
This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. 
The final version of record is available at: http://dx.doi.org/10.1109/LRA.2018.2885584 
 
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2018 1 

Abstract— For robots to become collaborative assistants, they 
need to be capable of naturally interacting with users in real 
environments. They also need to be able to learn new skills from 
non-expert users. In this paper, we present a novel Parallel 
Hidden Markov Model (PaHMM) architecture for Learning 
from Demonstration (LfD), which allows a robot to learn a 
sequence of cooperative and non-cooperative behaviors from a 
single demonstration (single-shot) of a task-based human-robot 
interaction from two interacting teachers. During teaching, the 
robot learns both a human-robot interaction model and an object 
interaction model in order to be able to effectively determine its 
own behaviors. Experiments with a Baxter robot and several 
teachers were conducted to validate the ability of the robot to 
learn both its cooperative and non-cooperative behaviors during 
a task-based interaction. Comparison experiments also show the 
robustness of our approach to spatial variations from the 
demonstrated behaviors and tracking errors when compared to 
other approaches. 

Index Terms—Learning from Demonstration, Physical 
Human-Robot Interaction, Model Learning for Control 

I. INTRODUCTION 
S robots are being used for diverse roles in society, their 
need to learn from non-expert users is increasing [1]. 

They need to be capable of learning interactive behaviors in 
order to engage in human-robot cooperative tasks such as 
assisting the elderly with activities of daily living [2], [3], 
supporting nurses/doctors [4], and collaborative assembly [5], 
[6]. The numerous behaviors that are required by different 
tasks in each application make it impossible for each potential 
scenario to be anticipated and pre-programmed by expert 
designers. Therefore, there is a growing need for robots to 
learn new interactive behaviors from non-expert users to 
engage in human-robot interactions (HRI).  

Learning from Demonstration (LfD) can be used to teach a 
robot interactive behaviors either through observations of a 
single human teacher [3], [7], [8] or interactions between two 
teachers [9]–[14]. Once the robot learns a task, it can then 
become an interaction partner in HRI scenarios with human 
users. The advantage of LfD using two teachers allows a robot 

to learn the relationships between the behaviors of the 
collaborative partners directly. Previous work in this area has 
largely focused on learning interactions composed of single 
cooperative gesture-response behaviors [7]–[11], where the 
robot learns a specific behavior as a response to a single human 
behavior. Alternatively, in [14], a robot learned a sequence of 
behaviors, but every behavior was assumed to be cooperative, 
where the robot responded to user actions. 

In contrast to the aforementioned literature, our research 
uniquely focuses on a robot learning a sequence of both 
cooperative and non-cooperative behaviors. Cooperative 
behaviors consist of a robot directly responding to human 
partner behaviors, while non-cooperative behaviors are 
independent of partner actions. The importance of learning 
both cooperative and non-cooperative behaviors is that a 
number of tasks can consist of both types of behaviors. For 
example, in an airport environment, a robot may be required 
to retrieve a bag from a human traveler, scan its tag to record 
information and then give the bag back to the traveler. This 
interaction is composed of a sequence of three distinct 
behaviors: human-to-robot handover, robot scanning a tag, and 
robot-to-human handover. While the two handover behaviors 
require the robot to respond to the human partner’s movements 
using cooperative behaviors, scanning is performed 
independently in a non-cooperative behavior.  

In this paper, we present the development of a novel Parallel 
Hidden Markov Model (PaHMM) architecture in order for a 
robot to learn both cooperative and non-cooperative behaviors. 
The unique use of two HMMs allows to the robot to 
distinguish between cooperative and noncooperative 
behaviors in order to engage in tasks requiring both types of 
behaviors. During the learning stage, one HMM is used to 
model the behaviors displayed during the interaction and a 
second HMM is used to model the relationship between the 
teachers and the object to handover. By modeling the object 
itself we are able to distinguish between different behaviors 
with similar joint trajectories. Our technique is used with a two 
teacher, single demonstration LfD approach in order for a 
robot to learn interaction tasks consisting of a temporal 
sequence of cooperative and non-cooperative behaviors. The 
advantage of using a PaHMM structure is that during the 
interaction phase the robot’s behaviors are robust to variations 
in the demonstrated behaviors and sensory noise/tracking 
errors by considering predictions from two different models. 

II. RELATED WORK 
LfD approaches can be used to teach new skills to robots 

without requiring robotics expertise. The approaches can be 
categorized as either: 1) learning from a single teacher, or 2) 
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learning from cooperation of two teachers. Regardless of the 
number of teachers, there are many Gaussian, trajectory-based, 
regression, and mixed approaches to LfD [15].  

A. Learning from a Single Teacher 
Learning behaviors from a single teacher can occur through 

tele-operation or kinesthetic teaching, where a teacher directly 
or indirectly physically moves the robot, e.g. [3], [16], [17], or 
by observations, where the joint movements of a teacher are 
observed using sensors and then mapped onto the robot, e.g. 
[7], [8], [18], [19]. 

An example of teleoperation is presented in [3], where a 
teacher tele-operated the Tangy robot within a simulated 
environment for it to learn to facilitate a multi-user Bingo 
game. Through repeated demonstrations of the activity and a 
random forest classifier, the robot was able to learn the state-
behavior pairs that represented the rules of the game as well as 
assistive verbal and nonverbal behaviors. After learning, Tangy 
was able to autonomously facilitate a Bingo game.  

