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Abstract: For older adults, regular exercises can provide both physical and mental benefits, increase
their independence, and reduce the risks of diseases associated with aging. However, only a small
portion of older adults regularly engage in physical activity. Therefore, it is important to promote
exercise among older adults to help maintain overall health. In this paper, we present the first ex-
ploratory long-term human–robot interaction (HRI) study conducted at a local long-term care facility
to investigate the benefits of one-on-one and group exercise interactions with an autonomous socially
assistive robot and older adults. To provide targeted facilitation, our robot utilizes a unique emotion
model that can adapt its assistive behaviors to users’ affect and track their progress towards exercise
goals through repeated sessions using the Goal Attainment Scale (GAS), while also monitoring heart
rate to prevent overexertion. Results of the study show that users had positive valence and high
engagement towards the robot and were able to maintain their exercise performance throughout the
study. Questionnaire results showed high robot acceptance for both types of interactions. However,
users in the one-on-one sessions perceived the robot as more sociable and intelligent, and had more
positive perception of the robot’s appearance and movements.

Keywords: autonomous exercise facilitation; human–robot interaction; intelligent robot; social
robotics; older adults; long-term study

1. Introduction

For older adults, regular exercise can reduce the risk of depression, cardiovascular
disease, type 2 diabetes, obesity, and osteoporosis [1]. Older adults who regularly exercise
are also more likely to be able to engage in instrumental activities of daily living such as
meal preparation and shopping with increased independence [2]. Furthermore, they are
less likely to fall and be injured [3]. Even when taken up later in life, older adults can
still gain from the benefits of exercise with a decrease in risk of cardiovascular disease
mortality [4]. Despite the overwhelming evidence, however, for example, only 37% of older
adults aged over 65 in Canada perform the recommended 150 min of weekly physical
activities including aerobic (e.g., walking), flexibility exercises (e.g., stretching), and muscle
strengthening (e.g., lifting weights) [5]. For the goal of exercise promotion, a handful of
social robots have shown potential for use with older adults [6–9]. These robots can extend
the capabilities of caregivers by providing exercise assistance when needed, autonomously
tracking exercise progress for multiple individuals over time, and facilitating multiple
parallel exercise sessions.

In general, human–robot interaction (HRI) can be often conducted in: (1) group
interactions, or (2) one-on-one interaction settings. The ability to meet new people and
other social aspects of group sessions have shown to be a major motivator in older adults to
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participate in exercise [10]. The increase in social interaction among participants, which can
be further increased by the facilitation by a robot [11], can stimulate the prefrontal cortex
of the participants, regions that are traditionally associated with executive functions such
as working memory and attention [12]. This results not only in physical health benefits,
but also may add to their cognitive functions by participating in group exercise sessions.
One-on-one exercise sessions, on the other hand, can also increase participation as they
enable user experience to be directly tailored to the participant by providing individualized
feedback [13]. Individualized experiences also increase participants’ attentiveness and
retention of the information as they perceive it to be more relevant to them, resulting in
increased physical performance results [14].

In human–human interactions, human affect plays a significant role as it guides
people’s thoughts and behaviors, and in turn influences how they make decisions and
communicate [15]. To effectively interact with people and provide assistance, robots need
to recognize and interpret human affect as well as respond appropriately with their own
emotional behaviors. This promotes natural interactions in human-centered environments
by following accepted human behaviors and rules during HRI, leading to acceptance of the
robot in order to build long-term relationships with its users [16].

During exercising, as people are required to perform physical movements, which can
also lead to perturbed facial expressions due to the increase in effect and muscle fatigue [17],
common physical affective modes such as body movements and facial expressions are not
always available for the robot to detect. Furthermore, these physical modes are difficult
to use with older adults as they have age-related functional decline in facial expression
generation [18], and body movements and postures [19]. On the other hand, Electroen-
cephalography (EEG) signals, which are largely involuntarily, and activated by the central
nervous system (CNS) and the autonomic nervous system (ANS) of the human body can
be used to detect both affective cognitive states of older adults [20]. EEGs have also been
successfully utilized to detect user affect during physical activities (e.g., cycling) [21].

