focused on the shared
control of navigation and obstacle avoidance tasks in varying
environments. Recently, there has been a handful of semi-
autonomous controllers specifically developed for control of
rescue robots in USAR applications, focusing on the two main
tasks of robot navigation and victim identification [5]–[9].
These semi-autonomous controllers can be classified based on
a robot’s level of autonomy.

Semi-autonomous controllers with fixed robot autonomy
levels focus on such low level tasks as collision avoidance
and motor control, allowing the human operator to concen-
trate on high level control and supervisory tasks such as path
planning and task specification [12]. Compared to fully tele-
operated control of robots, these semi-autonomous controllers
have proven to be more effective for robot navigation and
obstacle avoidance. However, they lack the required flexibil-
ity for more challenging problems such as control of rescue
robots in rubble-filled USAR environments. For example, in
the case of a robot getting physically stuck in a cluttered disas-
ter scene, the human operator may have to take over the control
of low level operations in order to assist the robot. Similarly,
high level control may be required from the robot controller
when the operator cannot perform these tasks due to task over-
load, loss of situational awareness, or communication dropout.
To address these concerns, semi-autonomous controllers with
variable autonomy provide a promising solution.

Semi-autonomous controllers with two different levels of
robot autonomy were experimentally compared in [5]. The
results suggested that a shared mode, where the robot pro-
vides the optimal path for navigation based on the operator’s
directional inputs, demonstrated the best performance. Using
the shared mode, the operator is allowed to set the controller’s
level of autonomy beforehand. However, he/she is not able
to change this level on the fly during a search and rescue
operation, which may be needed in unknown environments if
either the robot or the operator faces a situation where one
needs assistance from the other.

Controllers presented in [6]–[9] solve this problem by pro-
viding on the fly adjustments of a robot’s level of autonomy by
the operator [6] or automatically by the controller [7]–[9] during
USAR operations. In [6], an operator is in charge of dividing
a scene into regions and prioritizing these regions, while the
robot explores each region to find victims. The operator can take
over the control of the robot at any time during the operation.
In [7], three semi-autonomous control modes were proposed for
a rescue robot to distribute tasks between an operator and the
robot. The specific mode to implement was determined auto-
matically by the robot based on the manner in which the operator
was interacting with the overall system during a USAR oper-
ation. In [8], the semi-autonomous controller presented in [5]

was extended to include a mode suggestion system which uses
information from the robot and the operator to determine when
an autonomy mode suggestion should be made to the operator.
The operator can then decide either to accept or decline the sys-
tem’s suggestions during USAR operations. In [9], the concept
of a sliding scale autonomy system was introduced. The pro-
posed approach could potentially create, on the fly, new levels
of robot autonomy between existing preprogrammed autonomy
levels by combining human and robot inputs using a small
set of variables consisting of force fields, speeds and obstacle
avoidance to determine a robot’s movements.

The aforementioned research highlights the recent efforts
in semi-autonomous control for USAR applications. While
promising, the current controllers do not incorporate learn-
ing into their control schemes, which is essential to deal
with unknown and unpredictable USAR environments. In
this paper, we propose the use of a learning-based semi-
autonomous controller to enable a robot to learn from its
own prior experiences in order to better adapt to unknown
and cluttered disaster environments.

B. Hierarchical Reinforcement Learning for Robot Control

There have only been a handful of cases where HRL is used
in mobile robotic applications, for multiagent cooperation [13],
mobile robot navigation [14], and robotic soccer [15].

In this paper, we explore for the first time, the use of the
MAXQ HRL method within the context of a semi-autonomous
controller for robot exploration and victim identification in
USAR environments. In USAR applications, the environments
of interest are unknown and cluttered, increasing the complexity
of the learning problem. With an MAXQ approach, the overall
search and rescue task can be decomposed into a series of smaller
more manageable subtasks that can be learned concurrently.
MAXQ has fewer constraints on its policies, i.e., mapping of
states to possible actions, and thus, is generally known to require
less prior knowledge about its environment [16]. This feature is
advantageous and makes MAXQ suitable for unknown USAR
environments. In addition, MAXQ can support state, temporal,
and subtask abstraction.

State abstraction is essential in USAR applications since when
a robot is navigating to a specific location only that particular
location is significant, the reason why the robot is navigating
to that location is irrelevant and should not affect the robot’s
actions. The need for temporal abstraction exists in USAR scenes
due to the fact that actions may take varying amounts of time
to execute as a result of the complexity of the scene and the
location of a robot within the scene. Subtask abstraction allows
subtasks to be learned only once, and the solution can then be
shared by other subtasks. For example, local navigation can be
shared by a subtask dedicated to globally exploring a USAR
environment as well as a victim identification subtask, where
the latter requires the robot to move toward objects of interest
in order to determine if they could represent potential victims.

C. Mobile Robot Exploration Strategies

There has been extensive research into addressing the
robotic exploration problem for unknown environments. In
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particular, to date, frontier-based exploration strategies have
been developed for mobile robots to explore unknown envi-
ronments. These techniques expand a known map of the
environment by deploying either a single robot or a team
of coordinated robots into target locations at the frontier of
the map, i.e., the boundary between explored and unexplored
regions of the map. A utility or cost function is normally
utilized to determine where to deploy a particular robot.

In [17], the frontier-based exploration technique was intro-
duced for a single robot, which determined the robot’s next
target location based on the shortest accessible path for the
robot. A multirobot exploration strategy was adapted using
the cost of reaching a frontier cell and the utility of that cell
in [18]. The cost for a particular robot reaching a frontier cell
was based on the probability of occupancy of each cell (i.e.,
the presence of an obstacle) along the path of the robot to the
corresponding frontier cell, as well as the robot’s distance to
that target point. The utility of the cell was dependent on how
many robots were moving to that particular cell. In [19], in
addition to determining the nearest frontier point to a robot that
provides maximum coverage of unknown space, the deploy-
ment locations were chosen such that a robot at one of these
locations is visible to at least one other robot.

The majority of these frontier-based exploration approaches
have shown to work well in simulated and real laboratory
and/or office environments. However, they cannot be directly
applied to USAR-like environments as they do not consider
the (rough) terrain conditions in USAR scenes. In this paper,
we extend the frontier-based exploration approach to robots
in USAR environments by incorporating terrain information
in determining optimal exploration directions in order to pro-
mote maximum search of these cluttered rubble-filled scenes.
Namely, we propose a direction-based exploration technique
that can be used within our semi-autonomous HRL controller.