An example of kinesthetic LfD is demonstrated in [17], 
where participants directly manipulated an upper-torso 
humanoid robot with 7 degree of freedom (DOF) arms in order 
to teach it an object handling task. Using keyframe 
demonstrations, two separate learning models were trained. An 
action model generated state paths between subsequent 
keyframes to build the overall trajectory. Meanwhile, a goal 
model monitored the execution of the action model against 
expected keyframes to validate completion. In experiments, the 
goal model was on average 90% correct at monitoring task 
execution, however, the action model was only 66% successful 
at providing valid end-effector trajectories. 

Kinesthetic LfD was also used in [20] to create a Gaussian 
HMM of probabilistic movement primitives (interaction 
ProMPs). A 7 DOF KUKA arm interacted with people through 
several cooperative tasks such as handover and assembly. 
Multiple training demonstrations provided diversity in the 
variance in task, uncertainty of execution, and exploration 
noise. The demonstration of multiple behaviors allowed the 
training of several interaction ProMPs. During interaction 
experiments, the model identified the most probable ProMP 
and then determined the robot’s movements to align with the 
observed human movements.  

Recurrent Neural Network (RNN) [7], and HMM [8], [18] 
techniques have also been used to model a sequence of 
behaviors through observations. In [7], a teacher demonstrated 
rhythmic hand movement patterns to the QRIO humanoid 
robot. The teacher repeated demonstrations of the actions, 
while a vision system tracked hand trajectories. A RNN with 
parametric bias (RNNPB) was used to learn the movement 
patterns to mirror. In [8], the IRT humanoid robot learned 
interactive behaviors such as high five gestures. The gestures 
were each demonstrated 5 times and detected using a motion 
capture system. A mimetic communication model was used 
where motion primitives learned using continuous HMMs and 
interaction primitives were learned using discrete HMMs. 
When learning the interaction primitives, the robot performed 
a learned motion pattern, and observed the user’s reaction. 

B. Learning from Cooperation of Two Teachers 
LfD techniques that have used two teachers to learn 

cooperative behaviors usually have one teacher represent the 
user, while the second teacher is the interaction partner whose 
behavior will be performed by a robot [9]–[14]. A number of 

different techniques have been proposed to achieve this 
including HMMs [9],[10], Probabilistic Principal Component 
Analysis (PPCA) [10], Dynamic Motion Primitives (DMPs) 
[11]–[13], and the combination of both DMPs and HMMs 
[14]. 

In [9], a mimetic communication model consisting of a 
hierarchical grouping of HMMs was used to learn the behavior 
of two teachers demonstrating kick-boxing. A motion capture 
system was used to record teacher joint positions. During the 
learning phase, the teachers performed repeated 
demonstrations of cooperative interaction patterns. Motion 
patterns were segmented and modeled by an HMM and the 
mimetic communication model was used to determine the 
robot’s motions from the human’s motion patterns. 
Experiments with a user interacting with a virtual robot and 
the UT-µ2 physical humanoid robot showed that the robot 
could recognize the user’s motions and respond. 

In [10], robot learning from a dataset of multi-shot 
recorded interactions such as attacking and blocking between 
two teachers was achieved using two different techniques: a 
PPCA approach and HMMs representing the joint trajectories 
of the teachers. During interactions with the user, the observed 
joint trajectories were used to predict the most likely behavior 
and then find the corresponding interaction partner 
parameters. Once trained, a Nao robot could recognize user 
gestures and respond appropriately.  

In [11], object handover tasks were learned from observing 
two teachers with both single-shot and multi-shot approaches. 
During a demonstration, a DMP model was learned for each 
motion pattern. The wrist trajectory of the interaction partner 
was represented as a second-order linear dynamical system 
influenced by two attractor fields, representing the 
demonstrated trajectory and the goal position. By varying the 
weights of the two fields, the model was able to generate 
planned trajectories that adapted to user wrist trajectories. In 
[12] and [13], this technique was used to learn human-robot 
handover tasks. The learned trajectories were applied to a 
KUKA manipulator. Experiments demonstrated the 
generation of arm trajectories that enabled fluent, successful 
human-robot and robot-human handovers. 

The aforementioned approaches have focused on a robot 
learning individual cooperative gesture-response pairs. 
Alternatively, in [14], an approach using Interaction Meshes 
(IM) and an HMM was presented to teach a robot arm a 
sequence of cooperative behaviors for an assembly task. 
During a single-shot demonstration joint information was 
obtained using a motion capture system and the IMs were used 
to model the relationships between the joints of the two 
teachers. To determine which IM to apply when responding to 
the behavior of a user, the robot also learned a HMM-based 
representation of the sequence of behaviors that made up the 
interaction. Experiments consisted of cooperative tasks, such 
as Lego assembly. 

 In general, the majority of LfD approaches assume that a 
user behavior directly results in a corresponding cooperative 
robot behavioral response. However, interaction tasks exist 
that can alternate between cooperative and non-cooperative 
behaviors. Examples of such tasks include baggage handling 
and parts assembly. 
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In our work, we uniquely utilize LfD to teach a robot a 
physical, task-based interaction composed from cooperative 
and non-cooperative behaviors using a single-shot 
demonstration performed by two teachers. We implement a 
PaHMM structure that consists of a novel combination of a 
human-robot interaction model and object interaction model. 
As previously mentioned, the integration of the object 
interaction model allows the robot to differentiate between 
similar joint trajectories belonging to a diverse group of 
behaviors and provides robustness to variations in the 
observed behaviors from those demonstrated.  