In this paper, we present the first long-term robot exercise facilitation HRI study
with older adults investigating the benefits of one-on-one and group sessions with an
autonomous socially assistive robot. Our autonomous robot uses a unique emotional
model that adapts its assistive behavior to the user affect during exercising. The robot
can also track users’ progression towards exercise goals using the Goal Attainment Scale
(GAS) while monitoring their heart rate to prevent overexertion. Therefore, herein, we
investigate and compare one-on-one and group intervention types to determine their
impact on older adults’ experiences with the robot and their overall exercise progress. A
long-term study (i.e., 2 months) was conducted to determine the challenges for achieving a
successful exercise HRI while directly observing the robot as it adapts to user behaviors
over time. The aim was to investigate any improved motivation and engagement in the
activity through repeated multiple exercise sessions over time and in different interaction
settings with an adaptive socially assistive robot.

2. Related Works

Herein, we present existing socially assistive robot exercise facilitation studies that
have been conducted in (1) one-on-one sessions [7,9,22,23], (2) group sessions [6,24], and/or
(3) a combination of the two scenarios [8]. Furthermore, we discuss HRI studies which have
compared group vs. one-on-one interactions in various settings and for various activities.

2.1. Socially Assistive Robots for Exercise Facilitation
2.1.1. Socially Assistive Robots for Exercise Facilitation in One-on-One Settings

In [7], the robot Bandit was used to facilitate upper body exercise with older adults in
a one-on-one setting with both a physical and virtual robot during four sessions over two
weeks. The virtual robot was a computer simulation of the Bandit robot that was shown on
a 27-inch flat-panel display. The study evaluated the users’ acceptance and perception of
the robot as well as investigated the role of embodiment. In comparison, participants in the
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physical robot sessions evaluated the robot as more valuable/useful, intelligent, helpful,
and having more social presence and being a companion than those in the virtual robot
sessions. No significant differences were observed in participant performance between the
two study groups.

In [9], a NAO robot learned exercises performed by human demonstrators in order to
perform them in exercise sessions with older adults in one-on-one settings. The study, com-
pleted over a 5-week period, found that participants had improved exercise performance
after three sessions for most of the exercises. They had high ratings for the enjoyment of the
exercise sessions and accepted the robot as a fitness coach. However, the acceptance of the
robot as a friend slightly decreased over the sessions as they reported that they recognize
the robot as a machine and they only wanted to consider humans as friends. They also
showed confused facial expressions during more complicated exercises (e.g., exercises
with a sequence of gestures); however, the occurrence of the confused facial expressions
decreased by the last session.

In [22], the NAO robot was used to facilitate the outpatient phase of a cardiac re-
habilitation program for 36 sessions over an 18-week period. Participants ranged in age
from 43 to 80. Each participant was instructed to exercise using a treadmill, while the
robot monitored their heart rate using an electrocardiogram and alerted medical staff if
it exceeded an upper threshold, and monitored their cervical posture using a camera and
provided the participant with verbal feedback if a straight posture was not maintained. The
robot also provided the participants with periodic pre-programmed motivational support
through speech, gestures, and gaze tracking. The robot condition was compared to a
baseline condition without the robot. The results showed participants that used the robot
facilitator had a lower program dropout rate and achieved significantly better recovery of
their cardiovascular functioning than those that did not use the robot.

In [23], a NAO robot was also used for motor training of children by playing person-
alized upper-limb exercise games. Healthcare professionals assessed participants’ motor
skills throughout the study at regular intervals using both the Manual Ability Classification
Systems (MACS) scale to assess how the children handle objects in daily activities and
the Mallet scale to assess the overall mobility of the upper limb. Questionnaire results
showed positive ratings over time, indicating that participants considered the robot to be
very useful, easy to use, and operating correctly. There was no change in the MACS scale
results for all participants over the three sessions. However, participants slightly improved
over time on the Mallet score on their motor skills.

2.1.2. Socially Assistive Robots for Exercise Facilitation in Group Settings

In [6], a Pepper robot was deployed in an elder-care facility to facilitate strength
building, flexibility exercises, and to play cognitive games. Six participants were invited
to a group session with Pepper twice a week for a 10 week-long study. Interviews with
the participants revealed that many older adults were originally fearful of the robot, but
became comfortable around the robot by the end of the study. In [24], a NAO robot was
used to facilitate seated arm and leg exercises with older adults in a group session with
34 participants. Feedback from both the staff and older adults showed that the use of the
NAO robot as an exercise trainer was positively received.