III. PROPOSED LEARNING-BASED SEMI-AUTONOMOUS

CONTROL ARCHITECTURE

The proposed semi-autonomous control architecture is
depicted in Fig. 1. Sensory information is provided by onboard
robot sensors which include: 1) a real-time 3-D mapping sensor
that provides 2-D and 3-D images of the environment; 2) a ther-
mal camera that provides the heat signature of the surrounding
environment; and 3) infrared sensors that provide proximity
information of a rescue robot’s surroundings. The 2-D and 3-D
images provided by the 3-D mapping sensor are used by the
simultaneous localization and mapping (SLAM) module to iden-
tify and match 3-D landmarks in the USAR scene and create
a 3-D global map of the environment. The details of the 3-D
sensor and the SLAM technique are provided in [20].

The HRI Interface module provides the operator with the
user interface needed for human control (HC) of a robot.
The operator can use the interface to obtain sensory informa-
tion from the environment and the robot, as well as the 3-D
map in order to monitor or control the robot’s motion. The
Deliberation module provides the robot with the learning and
decision making capabilities during semi-autonomous deploy-
ment. Since the robot is designed to be semi-autonomous, it

Fig. 1. Semi-autonomous control architecture.

is within the Deliberation module the robot primarily decides
its level of autonomy. Namely, using MAXQ the robot is able
to learn and make decisions regarding which tasks should be
carried out at a specific time, and whether the robot itself or
the human operator should execute them for optimal results.
If HC is prominent, the decision making within this module
is made by the operator via the HRI Interface module. The
Robot Actuators module takes the robot actions provided by
the Deliberation module and translates them into appropriate
motor signals.

The next section presents the detailed design of the MAXQ
HRL technique utilized by the Deliberation module for robotic
exploration and victim identification in a USAR scene.

IV. IMPLEMENTATION OF MAXQ-BASED HRL FOR

SEMI-AUTONOMOUS CONTROL IN USAR ENVIRONMENTS

The MAXQ technique works by decomposing a given
Markov Decision Process (MDP), M, into a finite set of
subtasks {M0, M1, . . . , Mn}, which define the MAXQ hierar-
chy [16]. Herein, M0 represents the root subtask which defines
the overall problem, and is further decomposed into subtasks
M1–Mn. For every subtask Mi, a policy, πi, is defined which
maps all possible states of Mi to a child task. The child task
can be either a primitive action or another subtask under Mi

to execute. Subsequently a hierarchical policy, π (a set con-
taining the policies for all subtasks), is defined for the entire
task hierarchy. Also, a projected value function is stored for
every state and action pair in all subtasks. The projected value
function is defined as the expected cumulative reward of exe-
cuting policy πi in subtask Mi, as well as all the policies of the
subtasks that would be executed under Mi until Mi terminates.

A. MAXQ Task Hierarchy

The proposed MAXQ task hierarchy for our semi-
autonomous control architecture is shown in Fig. 2. The Root
task represents the overall USAR task to be accomplished
by the robot—finding victims while exploring a cluttered
USAR scene. This Root task can be further decomposed into
four individual subtasks defined as: 1) Navigate to Unvisited
Regions (NUR); 2) Victim Identification (VI); 3) Navigate
(NG); and 4) HC. The following subsections provide a detailed
discussion of each of the individual modules that make up the
overall task hierarchy.

1) Root Task: The Root task defines the overall goal of a
rescue robot in a USAR mission. The MAXQ state function
of the Root task is defined as S(V, LR, Mxyz). V denotes the
presence of potential victims in the environment. LR is the
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Fig. 2. MAXQ task graph for our semi-autonomous controller.

robot’s location with respect to the global coordinate frame
(defined to be at the location at which the robot enters the
scene), and Mxyz represents the 3-D map of the USAR scene
the robot is exploring. LR and Mxyz can both be obtained by
the SLAM module in the control architecture (Fig. 1).

2) NUR Subtask: The purpose of this subtask is to allow
the robot to explore unvisited regions within disaster envi-
ronments. The state definition for this subtask is S(LR,Mxyz),
where LR and Mxyz have the same definitions as above. Exit
USAR Scene is a primitive action used by the NUR subtask to
trigger the end of exploration and guide a rescue robot out of
the scene.

In order to efficiently explore an unknown USAR envi-
ronment, we have developed a direction-based exploration
technique to be used by this subtask. This technique is an
extension to the frontier-based exploration strategies reported
in [17]–[19], focusing on finding and exploring new regions
within the environment in order to expand the search area of
the robot. Our main addition is the explicit incorporation of
the cluttered terrain information of USAR environments. To
effectively choose an exploration direction, the 3-D map of
the scene is decomposed into a 2-D grid map consisting of
an array of equally sized cells, where each cell categorizes
the status of a predefined area of the real environment. The
depth profile of the terrain of a cell obtained from the front-
facing 3-D mapping sensor is stored and used as a measure
of traversability. Furthermore, travel distance and coverage are
also taken into account in our proposed exploration technique
in order to determine an appropriate exploration direction for
the robot. To further address the cluttered and uncertain nature
of USAR environments, a direction-based strategy, instead of
a path to target approach, is utilized; and a learning tech-
nique is implemented to aid the robot to locally navigate these
rubble-filled scenes. The proposed direction-based exploration
technique is detailed in Section V.

3) VI Subtask: The aim of this particular subtask is to
identify victims in cluttered USAR scenes. The state of the
subtask is defined as S(LV/R, Mxyz), where LV/R represents
the locations of potential victims in the scene with respect to
the robot’s location as obtained by the 3-D mapping sensor.
When a victim is identified in the scene, the primitive action
Tag is executed in order to tag the global location of the victim
within the 3-D map of the scene, Mxyz. The Navigate subtask

Fig. 3. Representation of the local environment surrounding a robot.

is executed when the robot is required to move closer to a
potential victim, in order to enable a positive identification.

For our proof-of-concept approach, a thermal camera is used
to identify victims in the scene. A probability-based approach
is used, where the probability of a victim being present, p =
f(h, s), is based on two features: the existence of human thermal
heat signature, h (represented as a binary value), and the size,
s, of this heat source. Namely, the probability increases with
respect to the presence of such heat regions and the size of these
regions in thermal images. For example, if the probability of a
victim is high (i.e., p > 0.7), the robot automatically tags the
victim, if the probability is low (i.e., p < 0.3), the robot can
dismiss the possibility of a victim being present. A probability
between 0.3 and 0.7 represents the robot’s uncertainty regarding
the presence of a victim and hence, HC is requested.