III. LEARNING FROM HUMAN INTERACTIONS 
Our PaHMM structure is integrated into the proposed 

overall system architecture shown in Fig. 1. The architecture 
consists of a learning phase and an interaction phase. In the 
learning phase, the robot observes a task demonstrated by two 
human teachers in order to learn the sequence of behaviors of 
that interaction using a PaHMM. In the interaction phase, the 
robot then undertakes the learned task with a user by executing 
the sequence of learned behaviors. Each phase is discussed in 
detail below. 

 
Fig. 1. System architecture for cooperative and non-cooperative behavior 
learning from human interactions with learning and interaction phases. 

A. Learning Phase 
The goal of the learning phase is to model the observed 

interaction between two teachers. One teacher represents the 
user in the interaction and the other the interaction partner, 
which is the role of the robot. We focus on interactions which 
are composed of a sequence of behaviors, rather than a single 
behavior-response pair. Segmentation of the individual 
behaviors is based on both teachers returning to a resting pose 
after each behavior is displayed during an interaction. Our 
approach has been designed to be able to learn from a single 
demonstration, therefore, minimizing the need for multi-shot 
learning. This is achieved by learning two models in parallel 
that observe different aspects of the user behavior, providing 
complementary predictions, and combining these predictions 
to form a successful prediction even when variations from the 
demonstration behavior are observed. The two models are 1) a 
human-robot interaction model, and 2) an object interaction 
model. Our approach learns both models per behavior to obtain 

robust recognition and allow a robot to implement both the 
cooperative and non-cooperative behaviors during the 
interaction.  

The human-robot interaction model receives as input the 
joint parameters of the two teachers which consist of both joint 
angles and angular velocities. The relationship between the 
joint parameters of the two teachers is defined as the joints 
relationship and expresses how one teacher moves in response 
to the other. The object interaction model receives as input the 
spatial position of a detected object in the interaction task. The 
object position is used with the joint parameters and 
relationship of the two teachers in order to define the object-
joints relationship. Variations from the demonstration can 
make it difficult to distinguish between similar behaviors. 
However, as the two models are independently observing the 
demonstration using distinct features, similar behaviors in the 
human interaction model (i.e. take, give) can be represented 
differently by the object interaction model (i.e. object with 
robot, object with user). Therefore, these two models can 
complement each other when determining an interaction 
behavior. If one of the models is not able to distinguish 
between similar behaviors based on the observations, the 
predictions from the other model are used to eliminate low 
probability behaviors and increase the total prediction 
probability of the system. 
1) Human-Robot Interaction Model 

The objective of the human-robot interaction model is to 
represent the sequence of joint parameters of the two teachers. 
Each demonstrated behavior, 𝜆𝜆𝑚𝑚𝐻𝐻𝐻𝐻𝐻𝐻, during the interaction is 
represented by an HMM to form a library of 𝑀𝑀 learned 
behaviors {𝜆𝜆1𝐻𝐻𝐻𝐻𝐻𝐻 , 𝜆𝜆2𝐻𝐻𝐻𝐻𝐻𝐻 , … , 𝜆𝜆𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻}. There are 𝑁𝑁 possible 
interaction states 𝑆𝑆 = {𝑆𝑆1𝐻𝐻𝐻𝐻𝐻𝐻 , 𝑆𝑆2𝐻𝐻𝐻𝐻𝐻𝐻 , … , 𝑆𝑆𝑁𝑁𝐻𝐻𝐻𝐻𝐻𝐻}. Here 𝑁𝑁 is set to 
20. 𝑞𝑞𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻 denotes the state at time 𝑡𝑡. Initial state probabilities are 
represented by 𝛱𝛱𝐻𝐻𝐻𝐻𝐻𝐻 = {𝜋𝜋𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻}, where the state probability 
𝜋𝜋𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻 is the probability that the initial state interaction state 
𝑞𝑞1𝐻𝐻𝐻𝐻𝐻𝐻 at 𝑡𝑡 = 1 corresponds with the state 𝑠𝑠𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻 according to: 

𝜋𝜋𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑃𝑃(𝑞𝑞1𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑠𝑠𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻), 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁. (1) 
State transitions are represented by the transition 

probability matrix 𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻  = �𝑎𝑎𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻�, where 𝑎𝑎𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻 represents the 
probability of transitioning from state 𝑞𝑞𝑡𝑡−1𝐻𝐻𝐻𝐻𝐻𝐻 at time 𝑡𝑡 − 1 to the 
state 𝑞𝑞𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻 at time 𝑡𝑡 according to: 

𝑎𝑎𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑃𝑃�𝑞𝑞𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑠𝑠𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻|𝑞𝑞𝑡𝑡−1𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑠𝑠𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻�, 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁. (2) 
To represent the temporal nature of the behaviors, a left-right 

transition probability distribution is used where the hidden 
states can either transition to themselves or to the state directly 
to their right according to the constraint: 

𝑎𝑎𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻 = 0,       𝑗𝑗 > 𝑖𝑖 + 1. (3) 

The observation probability distribution is represented by 
𝐵𝐵𝐻𝐻𝐻𝐻𝐻𝐻 = {𝑏𝑏𝐻𝐻𝐻𝐻𝐻𝐻(𝑜𝑜𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻)}, where 𝑏𝑏(𝑜𝑜𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻) is the probability 
density function for an observation 𝑜𝑜𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻 representing the joint 
parameters of the user (e.g., joint angles and angular 
velocities). Since joint observations occur in a continuous 
space, the observation probabilities are modeled as a Gaussian 
HMM. The parameters of the model are estimated using the 
Expectation Maximization (EM) algorithm [21]. The 
transition, observation, and initial state parameters for the 
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HMM representing a behavior, 𝜆𝜆𝐻𝐻𝐻𝐻𝐻𝐻 = (𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻 ,𝐵𝐵𝐻𝐻𝐻𝐻𝐻𝐻 ,𝛱𝛱𝐻𝐻𝐻𝐻𝐻𝐻), are 
estimated using the Baum-Welch algorithm. 