2.1.3. Socially Assistive Robots for Exercise Facilitation in Both One-on-One and
Group Settings

In [8], a remotely controlled robot Vizzy was deployed as an exercise coach with older
adults in both one-on-one sessions and group sessions. The robot has an anthropomorphic
upper torso and head with eye movements to mimic gaze. Vizzy would lead participants
from a waiting room to an exercise location, give them instructions to follow a separate
interface that showed the exercises, and then provided corrective instructions if necessary–
the robot did not demonstrate the exercises itself. A camera in each of Vizzy’s eyes was
controlled by an operator for gaze direction when the robot spoke. The results demonstrated
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that the participants perceived the robot as competent, enjoyable, and had high trust in the
robot. They found Vizzy looked artificial and had a machine-like appearance, but thought
its gaze was responsive and liked the robot.

The aforementioned robots showed the potential in using a robot facilitator for upper-
limb strength and flexibility exercises [6–9,23,24] and for cardiac rehabilitation [22]. The
studies focused on perceptions and experiences of the user through questionnaires and
interviews [6,8,9,23,24], with the exception of [7,9], which tracked body movements to
determine if users correctly performed specific exercises. In general, the results showed
acceptance for robots as a fitness coach, as well as a preference for physical robots over
virtual ones [7]. Only in [8], were both group and one-on-one sessions considered, however,
the two interaction types were not directly compared to investigate any health and HRI
benefits between the two. Additionally, the aforementioned studies have only investigated
the perception of the robots over short-term durations (one to three interactions) [7–9,24],
lack quantitative results when performed over a long-term duration (10 weeks) [6], or
have not directly focused on the older adult population in their long-term studies [22].
Furthermore, no other user feedback was used by the robots to engage older users in
the long-term. In particular, human affect has been shown to promote engagement and
encouragement during HRI by adapting robot emotional behaviors to users. Herein, we
investigate for the first time a long-term robot exercise facilitation study with older adults
to compare and determine the benefits of one-on-one and group sessions with an intelligent
and autonomous socially assistive robot which adapts its behaviors to the users.

2.2. General HRI Studies Comparing Group vs. One-on-One Interactions

To-date, only a handful of studies have investigated and compared group and one-
on-one interactions for social robots. For example, in [25], the mobile robot Robovie was
deployed in a crowded shopping mall to provide directions to visitors in group or one-on-
one settings. Results showed that groups in general, especially entitative (family, friends,
female) groups of people, interacted longer with the Robovie, and were more social and
positive towards it than individuals. In addition, they found that participants who would
not typically interact with the robot based on their individual characteristics were more
likely to interact with Robovie if other members of their group did.

In [26], intergroup competition was investigated during HRI. A study was performed
where participants played dilemma games, where they had the chance to exhibit competi-
tive and cooperative behaviors in four group settings with varying numbers of humans
and robots. Results indicated that groups of people were more competitive towards the
robots as opposed to individuals. Furthermore, participants were more competitive when
they were interacting with the same number of robots (e.g., three humans with three robots
or one human with one robot).

In [27], two MyKeepon baby chick-like robots were used in an interactive storytelling
scenario with children in both one-on-one and groups settings. The results showed that
individual participants had a better understanding of the plot and semantic details of the
story. This may be due to the children being more attentive as there were no distractions
from peers in the one-on-one setting. However, when recalling the emotional content of
the story, there was no difference between individuals and the groups.

These limited studies show differences in user behaviors and overall experience be-
tween group and one-on-one interactions. In some scenarios, interactions were more
positive in group settings than individual settings as peers where able to motivate each
other during certain tasks [25,26], a phenomenon also reported in non-robot-based exercise
settings [10]. Individual interactions, however, were less distracting and allowed individu-
als to focus on the task at hand [27]. As these robot studies did not focus directly on older
adults nor the exercise activity, it is important to explore the specific needs and experiences
of this particular user group in assistive HRI. This further motivates our HRI study.
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3. Social Robot Exercise Facilitator