4) NG Subtask: The goal of the NG subtask is to perform
local navigation and obstacle avoidance. The state definition of
the Navigate subtask is defined as S(Ci, DE, Dxy, LV/R), where
Ci, i = 1 to 8, represents the grid map information for the eight
surrounding cells of the robot, as shown in Fig. 3, DE cor-
responds to the desired exploration direction (determined by
the direction-based exploration technique in the NUR module),
and Dxy contains the depth profile information of the rubble
pile in the surrounding environment. There are two conditions
for which NG can be performed: local scene exploration or
navigate to a potential victim location. When navigating to a
potential victim location rather than just exploring a scene,
LV/R (relative location of a potential victim to the robot) is
used in the NG module to reach the target victim location.
As soon as the victim location is reached, the NG subtask
terminates and allows the VI subtask to perform the task of
identifying victims.

Local exploration is performed by the NG subtask by utiliz-
ing the information of the eight adjacent cells, Ci, to the robot’s
current cell location (Fig. 3). Based on the status of the robot’s
surrounding cells, the optimal primitive actions to move the
robot forward (F) or backwards (B), or to rotate the robot by
an angle θ within the environment are provided to the robot’s
low-level controller to appropriately convert into motion com-
mands. Hence, the NG subtask can search its local environment
by exploring new cells and performing obstacle avoidance.
Immediate rewards are given to the NG subtask for the choice
of primitive actions implemented, in order to encourage desir-
able actions such as moving to adjacent unvisited areas in a
local environment, successfully avoiding dangerous situations
such as collisions with obstacles, and moving in the desired
exploration direction.

For effective navigation in highly cluttered environments,
a rescue robot will need to be able to climb over climbable
rubble piles. Dxy represents a 2-D array that contains the depth
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Fig. 4. 2-D Dxy array for classification of rubble pile profiles showing
(a) non-climbable rubble pile with a relatively large slope and height, (b)
climbable rubble pile with a gradual slope, and (c) drop (defined in the
non-climbable category) with an abrupt increase in the depth values. x-axis
corresponds to the width and y-axis corresponds to the height of the 3-D
sensor’s field of view.

profile information of a rubble pile that appears in the robot’s
path at any given time. This information is obtained from the
3-D map generated from the sensory information provided by
the 3-D mapping sensor and is conveniently represented in
Dxy. Fig. 4 shows examples of the depth profile information of
non-climbable and climbable rubble piles in a robot’s forward
view as represented by Dxy. The slope and smoothness of a
rubble pile is categorized by fitting a plane to its 3-D sensory
data using a least squares method. The combination of these
two parameters determines if the rubble pile is climbable or
non-climbable. The non-climbable obstacle category includes
terrain too rough for the robot to traverse and sudden drops in
the height of the rubble pile i.e., edge of a cliff, which can be
detected by an abrupt increase in the depth values in the Dxy

array (Fig. 4(c)).
5) HC Subtasks: The purpose of the HC subtasks is to pass

over the control of the robot to the human operator in case the
robot is unable to perform any of its tasks autonomously. There
are two levels in the task hierarchy in which HC can be used
(Fig. 2). The objective of the 2nd level HC subtask is to have
a human operator share with the robot the tasks pertaining to
the VI and/or NUR subtasks.

With respect to the VI subtask, the operator can assist in
identifying victims in the scene and tagging their locations. The
operator utilizes the corresponding 2-D and 3-D information
of the robot’s surrounding cells in the grid map, as obtained
in real-time from the 3-D mapping sensor, to tag the location
of a victim. With respect to the NUR subtask, the operator can
assist in choosing preferred search directions to explore.

The 3rd level HC subtask allows for operator control of the
local navigation subtask of the robot. If the robot is unable
to navigate autonomously due to noisy or insufficient sen-
sory data, or it has gotten physically stuck due to the highly
cluttered nature of the environment, this HC subtask allows
the operator to take over the low level navigation and obsta-
cle avoidance tasks of the robot. While the control is passed
over to the operator, the robot’s sensory system still tracks the
motion of the robot and updates the 3-D map of the scene.

For both levels, when HC is executed, the appropriate sub-
task continues to learn by observing the implemented actions
of the operator via the information path and the outcomes that
result from these actions (Fig. 2).

B. MAXQ-Based Robot Learning and Decision Making

In general, the action-value function (Q-value) for subtask
Mi, under the policy π can be defined as [16]:

Qπ(i, s, a) = Vπ(a, s) + Cπ(i, s, a) (1)

where Qπ(i, s, a) represents the expected cumulative reward
for subtask Mi of performing subtask or action a in state s
and then following the hierarchical policy π until subtask Mi

terminates. Vπ(a, s) and Cπ(i, s, a) are the projected value and
completion functions of executing a in s, and are defined as:

Vπ(a,s) =
{

Qπ(i, s,πi(s)) , if Mi is composite∑
s′ P

(
s′,|s,i) R

(
s′,|s,i) , if Mi is primitive

(2)

Cπ(i,s,a) =
∑
s′,N

Pπ
i

(
s′,N |s, a

)
γ NQπ

(
i,s′, π

(
s′)) (3)

where N is the number of transition steps from s to the next
state s′, and γ denotes a discount factor. P and R represent
the corresponding probability transition function and expected
reward function, respectively. For more details on the general
MAXQ algorithm, the reader is referred to [16].

For the USAR problem at hand, the action-value func-
tion for the Root task can be defined with respect to each
corresponding subtask in the hierarchy as follows:

Q (Root, s, NUR) = V(NUR, s) + C(Root, s, NUR)

Q(Root, s, VI) = V(VI, s) + C(Root, s, VI)
Q(Root, s, HC) = V(HC, s) + C(Root, s, HC)

(4)

where V(NUR, s), V(VI, s), and V(HC, s) denote the pro-
jected value functions of executing the corresponding sub-
tasks/primitive action in state s. C(Root, s, NUR), C(Root,
s, VI), and C(Root, s, HC) are the completion functions, which
represent the discounted cumulative reward of executing the
corresponding subtasks/primitive actions.

The value functions and completion functions for the Root
task can further be defined as:

V(NUR, s) = Q (NUR, s, πNUR (s))

V(HC, s) = P
(
s′|s, HC

)
R

(
s′|s, HC

)
(5)

V(VI, s) = Q (VI, s, πVI (s))

C(Root, s, NUR) =
∑

s′∈SRoot,N

{
PRoot

(
s′, N|s, NUR

)
γ N

Q
(
Root, s′, πRoot

(
s′)) }

C(Root, s, HC) =
∑

s′∈SRoot,N

{
PRoot

(
s′, N|s, HC

)
γ N (6)

Q
(
Root, s′, πRoot

(
s′)) }

C(Root, s, VI) =
∑

s′∈SRoot,N

{
PRoot

(
s′, N|s, VI

)
γ N

Q
(
Root, s′, πRoot

(
s′)) }

where πRoot ∈ {NUR, HC, VI} , πNUR ∈ {EUS, NAV, HC} and
πVI ∈ {Tag, NAV, HC} are the policies for the corresponding
subtasks, where EUS and NAV denote the Exit USAR Scene
primitive action and Navigation subtask; and SRoot is the state
space for the Root task.