The robot begins observing the demonstration when the user 
makes a movement. To avoid learning unintentional 
movements, behaviors that are less than 1 sec in length are 
rejected. If the interaction partner behavior is accompanied by 
actions from the user, the behavior is cooperative. However, 
for a non-cooperative behavior, the behavior of the interaction 
partner is not dependent on any user behavior. Our approach 
defines a non-cooperative behavior as one where the 
interaction partner initiates a behavior while the user is not 
engaging in a behavior. Therefore, cooperative behaviors 
require actions taken by both the user and interaction partner. 
This is identified by observing the difference in joint angles of 
the user from time 𝑡𝑡 − 1 to 𝑡𝑡:  

𝑐𝑐𝑡𝑡 = �1, 𝑜𝑜𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑜𝑜𝑡𝑡−1𝐻𝐻𝐻𝐻𝐻𝐻 > 𝛼𝛼         𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑡𝑡𝑖𝑖𝑐𝑐𝑐𝑐
0, 𝑜𝑜𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑜𝑜𝑡𝑡−1𝐻𝐻𝐻𝐻𝐻𝐻 ≤ 𝛼𝛼         𝑛𝑛𝑜𝑜𝑛𝑛 − 𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑡𝑡𝑖𝑖𝑐𝑐𝑐𝑐

,  (4) 

where 𝑐𝑐𝑡𝑡 represents the behavior type, 𝑜𝑜𝑡𝑡 represents the 
observed joint parameters of the user at time 𝑡𝑡, and 𝛼𝛼 
represents a limit above which a behavior is defined as 
cooperative. t and α are set to appropriately classify 
cooperative and non-cooperative behaviors while accounting 
for small unintentional movements as well as sensor noise 
when detecting joint angles. The behavior type 𝑐𝑐𝑡𝑡 is evaluated 
at every time step 𝑡𝑡 to determine whether the observed 
movement is performed cooperatively. While behaviors are 
typically entirely composed of one type (i.e. non-cooperative: 
robot waving at user, and cooperative: hand-over), it is 
possible for a behavior to mix both cooperative and non-
cooperative actions as in the case where there is a delayed 
reaction from a teacher. There is no time limit defined for a 
response to a cooperative behavior, as behaviors vary in 
duration, therefore, a delayed response would also be 
considered a cooperative behavior. Since the objective of our 
architecture is for a robot to learn behaviors from 
demonstration, we have not explicitly modeled non-
cooperative behaviors of the user interacting with the robot. 

In order to complete tasks such as object handovers, the 
robot needs to be capable of adapting its joint trajectory to the 
user’s joint trajectory. The objective is to learn a response that 
consists of the interaction partner’s joint angles θ =
{θ1,θ2, … , θN} as well as the translation vector between the 
wrist joint positions of the two teachers k = {k1, k2, … kN}. 

 
Fig. 2. Human-robot interaction model. 

The robot behavior is represented by R = {r1, r2, … , rN}, 
where rn = {θn, kn, cn}. The overall human-robot interaction 
model is shown in Fig. 2. The model maps each hidden state 

𝑆𝑆𝑛𝑛𝐻𝐻𝐻𝐻𝐻𝐻 to both the user’s observed joint parameters 𝑜𝑜𝑛𝑛𝐻𝐻𝐻𝐻𝐻𝐻 and to a 
robot response behavior 𝑐𝑐𝑛𝑛. When learning the HMM, the robot 
also learns a mapping between each hidden state SnHRI to the 
corresponding robot response behavior rn. When interacting 
with the user, the robot is then able to estimate the current 
interaction state StHRI and retrieve the corresponding response 
rt. 
2) Object Interaction Model 

A problem occurs in the human-robot interaction model 
when a task is composed of behaviors having similar joint 
trajectories. For example, a handover behavior and a reaching 
behavior can be identical in the representation of their joint 
trajectories but can be distinguishable based on the object. In 
order to capture the sequential nature of behaviors within an 
object interaction task, an object interaction model is learned 
using left-right HMMs that model the spatial relationship 
between a detected object and the wrists of the teachers over 
the course of the interaction. 

Each demonstrated behavior, 𝜆𝜆𝑚𝑚
𝑂𝑂𝑂𝑂𝑂𝑂, is represented by an 

HMM to form a library of 𝑀𝑀 learned behaviors 
�𝜆𝜆1

𝑂𝑂𝑂𝑂𝑂𝑂, 𝜆𝜆2
𝑂𝑂𝑂𝑂𝑂𝑂, … , 𝜆𝜆𝑀𝑀

𝑂𝑂𝑂𝑂𝑂𝑂� that correspond to the same behaviors 
used in the human-robot interaction model. Each HMM has 𝑃𝑃 
hidden object states 𝑆𝑆 = �𝑆𝑆1

𝑂𝑂𝑂𝑂𝑂𝑂, 𝑆𝑆2
𝑂𝑂𝑂𝑂𝑂𝑂, … , 𝑆𝑆𝑃𝑃

𝑂𝑂𝑂𝑂𝑂𝑂�, initial state 
probabilities 𝛱𝛱𝑂𝑂𝑂𝑂𝑂𝑂 = �𝜋𝜋𝑖𝑖

𝑂𝑂𝑂𝑂𝑂𝑂�, transition matrix 𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂 =
�𝑎𝑎𝑖𝑖𝑖𝑖