In our long-term HRI study, we utilized the Pepper robot to autonomously facilitate
upper-body exercises in both group sessions and one-on-one sessions. The robot is capable
of facilitating nine different upper-limb exercises, Figure 1: (1) open arm stretches, (2) neck
exercises, (3) arm raises, (4) downward punches, (5) breaststrokes, (6) open/close hands,
(7) forward punches, (8) lateral trunk stretches (LTS), and (9) two-arm LTS. These exercises
were designed by a physiotherapist at our partner long-term care (LTC) home, the Yee Hong
Centre for Geriatric Care. The exercises are composed of strength building and flexibility
exercises [28]. Benefits include improving stamina and muscle strength, functional capacity,
helping maintain healthy bones, muscle, and joints, and reducing the risk of falling and
fracturing bones [29].
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Our proposed robot architecture for exercise facilitation, Figure 2, is comprised of
five modules: (1) Exercise Monitoring, (2) Exercise Evaluation, (3) User State Detection,
(4) Robot Emotion, and (5) Robot Interaction. The Exercise Monitoring module tracks
a user’s skeleton using a Logitech BRIO webcam with 4K Ultra HD video and HDR to
estimate the user’s body poses during exercise. The detected poses, in turn, are used as
input into the Exercise Evaluation Module, which uses the Goal Attainment Scale (GAS) [30]
to determine and monitor the user’s exercise goal achievements to determine performance
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over time. User states are determined via User State Detection Module in order for the
robot to provide feedback to the user while they exercise. User state comprises three
submodules: (1) Engagement Detection, which detects the user engagement through visual
focus of attention (VFOA) from the 4K camera; (2) Valence Detection to determine the user
valence from an EEG headband sensor; and (3) Heart Rate Detection, which monitors the
user’s heart rate from a photoplethysmography (PPG) sensor embedded into a wristband.
The detected user valence and engagement are then used as inputs to the Robot Emotion
Module to determine the robot emotions using an n-th order Markov Model. Lastly, the
Robot Interaction Module determines the robot exercise-specific behaviors based on the
robot’s emotion, the user’s detected exercise poses, and heart rate activity, and displays
them using a combination of nonverbal communication consisting of eye color and body
gestures, vocal intonation as well as speech. The details of each module are discussed
below and in Appendix A.
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3.1. Exercise Monitoring Module

The Exercise Monitoring Module detects if the user performs the requested exercise
poses using the 4K camera placed behind the robot. It tracks the spatial positions

(
px, py

)
of keypoints on the user body detected by the OpenPose model [31] including: (1) five
facial keypoints, (2) 20 skeleton keypoints, and (3) 42 hand keypoints. The hand keypoints
detection is only enabled when the user is implementing open/close hand exercises. In
addition, the OpenPose model also provides the confidence score, S, for each detected
keypoint, which can be used to represent the visibility of each keypoint [31]. The OpenPose
model is a convolutional neural network model trained on the MPII Human Pose dataset,
COCO dataset, and images from the New Zealand Sign Language Exercises [31,32]. Once
keypoints are acquired, the pose of the user is classified using Random Forest classifier,
which achieves an average pose classification accuracy of 97.1% over all exercises consid-
ered. Details of the keypoints used, the corresponding features extracted from the keypoints
for each exercise, and pose classification are presented in Appendix A.1.

OpenPose can detect up to 19 people at once [31]. However, based on the field of view
of the Logitech Brio 4K camera and the participants of the group exercise sessions sitting in
a semi-circle around the robot such that they would not occlude each other, the maximum
number of users that can be monitored in a single exercise session is 10 participants.

3.2. Exercise Evaluation Module

In order to evaluate exercise progress over time, the Goal Attainment Scale (GAS) is
used. GAS is a measurement used in occupational therapy to quantify and assess a person’s
progress on goal achievement [33]. GAS is a well-known assessment which uses measures



Robotics 2023, 12, 9 7 of 42

that are highly sensitive to evaluating change over time [34,35]. Concurrent validity of GAS
was assessed in [36] by correlation with the Barthel Index (r = 0.86) and the global clinical
outcome rating (r = 0.82) for older adults. The repeatable measures can not only provide
insight on individual exercise progress but can also be scaled to allow for comparison of
change within and between groups of older adults with possibly unique goals [37]. GAS
has been used in therapy sessions with robots to evaluate user performance during social
skills improvement [38], and motor skills development [39]. The advantages of using GAS
are that the goals can be customized based on the specific needs of an individual or a
group, GAS then converts these goals into quantitative results to easily evaluate a person’s
progress towards them [33].

In this work, GAS is used to evaluate a person’s progress on exercise performance.
Each goal is quantified by five GAS scores ranging from −2 to +2, based on a user com-
pleting the number of repetitions for each exercise [33]; with −2 not performing all of the
repetitions; −1 and 0 all repetitions were implemented with partially pose completion or
completed pose repetitions were only performed for less than half of repetitions; +1 and +2
completed poses were performed for more than half of total repetitions or all repetition
were performed correctly. The number of repetitions for each exercise is defined as 8 for
the first week and 12 for subsequent weeks and is based on the recommendation by the
U.S. National Institute of Aging (NIA) [40]. The details of the GAS score criteria for each
exercise are summarized in Table 1.

Table 1. GAS score for performing exercises.