The value function V and completion function C for each
primitive action are updated immediately after receiving the
reward R, while the value functions for the Root task or sub-
tasks are updated recursively through the hierarchy until they
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terminate. The MAXQ HRL-based learning algorithm updates
the value functions in order for them to converge to the unique
value functions of the recursively optimal policy.

To determine the probability transitions between subtasks
and actions, an epsilon-greedy policy [21] is used during the
learning process. Namely, an action is chosen randomly, with
probability ε, to promote exploration of all available actions,
and the optimal action, i.e., action with the highest Q-value,
is chosen with probability 1-ε. The value of ε is reduced as
the system is trained. The advantage of this policy is that it
provides sufficient exploration and exploitation for the learning
algorithm, and thus, ensures convergence to optimal solutions.

Positive rewards are given to encourage transitions from the
robot’s current state to desirable states. For example, if the
robot exits the USAR scene after having explored the entire
scene, a positive reward of +10 is given to the NUR sub-
task. For the VI subtask, a positive reward of +10 is given
for correctly tagging a new victim found in the scene. For
the NG subtask, the reward is based on three main factors:
local exploration, obstacle avoidance, and the global explo-
ration direction. Within this subtask, positive rewards are given
to encourage desirable actions such as moving to adjacent
unvisited areas in the local environment, successfully avoid-
ing dangerous situations such as collisions with obstacles,
and moving in the desired exploration direction. For example,
moving into an unvisited region in the desired global explo-
ration direction is given a positive reward of +15 as it directly
relates to the main objective of having the robot explore an
unknown environment, while avoiding an obstacle is given a
positive reward of +10. In addition, a large positive reward of
+100 is also given to the Root task when the overall USAR
task is completed to successfully reward the overall goal being
achieved.

Negative rewards are given when a transition is made from
the robot’s current state to an undesirable state. For example,
a negative reward of −10 would be given to NUR if Exit
USAR Scene is executed instead of NG when there is still
known regions to explore. In the VI subtask, a negative reward
of −10 would be given if Tag is executed when no new victims
were identified in the scene. In NG, negative rewards would be
given for executing commands that lead to collisions (−20) or
navigating into already visited areas (−1) of a USAR scene.
Colliding with an obstacle may damage the robot itself; hence
there is a higher cost associated with its reward than when
navigating into an already visited area which only affects time
efficiency. With respect to HC, similar positive and negative
rewards are given based on the subtask that the operator is
involved in, allowing the robot to learn from the operator’s
actions. The transition awards are summarized in Table I.

The reward values in Table I are chosen based on the fol-
lowing considerations: 1) the rewards should be selected to
encourage transitions from the robot’s current state to desir-
able states and to avoid transitions to undesirable states and 2)
the potential benefits and costs of states should be considered
in the magnitudes of the rewards. In general, the magnitudes
of the negative and positive rewards for the subtasks mainly
influence the speed of convergence to the optimal policies and
do not affect the overall trend toward convergence.

TABLE I
TRANSITION REWARDS FOR MAXQ FOR USAR PROBLEM

Fig. 5. 2-D grid map of the four regions surrounding the robot.

V. DIRECTION-BASED EXPLORATION TECHNIQUE

To address the cluttered and unstructured nature of USAR
environments, a direction-based exploration strategy is proposed
for the NUR module in order for a rescue robot to find and explore
new regions within the environment. Mainly, the exploration
technique defines a search direction for a rescue robot to follow
in order to explore unknown regions. The exploration method
determines one of four universal search directions, North, South,
East, or West, for the robot to explore in order to navigate
into unvisited regions in the scene. The chosen direction for
exploration, DE, is then incorporated into the rewarding system
of the Navigate module which focuses on implementing the
primitive actions necessary to locally navigate the robot in this
defined search direction through the rubble. The search direction
is updated as necessary in order for the robot to search new
regions. In general, our proposed direction-based technique
is more robust to map uncertainty than direct path planning
techniques that require accurate scene representations in order
for a robot to reach target locations and it does not require
the robot to move in wide open spaces, which are not always
available in USAR scenes.

To effectively choose an exploration direction, the explo-
ration technique uses the information in the grid map of the
environment to locate potential cells within the map that have
yet to be explored as well as cells which represent the fron-
tier of the known map of the scene, in order to expand the
robot’s knowledge about the environment. The 2-D grid map
is divided into four regions, where each region represents one
of the search directions, as shown in Fig. 5.

The diagonal cells with respect to the robot’s current loca-
tion in the known map are used to determine the boundaries
between the four search regions and are defined with respect
to the robot’s current location in the known map. Each region
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encompasses only one set of boundary cells defined to be in
the counter-clockwise direction from the region.

Prior to evaluating an exploration direction, the cells in each
region are categorized into two types: explored and unexplored
cells. This classification is based on whether the robot has
visited a particular cell or its adjacent cells. If the robot has
already explored a cell, then the terrain or the presence of
victims in that cell will be known and can be categorized
accordingly. Based on the sensing information of the robot, the
explored/unexplored cells can be further identified as follows.

i) Obstacle: Obstacles can be defined to be, for exam-
ple, rubble piles, which are categorized as known or
unknown obstacles. Known obstacles are further classified
into climbable (i.e., robot can navigate over them) and non-
climbable obstacles. The climbable obstacles category is fur-
ther divided into visited and unvisited climbable obstacles.
Unknown obstacles are those detected in the robot’s surround-
ing cells, however, available sensory information is not enough
to classify them further.

ii) Open visited: An open and traversable area that has been
visited previously by the robot.

iii) Open unvisited: This cell has not been visited by the
robot but has been detected as an obstacle-free area. Herein, a
distinction is made between visited and unvisited open space
for USAR environments since exploring an unvisited open cell
can potentially lead to the exploration of unknown regions
of the scene beyond this cell, which may not be detectable
until the robot physically enters this particular cell due to the
cluttered nature of the environment.

iv) Victim: The cell contains a human victim.
v) Unknown: The cell information is unknown, since the cell

has not been explored and no sensory information is available.
The cells categorized as open visited, known non-climbable,

visited climbable obstacles or victim cells are defined to be
explored cells, whereas unexplored cells include the unknown,
unknown obstacles, open unvisited, and unvisited climbable
obstacle cells. Unexplored cells can add to the robot’s knowl-
edge of the scene and lead to exploring new regions. On the
other hand, revisiting already explored cells may not neces-
sarily provide any new information about the environment.
Therefore, unexplored cells are considered as cells of inter-
est in robot exploration and assist in determining exploration
direction. To determine the robot’s exploration direction in the
scene, the following utility function is defined:

uj =
n∑

x=1

(ωxjλxjδxj) (7)

where uj is the utility function for each of the four individ-
ual regions, and j represents the identity of the region, i.e.,
North, East, South, and West; x corresponds to the identity of
a cell(x) in region j, n is the total number of cells of interest in
region j, and ωxj, λxj, and δxj represent three non-zero positive
coefficients for cell(x) in region j and are initially given the
value 1. The exploration utility function weighs the benefits
of exploring a scene based on terrain, the number of cells of
interest in a region of the scene, and the travel distance to
cells of interest using the values of the three coefficients.