𝑂𝑂𝑂𝑂𝑂𝑂�, and observation probability distribution 𝐵𝐵𝑂𝑂𝑂𝑂𝑂𝑂 =
�𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂�𝑜𝑜𝑡𝑡

𝑂𝑂𝑂𝑂𝑂𝑂��.  
Observations 𝑜𝑜𝑡𝑡

𝑂𝑂𝑂𝑂𝑂𝑂 are extracted from the Euclidean 
distance between the center point of the detected object and 
the centroid of the torsos of the user and of the interaction 
partner and discretized to four object states: (no object, with 
user, with interaction partner, between user and interaction 
partner). The object interaction model emits an observation 
𝑜𝑜𝑡𝑡
𝑂𝑂𝑂𝑂𝑂𝑂 for each state 𝑞𝑞𝑡𝑡

𝑂𝑂𝑂𝑂𝑂𝑂, Fig. 3. 

 
Fig. 3. Object Interaction model. 

B. Interaction Phase 
The goal of the robot during the interaction phase is to 

collaboratively complete a task with the user. In recognition 
approaches using HMMs, observations of a demonstration are 
typically collected as a sequence of features which are used to 
train a single HMM model. When the detection of observed 
features is affected by noise, recognition accuracy can become 
degraded. To minimize the effect of noise and tracking errors 
and account for variations in demonstrated behaviors, we 
propose a PaHMM structure, where the observed features are 
split into separate feature sets, that are used to train 
independent HMM models, seen in the lower half of Fig. 1. 
The noise/errors present in one feature set will only affect the 
recognition accuracy of its corresponding HMM. PaHMMs 
were first successfully introduced for automatic speech 
recognition [22], [23]. Once we have the HMM models, a 
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decision layer combines the output of each model to produce 
a final recognition determination. 

Our implementation uses two sets of HMMs: the Human-
Robot Interaction Model, and the Object Interaction Model 
which receive human joint parameters 𝑂𝑂𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻 =
{𝑜𝑜𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻, 𝑜𝑜𝑡𝑡−1𝐻𝐻𝐻𝐻𝐻𝐻 , … , 𝑜𝑜𝑡𝑡−𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻} and object features 𝑂𝑂𝑡𝑡

𝑂𝑂𝑂𝑂𝑂𝑂 =
{𝑜𝑜𝑡𝑡

𝑂𝑂𝑂𝑂𝑂𝑂, 𝑜𝑜𝑡𝑡−1
𝑂𝑂𝑂𝑂𝑂𝑂, … , 𝑜𝑜𝑡𝑡−𝐹𝐹

𝑂𝑂𝑂𝑂𝑂𝑂}, respectively. A sequence of observation 
of length 𝐹𝐹 is used in a sliding window to obtain the likelihoods 
of both 𝜆𝜆𝑚𝑚𝐻𝐻𝐻𝐻𝐻𝐻 and 𝜆𝜆𝑚𝑚

𝑂𝑂𝑂𝑂𝑂𝑂 for each learned behavior 𝑚𝑚, namely 
𝑃𝑃(𝑂𝑂𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻|𝜆𝜆𝑚𝑚𝐻𝐻𝐻𝐻𝐻𝐻) and 𝑃𝑃�𝑂𝑂𝑡𝑡

𝑂𝑂𝑂𝑂𝑂𝑂�𝜆𝜆𝑚𝑚
𝑂𝑂𝑂𝑂𝑂𝑂�. The probability of the 

observations given each behavior HMM is evaluated 
simultaneously in both models and combined in a decision 
layer to make a final prediction of the observed user behavior. 
This final prediction is used to determine the appropriate robot 
behavior. We propose a simple recombination strategy where 
the two models are combined with a weighted sum according 
to: 
𝑚𝑚∗ = arg max

𝑚𝑚
�𝑃𝑃(𝑂𝑂𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻|𝜆𝜆𝑚𝑚𝐻𝐻𝐻𝐻𝐻𝐻)  + 𝛾𝛾 ∙ 𝑃𝑃�𝑂𝑂𝑡𝑡

𝑂𝑂𝑂𝑂𝑂𝑂�𝜆𝜆𝑚𝑚
𝑂𝑂𝑂𝑂𝑂𝑂�� , (5) 

where 𝛾𝛾 is a weighting factor for the object interaction model. 
We can obtain 𝛾𝛾 empirically by creating a test dataset of 
repeated behaviors and selecting a value that maximizes 
accurate behavior predictions. In this work, 𝛾𝛾 was set to 0.4. 
The value of γ determines the contribution of the two models 
to the final behavior prediction. A 𝛾𝛾 value of 0 will remove 
contributions from the object interaction model, producing 
just the HMM with the HRI model. A high 𝛾𝛾 value will result 
in a model that primarily utilizes the object interaction model. 

Once an interaction behavior is recognized, the current state 
of the behavior is estimated from the human-robot interaction 
model using the Viterbi algorithm [24] to find the sequence of 
interaction states 𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻 = {𝑞𝑞1𝐻𝐻𝐻𝐻𝐻𝐻,𝑞𝑞2𝐻𝐻𝐻𝐻𝐻𝐻 , … , 𝑞𝑞𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻} representing 
the sequence of user joint feature observations 𝑂𝑂𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻, to 
maximize the probability 𝑃𝑃(𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻 ,𝑂𝑂𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻|𝜆𝜆𝐻𝐻𝐻𝐻𝐻𝐻).  