Score Predicted Attainment

−2 Perform less than 8 (12) repetitions

−1 Perform at least 8 (12) repetitions with partially complete poses only

0 Perform at least 8 (12) repetitions and achieve complete poses for less than 4 (6) repetitions

+1 Perform at least 8 (12) repetitions and achieve complete poses for at least 4 (6) repetitions

+2 Perform at least 8 (12) repetitions and achieve complete poses for at least 8 (12) repetitions
of the total repetitions

The robot computes one GAS score for each exercise, gi, where i is the index of each
exercise. This computation is completed by monitoring the exercise of the user using
the Exercise Evaluation Module and estimating its GAS score. The performance of the
Exercise Evaluation Module in estimating the GAS score for each exercise is detailed in
Appendix A.2.

After the scores are determined for each exercise, a GAS T-Score, T, which is a singular
value that quantifies the overall performance of a user during an exercise session based
on all GAS scores combined, can be computed for each user at the end of each exercise
session [33]:

T = 50 +
10 ∑ wigi√

0.7 ∑ w2
i + 0.3 ∑ w2

i

(1)

where wi is the corresponding weight for each score. In our work, an equal weight (i.e.,
wi = 1) is selected for each exercise score as we considered each exercise as equally important.
T-scores range from 30 to 70, with 30 indicating that the user did not perform any exercises
at all and 70 indicating complete poses for all repetitions.

3.3. User State Detection Module

The User State Detection Module determines: (1) user valence, (2) engagement, and
(3) heart rate. The quality of user experience with social robots during HRIs can be
determined based on their positive or negative affect (i.e., valence) and the ability of the
robot to engage users in the activity (i.e., engagement). Furthermore, to ensure users do not
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overexert themselves, we use heart rate to determine that it is not above the upper limit
that their cardiovascular system can handle during physical activities [41].

3.3.1. Valence

The user valence refers to the user’s level of pleasantness during the interaction, which
can represent whether the interaction with the robot is helpful or rewarding [42]. The
valence detection model is adapted from our previous work [43]. The model uses a binary
classification method to determine positive or negative valence from the users, which is
consistent with the literature [44–47]. The EEG signals are measured using a four-channel
dry electrode EEG sensor, InteraXon Muse 2016. Appendix A.3.1 describes the extracted
features obtained from the EEG signals, and the three hidden layer Multilayer Perceptron
Neural Network classifier used to classify valence. A classification accuracy of 77% was
achieved for valence.

3.3.2. Engagement

For engagement, we use visual focus of attention (VFOA) to determine whether a user
is attentive to the robot and exercise activity. VFOA is a common measure of engagement
used in numerous HRI studies [48–50], including studies with older adults [51,52]. The
robot is able to detect the user engagement as either engaged or not engaged towards the
robot based on their VFOA. Two different VFOA features are used for classifying engage-
ment: (1) the orientation of the face, θ f ; and (2) the visibility of the ears, measured through
the confidence scores of their respective keypoints (S3 and S4) as detected by the OpenPose
model [31]. The orientation of the face is estimated using the spatial positions of the facial
keypoints (i.e., eyes and nose) detected by the OpenPose model. Appendix A.3.2 explains
the features and k-NN classifier for engagement detection. A classification accuracy of 93%
was achieved for engagement.

3.3.3. Heart Rate

The maximum heart rate (MHR) of a person can be estimated by [53]:

MHR = 220 – age (2)

The maximum target heart rate during anaerobic exercises (e.g., strength building
and flexibility) is determined to be 85% of the MHR [53]. We use an optical heart rate
sensor, Polar OH1, to measure the user heart rate in bpm at 1 Hz throughout each exercise
session. During exercise facilitation, the measured heart rate signals are sent directly via
Bluetooth from the heart rate sensor to the Heart Rate Detection sub-module in the User
State Detection Module of the Robot Exercise Facilitation Architecture. In this submodule,
heart rate measurements are monitored to ensure they remain below the upper threshold
(85%) of the MHR to prevent overexertion. If such a condition occurs, the experiment is
stopped, and the user is requested to rest by the robot. The heart rate measurements are
also saved to a file for post-exercise analysis.

3.4. Robot Emotion Module

This module utilizes a robot emotion model that we have previously developed [54,55],
which considers the history of the robot’s emotions and the user states (i.e., user valence and
engagement) to determine the robot’s emotional behavior. This model has been adapted
herein for our HRI study.

We use an nth order Markov Model with decay to represent the current robot emotion
based on the previous emotional history of the robot [55]. An exponential decay function is
used to incorporate the decreasing influence of past emotions as time passes.