Fig. 6. Scenario illustrating contribution of the exploration coefficient λxj.

1) Terrain Coefficient: ωxj, is the coefficient that is given to
cell(x) in region j based on the type of terrain of that cell, in
particular:

ωxj =

⎧⎪⎪⎨
⎪⎪⎩

wll1, if cell x is an open unvisited space
wll2, if cell x is an unvisited climbable obstacle
wll3, if cell x is an unknown obstacle
1.0, elsewhere.

(8)

where l1 > l2 > l3 > 1.
Herein, wl is a positive weighting applied to l1, l2, and l3.

The weighting can be used to set a higher priority to this
particular coefficient. Open unvisited cells are given the largest
l value since they are obstacle-free regions and hence, allow a
robot to easily navigate the cell. Unvisited climbable obstacles
have the second largest value. Unknown obstacles have the
lowest value due to the uncertainly regarding the true nature
of the obstacles.

2) Neighboring Cells Coefficient: λxj is the coefficient given
to cell(x) in region j based on the information in its eight
neighboring cells, namely:

λxj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wp

8∑
k=1

vk
x, when

8∑
k=1

vk
x �= 0

1.0, when
8∑

k=1
vk

x = 0
, where (9)

vk
x =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p1, if cell k is unknown.

p2, if cell k is an open unvisited space.
p3, if cell k is an unvisited climbable obstacle.
p4, if cell k is an unknown obstacle.
0.0, elsewhere.

and, where p1 > p2 > p3 > p4 > 1.
vk

x is the exploration value of the kth neighboring cell of
cell(x), where k = 1 to 8. wp is a positive weighting applied to∑8

k=1 vk
x. λxj is designed to provide a higher value to cells that

are adjacent to unknown cells or other cells of interest, since
exploring those cells may immediately lead to the exploration
of other surrounding cells. For example, consider the case in
the partial 2-D grid map shown in Fig. 6, where the two cells
A and B have the same type of terrain (unknown obstacle),
therefore ωA = ωB. However, cell A has one unknown obstacle
in its eight neighboring cells (λA = p4), whereas, cell B has
two open unvisited cells and one unknown cell, giving it the
larger exploration value of λB = p1 + 2p2, when wp = 1.

3) Travel Coefficient: δxj is the coefficient associated with
moving to cell(x) in region j from the robot’s current cell loca-
tion, and is a function of dx which is defined as the distance
of cell(x) to the robot’s current cell. As the distance to cell(x)
increases, the value of traveling to cell(x) decreases. δxj favors
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unknown cells closer to the robot’s current cell for exploration
to allow for more efficient search of the environment:

δxj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wqq1 , if dx ≤ d1
wqq2 , if d1 < dx ≤ d2
wqq3 , if d2 < dx ≤ d3
wqq4 , if d3 < dx ≤ d4
1.0, elsewhere.

(10)

where q1 > q2 > q3 > q4 > 1.
wq is a positive weighting applied to qm(m = 1 − 4). dn(n =
1−4) represents predefined distance thresholds that can be set
by an operator. These thresholds can be increased as the size
of the known map increases to reflect more realistic distances.

Once the utility functions for all four regions are evaluated,
the direction corresponding to the region with the largest util-
ity value is chosen as the exploration direction. The desired
exploration direction is passed to the NG subtask in order to
locally move the robot in this direction. A robot operator is
able to select the weightings for the three coefficients based on
the rescue scenario at hand. In particular, he/she may decide
to increase the weighting for one or more of the coefficients
in order to have the robot explore in a desired manner or to
maximize energy efficiency of the robot. The influence of these
coefficients on the number of exploration steps is discussed in
Sections VI-B and VII-A.

VI. SIMULATION EXAMPLES

Simulations were conducted at two stages: a training
stage of the MAXQ hierarchy, and a simulation evaluation
stage to verify the performance of the MAXQ HRL-based
semi-autonomous controller and direction-based exploration
technique in exploring unknown cluttered environments.

For both sets of simulations, USAR-like scenes consisting
each of a 20 by 20 cell environment (approximately 336 m2)
with individual cells having an area of 0.84 m2 were used. The
robot used in the simulations occupied only one cell at a time.
The robot was provided with the following sensory inputs: i)
3-D depth information pertaining to the cell in front of the
robot for classification of cells as open space, non-climbable
obstacle, or climbable obstacle based on the Dxy profile; ii)
distance sensing on the sides and back of the robot, indicating
the presence of any obstacles in the robot’s neighboring cells;
and iii) thermal information indicating the presence of a victim.

A. Training of MAXQ Hierarchy

Training of the MAXQ hierarchy was performed to verify
the learning of robot actions and convergence of the Q-values.
While the boundary of the scenes remained the same, the layout
of each scene was automatically generated via random sensory
information in order to promote learning as the robot explored
the unknown environment. Overall, a total of 1800 trials were
performed, with each trial having its own unique scene layout.

The exploration policy parameter, ε, and learning rate were
initially set to 1 and decreased by 0.01 every 100 episodes to
allow for sufficient exploration. Herein, one episode represents
a single step taken by the robot, i.e., a primitive action for the
NG subtask. The cumulative rewards for the overall USAR

Fig. 7. (a) Convergence rate for both MAXQ and flat Q-learning for proposed
USAR problem, and (b) exploration steps required to fully explore unknown
scenes in the first 200 trials of training using the MAXQ approach.

task are shown in Fig. 7(a). The robot’s efficiency in explor-
ing the unknown scenes was improved significantly by using
learning. Fig. 7(b) presents the decrease in the total number
of exploration steps for the first 200 trials of learning.

We compared the convergence rate of our MAXQ approach
versus a traditional flat Q-learning approach. The same learning
rate, initial Q-values, state parameters, and primitive actions
were used for both implementations. Fig. 7(a) also shows the
cumulative rewards for the flat Q-learning technique. The overall
results show that our MAXQ method converges at a faster rate.
For flat Q-learning, there were over 1 million Q-values stored.
With the aid of state and subtask abstraction, the MAXQ
approach significantly reduces the amount of Q-values to be
stored to only 4288 Q-values, making it considerably more
efficient for this decision making problem.