The robot behavior can then be determined from the robot 
response 𝑐𝑐𝑡𝑡 that corresponds to the state 𝑞𝑞𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻. If the robot 
response is cooperative, this process will be repeated with new 
observations at time 𝑡𝑡 + 1. However, if the robot response is 
non-cooperative, the robot directly proceeds to the next 
behavior state in the interaction sequence 𝑞𝑞𝑡𝑡+1𝐻𝐻𝐻𝐻𝐻𝐻 and initiates the 
corresponding robot behavior 𝑐𝑐𝑡𝑡+1. 

For both cooperative and non-cooperative behaviors, the 
robot must generate joint commands that correspond with the 
intended robot behavior. The interaction partner learned joint 
angles, 𝜃𝜃𝑡𝑡, can be mapped to the robot’s joints taking into 
account the kinematics of both the human and robot arms. The 
robot arms have the same DOFs as human arms. When the 
DOFs are different, imitation techniques using optimization 
can be implemented.  

If the robot was to rely on the demonstrated joints entirely, 
it would be unable to adapt to variations in user behavior, 
particularly ones that require the user’s hand and robot end-
effector to meet. As a solution, we project the learned wrist 
joint relationship 𝑘𝑘𝑡𝑡 onto the user’s current wrist location to 
determine the target position of the robot’s end-effector. We 
then determine the corresponding robot joint angles 𝜙𝜙𝑡𝑡 using 
an Inverse Kinematics (IK) solver. Since IK joint angles  ϕt 
differ from the learned joints θt, we incorporate θt and ϕt in a 
weighted sum based on the distance between wrists, dt. When 
the robot and user wrists are far apart (i.e. a wave), w(dt) 

approaches 0 and the system utilizes the learned joint angles, 
whereas when wrists are close (i.e. a handover), w(dt) 
approaches 1 and the system utilizes the IK joints to obtain the 
robot joint angles θt∗: 
𝜃𝜃𝑡𝑡∗ = 𝜙𝜙𝑡𝑡 ∙ 𝑤𝑤(𝑑𝑑𝑡𝑡) + 𝜃𝜃𝑡𝑡 ∙ �1 −𝑤𝑤(𝑑𝑑𝑡𝑡)�.       (6) 
The weight 𝑤𝑤(𝑑𝑑𝑡𝑡) is given by:   

𝑤𝑤(𝑑𝑑𝑡𝑡) = 𝑐𝑐−
𝑑𝑑𝑡𝑡
𝐷𝐷 ,          (7) 

where 𝑑𝑑𝑡𝑡 is the Euclidean distance between the nearest 
neighboring learned wrist joints of the teachers at state 𝑞𝑞𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻, 
and 𝐷𝐷 is a constant that determines the weighting of 𝜃𝜃𝑡𝑡 and 𝜙𝜙𝑡𝑡 
at distance 𝑑𝑑𝑡𝑡. We set the constant 𝐷𝐷 as the average distance 
between the centroid of the torsos of the robot and the user 
during an interaction task which was 0.3m. This value, when 
considered with the wrist-to-wrist distance 𝑑𝑑𝑡𝑡, determines the 
weighting of IK and learned joint angles to allow for a gradual 
transition of the system between movements that follow the 
demonstrated behavior at larger 𝑑𝑑𝑡𝑡 distances and movements 
that align to user variations at closer 𝑑𝑑𝑡𝑡 distances. Only D, the 
torso-to-torso distance, and 𝑑𝑑𝑡𝑡, the wrist-to-wrist distances, are 
represented in Cartesian space. The resultant robot joint angles, 
𝜃𝜃𝑡𝑡∗, should be an accurate representation of learned behavior 
adapted to user behavior variations. 

IV. INTERACTION EXPERIMENTS 

Experiments were conducted to learn an interaction task 
demonstrated by two teachers. A baggage handling task was 
considered consisting of a human-robot and robot-human 
object handover scenario with the number of learned behaviors 
𝑀𝑀 set to 4. During the interaction, the robot performs both 
cooperative and non-cooperative behaviors as shown in Table 
I. We compared the results of our PaHMM approach to both a 
single HMM approach from the literature [10], [14], and a 
single HMM approach we developed which also incorporated 
object feature states.  

TABLE I  
BAGGAGE HANDLING INTERACTION TASK SCENARIO 

Seq. # Human user Interaction partner Behavior Type 
1 Handover object Take object Cooperative 
2 Wait Scan object tag Non-cooperative 
3 Take object Hand-over object Cooperative 
4 Wave Wave back Cooperative 

A. Interactive Robotic System 
The Baxter robot is a dual-arm robot with 7 DOFs in each 

arm, shown in Fig. 4. A 1-DOF parallel gripper was 
incorporated into the end-effector of each arm. An RGB 
camera is located at the wrist for each arm. A Kinect sensor 
was also mounted on top of the robot’s head to provide both 
RGB and depth information of the interaction. 

Teacher joint tracking is performed by the OpenNI 
framework [25] together with the NITE skeleton tracking 
package [26] which uses randomized decision trees trained on 
a large dataset of poses to estimate joint positions. 

For each teacher, the position and orientation of the centroid 
of the torso, and the wrist, elbow and shoulder joints were 
tracked. The orientation of the shoulder joints, elbow angle 
and angular velocity of both joints were concatenated to 
produce a 16-dimensional vector used as observations in the 
human-robot interaction model. 
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Fig. 4. Baxter Robot used in the experiments. Markers on the floor indicate 
different user locations used with respect to the robot. 