The robot emotion state–human affect probability distribution matrix was trained with
30 adult participants (five older adults) prior to the HRI study to determine the transition
probability values of the robot’s probability distribution matrix. The model is trained in
such a way that given the robot’s emotional history and the user state, it chooses the emotion
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that has the highest likelihood of engaging the user in the current exercise step. Initially,
the probabilities of the robot’s emotional states are uniformly distributed to allow each
emotion to have the same probability to be chosen and are then updated during training
for the exercise activity. From our training, when the user has negative valence, the robot
would display a sad emotion, which had the highest probability of user engagement for this
particular state. Other patterns we note from training are if the robot’s previous emotion
history was sad and the user had negative valence or low engagement, the robot displays
a worried emotion which had the highest probability of user engagement. Furthermore,
when the user has positive valence and/or high engagement, the robot displays positive
emotions such as happy and interested based on the likelihood of these emotions being the
most engaging for these scenarios while considering the robot’s emotion history. Additional
details of the Robot Emotion Module are summarized in Appendix A.4.

3.5. Robot Interaction Module

The Robot Interaction Module utilizes Finite State Machines (FSMs) to determine the
robot behaviors for both types of interactions with the users: (1) one-on-one, and (2) group
interaction, Figure 3.
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Figure 3. FSM of the robot interaction module.

During the exercise session, the user states (i.e., valence, engagement, and heart rate)
are estimated to determine the robot emotions (represented by happy, interested, worried,
and sad) via the Robot Emotion Module, and body poses are tracked using both the Exercise
Evaluation Module and User State Detection Module to determine performance via GAS
and engagement, respectively. The robot displays its behaviors using a combination of
speech, vocal intonation, body gestures, and eye colors. If no movement is detected, the
robot prompts the user to try again to perform the exercises. In addition, if the user’s
heart rate is above the upper threshold (85% of their MHR), the robot would terminate the
exercise sessions and ask the user to rest. At the end of each exercise, the robot congratulates
or encourages the user based on performance and affect. After finishing all the exercises,
the robot says farewell to the users. For the group interaction, the interaction scenario is
similar. The overall response time of the robot during exercise facilitation is approximately
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33 s. This is the time it takes for the robot to respond with its corresponding emotion-based
behavior based on user states once the user or user group performs a specific exercise.

In a group exercise session, if one individual user’s heart rate exceeds the upper
threshold of the MHR, the exercise session is paused, and all participants are asked to rest
until that user’s heart rate is reduced below this threshold. This approach is chosen to
promote group dynamics among the participants. Namely, encouraging those in a group
setting to exercise (and to rest) together can further motivate participation in and adherence
to exercise [56].

In HRI, positive and negative user valence has been correlated with liking and dis-
liking certain HRI scenarios [57,58]. We have designed the robot’s verbal feedback to,
therefore, validate its awareness of this user state, and in turn encourage the user to con-
tinue exercising to promote engagement [54,59]. Table 2 presents examples of the robot
activity-specific behaviors during the exercise sessions.

Table 2. Robot behavior for exercise sessions.

Stage Non-Verbal Verbal

Greeting

Waves arms to the user
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Table 2. Cont.

Stage Non-Verbal Verbal

Encouragement
(sad)

Sad robot emotion display
Example: Scratching head
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4. Exercise Experiments

A long-term HRI study was conducted at the Yee Hong Centre for Geriatric Care
in Mississauga to investigate the autonomous facilitation of exercises with Pepper and
older adult residents for both one-on-one and group settings. The Yee Hong Centre has
200 seniors living in the facility with an average age of 87, who require 24-h nursing super-
vision and care to manage frailty and a range of complex chronic and mental illnesses [60].
The majority of residents speak Cantonese or Mandarin and very few can speak English as
a second language. In addition, 60% have a clinical diagnosis of dementia [60].

4.1. Participants

The following inclusion criteria for the participants was used: residents who (1) were
at least 60 years or older; (2) were capable of understanding English and/or Mandarin
with normal or corrected hearing levels; (3) were able to perform light upper body exercise
based on the Minimum Data Set (MDS) Functional Limitation in Range of Motion section
with a score of 0 (no limitation) or 1 (limitation on one side) [61]; (4) had no other health
problems that would otherwise affect their ability to perform the task; (5) were capable of
providing consent for their participation; and (6) had no or mild cognitive impairment (e.g.,
Alzheimer’s or other types of dementia) as defined by the Cognitive Performance Scale
(CPS) with a score lower than 3 (i.e., intact or mild impairment) [62] or the Mini-Mental
State Exam (MMSE) with a score greater than 19 (i.e., normal or mild impairment) [63].
Before the commencement of the study, a survey was conducted to determine participants’
prior experience with a robot. All of the participants had either never seen a robot or had
seen one through a robot demonstration. None had interacted with a robot previously.