B. Performance Evaluation

Once training was completed, an additional 432 trials in
different cluttered USAR-like scenes were also conducted
to observe the performance of the proposed MAXQ HRL-
based semi-autonomous controller and the direction-based
exploration algorithm in exploring and navigating unknown
cluttered environments. The simulated scenes were designed
to have a high density of non-climbable obstacles, creating
tight corners for the robot to navigate around in order to find
potential victims. In addition, the scene layouts included many
isolated regions separated by non-climbable obstacles in which
the robot could only enter through a single open cell or by
traversing over climbable obstacles. The layout of each scene
consisted of a unique combination of cell categories, provid-
ing different levels of difficulty for robot exploration. In each
scene layout, 7–8 victims were placed strategically in corners
and hard to reach regions of the scene. The performance of
the MAXQ controller was evaluated based on: 1) the ability
to explore the entire scene using the exploration technique;
2) collisions (if any) with non-climbable obstacles; and 3) the
number of victims found.
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Fig. 8. Simulated USAR-like scene. (a) Actual scenes used and (b) 2-D grid
map developed of the scenes during simulations with robot starting location
and heading.

Herein, we will discuss simulations conducted on three of
these USAR-like scenes consisting of different complexities
due to space limitations. The three scenes, denoted as Scenes
A, B, and C, are shown in Fig. 8(a). Scene A was designed
with the largest amount of climbable and non-climbable obsta-
cles with respect to the other two scenes. Scene B consisted
of more isolated regions connected by single cell openings.
Scene C had the most difficult layout for exploration due to
the sizeable rubble boundaries created by large numbers of
adjacent non-climbable cells.

We also investigated the overall effect of the exploration
coefficients on exploration time by conducting simulations in
each scene for four different cases. In the first three cases,
a higher weighting was given to one of the three exploration
coefficients, (i.e., wi = 20, for i = l, p, or q), and in the fourth
case, weightings on all coefficients were set to 1. Herein,
exploration time is defined as the number of steps (i.e., the
primitive navigation actions F, B, or θ ) taken to explore the

TABLE II
EXPLORATION COEFFICIENTS USED IN THE SIMULATIONS

entire unknown scene. Each trial was repeated six times and
the average number of steps was determined. The parameters
utilized in these simulations are presented in Table II, and
were selected following the requirements outlined in (8)–(10).
The exact values of the exploration coefficients shown in
Table II will mainly influence the magnitudes of the utility
functions for the four regions (i.e., North, South, East, and
West). The exploration directions themselves are not affected
as long as the requirements for (8)–(10) are met, since they
are determined based on the relative values of these utility
functions. The upper and lower limits on dx were selected to
be proportional to the size of the map.

To further test the robustness of the navigation and explo-
ration modules of the MAXQ HRL-based semi-autonomous
controller to different starting locations in a scene with varying
surrounding cell configurations, simulations were performed
using three different robot starting positions in each of the
scenes, as shown in Fig. 8.

The simulation results are presented in Figs. 8(b) and 9.
Also shown in Fig. 8(b) are the different robot starting posi-
tions and headings used in each scene layout. The robot was
able to explore each scene from all three starting positions,
providing the opportunity to find all victims using the pro-
posed MAXQ approach. Furthermore, it was able to classify
the different types of cells including open cells, climbable and
non-climbable obstacles. The robot was also able to navigate
the scenes without any collisions. The only cells in the scenes
that were still unknown at the end of exploration were those
fully obstructed by non-climbable cells or victim cells as the
robot was not allowed to enter these cells.

Shapiro–Wilk tests of normality confirmed that the simula-
tion data were normally distributed. An analysis of variance
(ANOVA) was performed on the exploration steps for the
four different cases to determine that a statistical significant
difference between the steps does exist: F(3) = 6.50, p <

0.01. Additional paired one-tail t-tests were performed, and
the results confirmed that by placing a higher weighting
on the travel coefficient, the average number of steps were
reduced compared to placing a higher weighting on the terrain
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Fig. 9. Number of exploration steps for the robot in Scenes A, B, and C
with respect to the different cases when higher weightings were given to one
of the three exploration coefficients, and when equal weightings were given
to all coefficients. Placing higher weightings on the travel coefficient resulted
in lower exploration steps.

coefficient (t(53) = 3.67) and the neighboring cells coefficient
(t(53) = 3.02), and having equal weighting on all coeffi-
cients (t(53) = 4.41). This occurred because when placing
a higher weighting on the travel coefficient, the robot would
explore more cells in its surroundings before moving on to
other regions. In the cases where the weightings were the same
or, either the terrain or the neighboring cells coefficients had
higher weights, the robot revisited a number of already visited
cells, therefore increasing the number of exploration steps.

ANOVA was also performed across the USAR Scenes. From
the analysis, the robot took an average of 1786 (σ = 293), 1911
(σ = 135), and 2026 (σ = 249) exploration steps to explore
Scenes A, B, and C, respectively. We conducted an additional
ANOVA test to determine whether the level of difficulty of the
scene affected the number of exploration steps. With a 95%
confidence level, there was no statistical significance between
the average numbers of exploration steps for these three scene
layouts, emphasizing the robustness of our proposed technique
to different scene layouts. Furthermore, ANOVA results with
a 95% confidence level also showed that there was no statis-
tical significance between the robot’s starting location within
a scene and the average number of exploration steps.

VII. EXPERIMENTS

Experiments were conducted in a cluttered 12 m2 USAR-
like environment to test the performance of our MAXQ
HRL-based semi-autonomous controller in a physical environ-
ment. The USAR-like environment (Fig. 10(a)), was designed
to mimic a disaster scene, containing different types of objects
and materials such as concrete, wood, metal, plastic, card-
board, ceramic, brick, plaster, paper, rubber-like polymers, and
rocks. Six victims, represented by dolls and mannequins, were
also placed in the environment. The majority of the victims
were partially obstructed by rubble in which case only a por-
tion of their bodies were visible such as their limbs or head.
Rubble was strategically placed in the environment such that
the robot would have to explore around obstacles and corners
to search for victims. Furthermore, within the scene, inclines
were made to allow a robot to climb over rubble piles and
navigate an elevated upper level of the scene.

Two sets of experiments were carried out to evaluate the
MAXQ HRL-based semi-autonomous controller. The first set
of experiments focused on evaluating the performance of the

Fig. 10. (a) USAR-like environment used in the experiments and (b) rescue
robot used in the experiments.