The relative spatial position of the detected object with 
respect to the teachers was used to obtain the object state 
observations in the object interaction model. Object tracking 
was achieved using the TensorBox detector [27]. This detector 
uses a Convolutional Neural Network (CNN) trained to 
produce bounding boxes at image areas with a high probability 
of containing the object class. The detector was fine-tuned on 
a dataset of 1,000 examples of bags, backpacks, satchels and 
boxes. We developed a technique that used depth information 
from the Kinect sensor to locate potential grasp points by 
applying a convolution filter to the corresponding depth map 
of the object, allowing the robot to identify possible grasp 
locations. This is accomplished by using a Canny edge 
detector and a Hough transform on the RGB image to remove 
the background and extract prominent object edges. The depth 
map is then scaled based on distance to the object and 
convolutional filters are used to identify potential grasp 
regions. 

The two layers of the human-robot interaction model and 
the object interaction model were combined for the PaHMM. 

B. Learning Phase 
 The collaborative baggage handling scenario was 

demonstrated to the robot in a single demonstration by two 
teachers. Each demonstrated behavior is shown in Fig. 5.  

C. Interaction Phase 
The performance of our robot behavior learning system was 

investigated with respect to: 1) its ability to generate the 
appropriate robot behaviors during the chosen human-robot 
interaction scenario, 2) its robustness to variations among the 
users, and 3) the response time of a cooperative behavior, 

measured from the time a user behavior is initiated (based on 
prediction confidence level) up until the time a robot initiates 
its own response. Five participants (heights ranging from 162 
cm to 188 cm) were asked to interact with the robot. The 
participants were told the sequence of behaviors of the 
interaction but were not given detailed instructions on how to 
perform each behavior. To provide additional variation, each 
participant was asked to perform the interaction at three 
different positions (Loc. 1, 2, and 3) in front of the robot, as 
shown in Fig. 4. For each of the behaviors within the 
interaction scenario, the robot’s response time was recorded 
and, in instances where the robot performed the incorrect 
behavior or timed-out during the interaction (longer than 10 
seconds), a behavior was considered a failure. In order to 
compare our approach with existing approaches, we conducted 
the experiment using both our PaHMM model and a single 
HMM model that did not directly incorporate object features, 
similar to [10],[14], which we define herein as HRIHMM. 
Each participant performed the interaction with the robot at the 
three positions for each of the two approaches on different 
days using a counterbalance procedure. 

D. Results 
The detailed results are presented in Table II and examples 

of the interactions for two participants and their behaviors are 
presented in Fig. 6. The completion rates for all the behaviors 
for the PaHMM were between 87% and 100% (µ=97%, 
σ=6%). Behavior response time for each of the cooperative 
behaviors varied between 0.1s and 4s (µ=1.33s, σ=1.03s). The 
PaHMM model had two failures, both for the give behavior. In 
these instances, the skeletal tracking algorithm provided 
insufficient data for the PaHMM to make a confident 
prediction, and example of which is in Fig. 7. 

The behavior completion rates for the HRIHMM model 
ranged between 13% to 100% with µ=30% and σ=11%. There 
were numerous instances that the robot did not attempt to 
implement a behavior due to a previous behavior failing (‘-’ in 
Table II) or the robot failed during its attempt (‘Fail’). 
Response time of those behaviors that were implemented 
varied from 0.1 s to 10 s, with an overall higher mean and 
standard deviation, i.e., µ=2.72s and σ=2.57s. Even though the 
completion time was slightly faster for the take behavior using 
the HRIHMM model when compared to the PaHMM, the 
PaHMM model had a 100% success rate for this behavior 
versus only 40% for the HRIHMM model. Similar to the 
PaHMM approach, the HRIHMM’s failures were due to 
skeleton tracking errors, however, failures were more frequent 
for the HRIHMM as it solely used joint data. 

    
Cooperative 

Human-Robot Hand-Over 
Non-Cooperative 
Robot Scanning 

Cooperative 
Robot-Human Hand-Over 

Cooperative 
Wave 

Fig. 5. Teaching the robot an interaction scenario composed of three cooperative behaviors and one non-cooperative behavior. 

Loc. 2 

Loc. 1 

Loc. 3 

Kinect 
Sensor 

1 DOF 
gripper 

Wrist RGB 
Camera 
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TABLE II 
ROBOT BEHAVIOR RESULTS 

U
se

r 

L
oc

. 

PaHMM 
Response Time (s) 

HRIHMM 
Response Time (s) 

Ta
ke

 

Sc
an

 

G
iv

e 

W
av

e 

Ta
ke

 

Sc
an

 

G
iv

e 

W
av

e 

1 
1 1.6 N/A 0.7 2.1 0.1 N/A Fail - 
2 1.8 N/A 1.9 0.4 Fail - - - 
3 0.2 N/A 1.1 1.6 Fail - - - 

2 
1 3.9 N/A 0.1 0.3 Fail - - - 
2 2.1 N/A 1.7 3 1.6 N/A 0.6 Fail 
3 0.5 N/A 0.2 0.2 1.2 N/A 0.1 0.1 

3 
1 0.9 N/A Fail 1.1 Fail - - 10 
2 3.8 N/A 0.2 0.3 Fail - - - 
3 3.2 N/A Fail 1 0.1 N/A 4.5 Fail 

4 
1 4 N/A 1 0.1 1.6 N/A 2 Fail 
2 2.5 N/A 0.4 0.1 3.2 N/A Fail - 
3 2.2 N/A 0.4 1.1 Fail - - - 

5 
1 1.1 N/A 0.1 0.1 Fail - - - 
2 2.3 N/A 2 0.2 Fail N/A - - 
3 0.5 N/A 3.6 2 Fail N/A - - 

Avg. 
Response 

Time (S.D.) 