A minimum sample size of 25 participants was determined using a two-tailed Wilcoxon
signed-rank test power analysis with an α of 0.05, power of 0.8, and effect size index of 0.61.
Our effect size is similar to other long-term HRI studies with older adults [64,65], which
had effect sizes of 0.61 and 0.6, respectively.

In general, women outnumber men in long-term care homes, especially in Canada
and several Western Countries [66], with more than 70% of residents being women [67].
This was also evident in our participant pool. Using our inclusion criteria, 31 participants
were recruited of which 27 (3 male and 24 female) completed the study. The participants
ranged in age from 79 to 97 (x = 88.93, s = 5.62), and participated on average in 15 sessions.
Written consent was obtained from each participant prior to the start of the experiments.
Ethics approval was obtained from both the University of Toronto and the Yee Hong Centre
for Geriatric Care.

4.2. Experimental Design

At long-term care facilities, exercise programs with older adults are often delivered in
group-based or individual-based settings [68]. The participants in the study were organized
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randomly into one-on-one or group-based exercise sessions with the robot. The exercise
sessions took place twice a week for approximately two months (16 exercise sessions in
total for both one-on-one and group settings). Each exercise session was approximately
one hour in duration. Eight participants participated in the one-on-one sessions, whereas
19 participants were in the group sessions, which were further split into a group of 9 and a
group of 10 participants, respectively. The size of the group sessions was consistent with
the group size of the exercise sessions established in the long-term care home.

For the group sessions, participants were seated in a half circle with an approximate
radius of 2 m in front of the robot in each session, Figure 4. Two random participants
from each group session, who sat in the center of the half circle, wore the EEG headband
and heart rate sensor for the robot to detect their valence and heart rate. This allowed for
direct line-of-sight to the camera for estimating body poses during exercising; however,
any two participants could wear the sensors. For the one-on-one sessions, each participant
was seated 1.5 m directly in front of the robot while wearing the EEG headband and heart
rate sensor, Figure 5. We used adjustable EEG headbands. The headband was adjusted in
size for each participant and secured to their forehead by the research team prior to each
exercise session. As the exercises did not include any fast or high-impact neck or upper
body motions, movements to the band itself were minimized with no anomalies in the
sensory data obtained during interactions.
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4.3. Experimental Procedure

During each single one-on-one and group exercise session, the robot autonomously
facilitated the aforementioned upper body exercises consecutively for the full duration,
with no breaks in between exercises. The robot facilitated the exercise sessions mostly in
Mandarin for both group and one-on-one sessions. There were two participants in the
one-on-one sessions who interacted in English based on their preference.
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As the same exercise sessions were repeated every week, new exercises were added
to them to increase complexity and exercise variation as time went by. These were in the
form of exercises that combined 2 to 3 of the individual exercises together—for example,
lateral trunk stretches, forward punches, and downward punches. The combination of
two exercises were added during the third week while the combination of three exercises
were added during the sixth week. Increasing the complexity of the exercises over time has
been commonly implemented in exercise programs with older adults in order to gradually
improve their functional capacity [69]. In addition, adding variation to the exercises is
beneficial in engaging users over time and improving their adherence to the program [70].

For the one-on-one interaction, the exercise sessions begin with the robot greeting
the user and providing exercise information (e.g., number of exercises and repetitions).
Next, the robot demonstrates each exercise and asks the user to follow it for n number
of repetitions. In the first week, the robot would demonstrate each exercise with step-by-
step instructions. Subsequent weeks as the users become familiar with the exercises, the
robot only visually demonstrates one repetition of the exercises without the step-by-step
instructions. In addition, the number of the repetitions of each exercise increases from 8
to 12 in order to increase the level of difficulty after the first week. Video recordings were
taken of every one-on-one and group session, with sensor recordings taken from the same
two participants in the group sessions and all participants in the one-on-one sessions.