MAXQ hierarchy, while the second set of experiments com-
pared the performance of the overall semi-autonomous con-
troller to full teleoperation by an operator. In both experiments,
a rugged mobile robot was utilized (Fig. 10(b)).

The robot is equipped with a real-time 3-D mapping sensor,
five infrared sensors, and a thermal camera (Fig. 10(b)). The
real-time 3-D mapping sensor utilizes an active structured light
technique [20]. In the experiments, the sensing range of the
sensor was set to 0.914 m, i.e., the length of one cell, in order
to only capture the depth information pertaining to the cells
in front of the robot for rubble pile profile classification and
updating of the 2-D grid map. In general, when the size of
the environment is unknown, the size of a single cell can be
defined based on the working range of the sensors. The five
infrared sensors distributed along the perimeter of the robot
were used to detect the presence of objects in adjacent cells for
both obstacle avoidance and updating of the 2-D grid map. A
thermal camera was placed at the front of the robot to identify
victims. Heat pads were placed on the dolls and mannequins to
produce heat signatures to mimic human bodies. The thermal
camera was used to sense the heat signatures.

A. Experiment #1: Testing of MAXQ Hierarchy

For the first set of experiments, three different scene layouts
were used in the environment to test the performance of the
MAXQ hierarchy for the different subtasks (Figs. 11(a)–(c)).
Scene layout 1 contains both open spaces and non-climbable
rubble piles, whereas Scene layouts 2 and 3 also contain
climbable rubble providing the robot with an opportunity
to navigate an elevated upper level of the scene. In lay-
out 2, the victim in cell (3, 4) is located on the lower
level portion of the scene, i.e., hidden under the climbable
rubble.

Four different experiments were conducted for each scene,
with the first three experiments having a higher weighting of
20 for one of the exploration coefficients, and the last exper-
iment having equal weightings of 1 for all the coefficients.
In the experiments, the same coefficient values as in Table II
were used, with the exception that the distance limits dn were
adjusted for the smaller physical scene to represent more real-
istic traveling distances. The new values were d1 = 1.5, d2 =
3.0, d3 = 6.0, and d4 = 12.0. Similar to the simulations, the
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Fig. 11. 2-D representation of experimental scenes (a)–(c) depicting the
original scene layouts 1, 2, 3, and (d)–(f) determined by the robot during the
experiments.

experiments for each scene were also performed with the robot
starting in three different starting positions. For each starting
position, the experiment was conducted three times.

1) Experimental Results: The experimental results for each
scene layout are presented in Figs. 11(d)–(f) and 12. The
results verify that the rubble pile classification was able to
correctly categorize the depth profile information in the Dxy

arrays as climbable obstacle, non-climbable obstacle, or an
open space. The unknown cells represent cells in the scene
that could not be identified since 3-D sensory information
could not be obtained from those regions due to obstruction
of the regions by walls or rubble piles. With an accurate
categorization of the different rubble piles in the scene in
each experiment, the robot was able to create a correct rep-
resentation of the scene. Fig. 12 summarizes the average
number of exploration steps for the three scene layouts and
the different robot starting locations and headings within
each scene.

As can be seen in Fig. 12, robot exploration, on aver-
age, took 78 (σ = 17), 84 (σ = 14), and 90 (σ = 6)
steps in scene layouts 1–3, respectively. The weightings on
the different exploration coefficients did not have a signifi-
cant effect on the exploration performance. Using ANOVA, it
was found that with a 95% confidence interval, there was no
statistical significance on the average number of exploration
steps between these three scene layouts, further validating the
robustness of our technique to different scenes. However, some
of the robot’s different starting locations and headings in the
scenes did affect the number of exploration steps. The relative
higher number of exploration steps for the same scenes were
a result of the robot revisiting already visited cells. Due to
the small size of the scenes and a limited number of regions
to explore, there were fewer exploration options for the robot
when compared to a larger more complex scene (as presented

Fig. 12. Number of exploration steps for the robot in Scenes 1, 2, and 3
with respect to the different cases when higher weightings were given to one
of the three exploration coefficients, and when equal weightings were given
to all coefficients.

Fig. 13. USAR-like environment for Experiment #2.

Fig. 14. Information provided to the operator through the HRI Interface.
(a) 2-D image of robot’s front view, (b) 2-D image of robot’s rear view,
(c) 3-D map, robot status (green indicates the wheels of the robot are mov-
ing), infrared visual feedback on the robot’s perimeter (if objects are very
close red rectangles appear), and control menu display, and (d) real-time 3-D
information.

in the simulations). From these experiments, it can be con-
cluded that when the size of the scene is small, the effects of
the weightings are similar.

B. Experiment #2: Semi-Autonomous versus Teleoperated
Control

We conducted a set of experiments to evaluate the perfor-
mance of the MAXQ HRL-based semi-autonomous controller
versus robot teleoperation. A new scene layout was created for
these experiments (Fig. 13). The scene contained open space,
partially obstructed victims, non-climbable obstacles as well
as climbable rubble to provide the robot with the opportunity
to explore the main lower level and also an elevated level of
the scene.

Ten participants ranging in age from 19 to 33 years partook
in the experiments. None of these participants had any previ-
ous experience in remote robot navigation and exploration,
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Fig. 15. Xbox 360 wireless controller used as the operator’s input device.

which is similar to other teleoperation studies conducted
including in USAR-like scenes [22]. Two different trial sets
were conducted: 1) the operators were asked to control the
robot while having full teleoperated control over the robot
in order to navigate and explore the scene while also find-
ing as many victims as possible and 2) the robot was in
semi-autonomous mode, in which case the MAXQ HRL-based
semi-autonomous controller was implemented, and the oper-
ator and the robot shared tasks as needed. The following
performance parameters were measured in both trials: 1) num-
ber of victims found; 2) percentage of the scene explored; 3)
number of robot collisions; and 4) total search time. For both
trials, the difficulty level of the scene remained the same; how-
ever, noticeable objects in the rubble piles and the victims were
distributed in different locations in order to minimize human
expert knowledge of the scene.

1) HRI Interface and Control Pad: The interface presented
in Fig. 14 was used by the operators during the trials. The
interface is based on the following sources of information: 1)
2-D video provided by two wireless cameras (one at the front
and one at the back of the robot) (Figs. 14(a) and (b)); 2) an
updated 3-D map of the environment which is obtained by the
SLAM module, (Fig. 14(c)); 3) robot status, which provides
feedback as to whether the robot has received control com-
mands and when they have been implemented (Fig. 14(c));
4) control menu, which allows for connecting the controller
to the interface, displaying the map information or exiting
the interface (Fig. 14(c)); 5) infrared sensor feedback dis-
played visually to show the operator the proximity of obstacles
surrounding the robot (Fig. 14(c)); and 6) real-time 3-D infor-
mation of the robot’s frontal view obtained from the 3-D
mapping sensor (Fig. 14(d)). During the experiments, the 2-
D front camera view and the real-time 3-D information were
continuously shown on side-by-side monitors to the operator.