2.0 
(1.2) N/A 1.0 

(1.0) 
0.9  

(0.9) 
1.3 

(1.1) N/A 1.8 
(1.7) 

5.1 
(5.0) 

Completion 
Rate % 100% 100% 87% 100% 40% 100% 27% 13% 

‘N/A’ is used for the non-cooperative scanning behavior when attempted by the 
robot as it is not a response to the user.  ‘-’ represents a sequential behavior that 
was not attempted by the robot due to failure in a previous behavior. 

 
Fig. 7. Tracking Failure example on the right arm (yellow). 

E. Human Behavior Interaction Prediction Comparison 
An additional comparison analysis was run for two reasons. 

First, the HRIHMM results from the previous experiment had 
many incomplete behaviors due to the failure of a prior 
behavior in the sequence. Second, though the PaHMM 
outperformed the HRIHMM, we wanted to investigate if the 
performance improvement was due to the design of the 
approach or simply the addition of object data. 

To resolve the first issue, we analyzed the predictions of 
each model on an input dataset for the baggage handling 

interaction task using successfully tracked individual 
behaviors for all five participants. This allowed us to conduct 
a comparison of different models with the same dataset and the 
predictions of each model given the user’s behavior.  

For the second issue, we introduced a third model in this 
comparison in addition to the PaHMM and HRIHMM 
approach. We created a single layer HMM that combined 
object features with the user joint parameters into a single 
feature vector, that we define as the Human-Object HMM 
(HOHMM). This approach leverages the same data as the 
PaHMM, however, uses a single model structure to form its 
predictions. Results of this analysis are presented in Table III.  

Overall, our PaHMM model had high prediction rates for 
the take (83%), give (100%), and wave (100%) behaviors. The 
HOHMM model was less successful at predicting wave (94%), 
give (84%) and take (19%), often misinterpreting take as a 
give behavior (65%). The HRIHMM model had the lowest 
prediction rates for wave (71%), give (78%), and frequently 
mispredicted take (14%) as a give (85%). 

While the object features in the HOHMM produced an 
improvement in prediction of all the cooperative behaviors 
with respect to the HRIHMM model, the prediction rates were 
still lower with respect to our PaHMM model, especially for 
the take behavior. Since both PaHMM and HOHMM used the 
same inputs, the improved performance of the PaHMM is due 
to the parallel structure utilizing multiple HMMs combined in 
the decision layer. Namely, the HOHMM approach determines 
the probability of a behavior based on how well the entire 
feature vector matches with the demonstration, and then applies 
an equal weighting to both the 
joint parameters and object features. In contrast, by using two 
models, the object interaction model and the human-robot 
interaction model, the PaHMM is less sensitive to variations 
in observations that occur due to tracking errors or user 
behavior variations. Therefore, it can still predict a behavior 
with high probability even if one of the models outputs low 
probabilities for all learned behaviors, such as when joints are 
occluded by the object. Although the HOHMM and PaHMM 
used the same input parameters, the HOHMM more frequently 
mistook the take and give behaviors. The lower performance 
of the HOHMM was due to it using a single feature vector 
(joints and object features together) for prediction 
probabilities. Therefore, any reduced information (i.e., 
occluded joints) or noisy data directly affected the overall 
prediction. However, the PaHMM uses two separate models 
which provide independent predictions and are not as affected 
by the aforementioned issues. For example, occluded joints do 
not influence the object interaction model prediction as it is 
only interested in object observations. 

      

      
Fig. 6. User interaction examples with the robot generating behaviors during the task using the PaHMM. Variations in joint angles can be seen in interactions. 
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TABLE III 
CONFUSION MATRIX COMPARISON OF COOPERATIVE BEHAVIOR PREDICTIONS 

  Actual 

Predicted Take Give Wave 
Pa

H
M

M
 Take 83% 0% 0% 

Give 0% 100% 0% 

Wave 17% 0% 100% 

None 0% 0% 0% 

H
O

H
M

M
 Take 19% 16% 0% 

Give 65% 84% 6% 

Wave 16% 0% 94% 

None 0% 0% 0% 

H
R

IH
M

M
 Take 14% 22% 3% 

Give 85% 78% 26% 

Wave 1% 0% 71% 

None 0% 0% 0% 

V. CONCLUSIONS 
In this paper, we present a novel LfD architecture that 

utilizes a PaHMM structure composed of a human-robot 
interaction model and an object interaction model to learn 
cooperative and non-cooperative behaviors. The parallel use 
of the two models provides robustness to variations in user 
behaviors and allows the robot to perform both cooperative 
behaviors and non-cooperative behaviors during a task. 
Experiments were conducted with the Baxter robot 
implementing a baggage handling task. The results showed 
that the robot learned to interpret user behaviors and respond 
appropriately while generalizing to user variations. 

 Performance comparisons with a traditional single layer 
HMM showed that our proposed approach had, on average, 
lower robot behavior response times and significantly higher 
completion rates. Furthermore, our PaHMM model was able 
to have significantly higher behavior prediction accuracy than 
both the single layer HMM model (HRIHMM) and a single 
layer HMM model with object features (HOHMM). Though 
studied with a baggage handling task, the PaHMM framework 
can handle other tasks comprised of behaviors that can be 
defined through a combination of joint parameters/end-
effector positions and object features. Depending on the task, 
tuning the torso-to-torso distance, D, and the relative 
weighting, γ, may improve performance. Tasks involving 
additional objects are also possible through the incorporation 
of new object features into the object interaction model. 
Therefore, the use of a PaHMM approach can be effective for 
combining different feature types for a variety of robot 
collaborative tasks.  
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