Operator control of the robot was achieved using an Xbox
360 wireless gamepad (Fig. 15). The gamepad includes two
mini joysticks and a set of buttons whose functions are detailed
in Fig. 15. Prior to the experiments, each participant was given
a tutorial on how to use the control pad and interface, and then
had a chance to control the robot outside of the scene for 15
minutes in order to familiarize him/herself with the robot.

2) Experimental Results: Figs. 16–18 and Table III present
the performance comparison results of the teleoperated con-
trol trials versus the semi-autonomous control trials. Fig. 16
presents the percentage of the overall rubble scene that was

Fig. 16. Percentage of scene explored for both the teleoperation and the
semi-autonomous modes.

Fig. 17. Number of victims identified for both the teleoperation and the
semi-autonomous modes.

explored by the robot in all 10 trials. In general, during
teleoperation none of the operators were able to traverse the
entire scene. Participants 4 and 7 explored the scene the most,
with 88% and 94% scene coverage, allowing them to find all
six victims. In semi-autonomous mode, the robot was able to
explore the total available area of the overall USAR-like scene
for all 10 trials utilizing the MAXQ approach. On average,
approximately four victims were identified in the teleoperated
mode versus all 6 in the semi-autonomous mode (Fig. 17).
False victim identification also occurred with participants 6
and 7 during the teleoperation trials. Participant 6 identified a
red cushion in the scene (shown in Fig. 13) to be a victim.
Participant 7 identified the red cushion and also an orange
plastic casing to be a victim. On the other hand, Participant
8 failed to identify a victim that was clearly displayed on the
interface via the front view camera of the robot.

Fig. 18 presents the total number of collisions that occurred
for both experiments. Herein, a collision is defined as the robot
bumping into a non-climbable obstacle or a victim, or falling
off the edge of the upper level, i.e., a drop, as classified by
the rubble pile categorization technique. As can be seen in
the figure, the number of collisions was lower in the semi-
autonomous operation for all of the trials. Collisions that were
detected in this mode occurred when control was passed to the
operator to assist the robot in physically getting out of tight
cells surrounded by non-climbable rubble. Operators would
use brute force to try to navigate the robot over non-climbable
rubble and through narrow passages. During teleoperation,
these types of collisions occurred at a higher frequency; in
addition, five out of the 10 participants actually collided with
a victim in the scene. Only four participants in teleoperation
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Fig. 18. Number of collisions for both the teleoperation and the semi-
autonomous modes.

TABLE III
SUMMARY OF TRIAL TIMES

mode actually navigated the robot to the upper level of the
scene via an inclined climbable ramp for further exploration.
Two of these participants ended up driving the robot off of
steep cliffs on the sides of the upper level instead of navigat-
ing the robot down a gradual decline which was accessible to
them.

Table III presents the total time for each trial, which is
defined to be the time it took to explore and navigate the scene,
identify victims and exit the scene. The average completion
time for each trial was determined to be 395 s (σ = 250) and
369 s (σ = 7) for the teleoperated mode and semi-autonomous
mode, respectively. Participants 4 and 7 who explored the
largest area of the scene and found all victims during tele-
operation had the longest trial times at 595 and 987 s. These
trial times are significantly higher than the total exploration
times that these participants had in semi-autonomous mode to
achieve the same tasks.

During the semi-autonomous trials, tasks were shared by
the robot and operator. The robot handed over control to the
operator in two particular scenarios: 1) when it was physically
stuck in a cell due to unsteady terrain conditions or large rub-
ble piles on either side of the robot obstructing the robot’s
movement and 2) when it could not identify a victim with high
probability due to the size of the heat region being detected.
On average these types of scenarios occurred five times dur-
ing each of the trials. For the first case, the system detected
that the robot was not successfully executing the navigation
commands, hence, the navigation subtask was handed over to
the operator. Control was handed back to the robot once the
executed commands were performed correctly by the operator.
For victim identification the operator was asked to either tag
or reject the victim in the viewpoint of the robot using the
control pad.

Once the experiments were completed, the participants also
completed a questionnaire reflecting on their experiences with

the robot. The questionnaire consisted of questions related to
their stress level during both trials, their ability to utilize the
available sensory information, and how semi-autonomous con-
trol affected their overall experience. With respect to stress
levels, eight participants stated that they felt stressed during
robot teleoperation, while only two participants felt stressed
during semi-autonomous control. Eight out of the 10 partic-
ipants felt that they had a more difficult time monitoring all
of the sensory information that was made available to them
in the teleoperation mode for the entire duration of the search
and rescue task, and hence, seven of them also felt disoriented
and confused about where the robot was in the scene and in
which direction they should explore during the teleoperation
mode. With the robot in semi-autonomous mode, 8 of the 10
participants mentioned that they had a better overall experi-
ence compared to the teleoperated mode. In particular, these
participants found that the robot’s autonomous capabilities
enhanced their understanding of the scene and their own deci-
sion making abilities, since they did not have to complete
all rescue tasks simultaneously on their own, increasing their
situational awareness of the overall scene. The experimental
and questionnaire results confirm that a MAXQ HRL-based
semi-autonomous control architecture for rescue robots has
the potential of improving the performance of the search and
rescue mission in obstacle avoidance, exploration, and victim
identification.

VIII. CONCLUSION

In this paper, a novel MAXQ HRL-based semi-autonomous
control architecture was presented for robotic exploration of
unknown and cluttered USAR environments. The controller’s
objective is to provide a rescue robot with the ability to learn
from its previous experiences in order to improve its perfor-
mance in navigating and exploring a disaster scene to find as
many victims as possible. This allows a human operator to
benefit from the robot’s capability to continuously learn from
its surroundings and adapt to more complex environments. A
new direction-based exploration technique is integrated into
the controller to expand the robot’s search area via the classifi-
cation of regions and the rubble piles within these regions. The
simulations and experiments conducted verify the robustness
of the learning-based MAXQ controller in exploring entire
USAR-like scenes and recreating an accurate representation
of the scenes. Furthermore, they validated the use of terrain
information in determining exploration direction in cluttered
environments. The comparison experiments showed improved
performance of the proposed semi-autonomous controller over
traditional teleoperation. Future work will consist of con-
ducting more experiments in larger-scale physical USAR-like
scenes and with more participants, and further optimizing
the control architecture modules. Comparison studies will
also be conducted with respect to the non-learning-based
semi-autonomous controllers proposed in the literature.
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