4.4. Measures

The user study is evaluated based on the: (1) user performance over time via GAS;
(2) measured valence and engagement during the activity; (3) the robot’s adapted emotions
based on user valence and engagement; (4) user self-reported valence during the interaction
using the Self-Assessment Manikin (SAM) scale [71]; and (5) a five-point Likert scale
robot perception questionnaire adapted from the Almere model [72] with the following
constructs: acceptance (C1), perceived usefulness and ease of use (C2), perceived sociability
and intelligence (C3), robot appearance and movements (C4), and the overall experience
with the robot, Table A6 in Appendix B.

Self-reported valence is obtained during the first week, after one month, and at the end
of the study (i.e., two months) and the robot perception questionnaire was administered
after one month and two months to investigate any changes in user valence towards the
robot and perceptions of the robot as the HRI study progressed.

5. Results
5.1. Exercise Evaluation Results

The average GAS T-scores for the one-on-one sessions, group sessions, and all users
combined for the first week, one month, two months, and the entire duration are detailed
in Table 3. Participants, in general, from both one-on-one sessions and group sessions were
able to achieve an average GAS T-score of 64.11, which indicates that they were able to
follow all repetitions and perform complete exercise poses for more than half of the total
repetitions by the end of the study.

Table 3. Average GAS T-score for different exercise session types during the first week, week of
one-month questionnaire, week of two-months questionnaire, and entire duration of study.

Session Type First Week
(x ± s)

One Month
(x ± s)

Two Month
(x ± s)

Entire Duration
(x ± s)

One-on-One 62.92 ± 6.03 64.29 ± 6.20 63.19 ± 5.13 64.03 ± 4.92
Group 64.72 ± 2.46 67.50 ± 1.40 67.78 ± 0.91 66.67 ± 2.11

All users 63.28 ± 5.50 64.95 ± 5.69 64.11 ± 4.94 64.27 ± 4.80

5.1.1. One-on-One Sessions

All eight participants in the one-on-one session complied with the robot exercises
and had an average GAS T-score of 64.03 ± 4.92 over the duration of two months. User 7,
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however, only participated in 12 of the 16 exercise sessions and watched the robot in the
remaining four. The user indicated that the robot moved too fast for them to always follow
it. This resulted in an average GAS T-score of 51.24 based on the days they complied with
the robot.

5.1.2. Group Sessions

The users in the group sessions complied with the robot exercises throughout the
sessions and had an average GAS T-score of 66.67 at the end of two months.

We investigated if there was any improvement in GAS T-score between the first week
and after one month, and the first week and after two months. In general, an increase in
the average GAS T-score was observed between the first week for one-on-one sessions
(x = 62.92, s = 6.03) and group sessions (x = 64.72, s = 2.46) and after one month for both
one-on-one (x = 64.29, s = 6.20) and group sessions (x = 67.50, s = 1.40), as well as at
the end of two months for one-on-one sessions (x = 63.19, s = 5.13) and group sessions
(x = 67.78, s = 0.91). This increase in GAS T-score indicates that users achieved more
repetitions of the exercises, and that more of the completed repetitions were achieved with
a complete pose as opposed to a partially complete pose. These improvements may suggest
improved muscle strength and range of motion of the users. Statistical significance was
found in the group sessions using a non-parametric Friedman test; X2 = 6.5, p = 0.039.
However, post-hoc non-parametric Wilcoxon Signed rank tests with Bonferroni correction
of α = 0.016 showed no statistical significance between the first week and one month
(W = 0.00, Z = −1.633, p = 0.102, r = −0.24), between the first week and after two
months, (W = 0.00, Z = −1.841, p = 0.66, r = −0.13), or between one month and
after two months (W = 0.00, Z = −1.00, p = 0.317, r = −0.26). We postulate that the
lack of significance could be due to participants becoming familiar with the exercises.
As time went by, they were required to perform the exercises for longer and engage in
more challenging sequences of repeated exercises, as new combinations of exercises were
added to the exercise sessions for variation. This was especially true at 6 weeks where the
complexity of the exercises was the highest. Nonetheless, there was an overall increase in
the GAS T-scores from week one to the end of the two-months, which demonstrates exercise
goal achievement. A non-parametric Friedman test showed no statistical significance was
found in the overall GAS T-scores between the group and one-on-one sessions after one
week, after one month, and after two months; X2 = 5.4, p = 0.067.

We also investigated if there were differences in GAS T-scores between the one-on-one
and the group sessions during the entire study. In general, the group sessions had a higher
GAS T-score (x = 66.67 ± 2.11) compared to the one-on-one session (x = 64.03 ± 4.92)
throughout the study. A statistical significant difference was found in GAS T-scores using
a non-parametric Mann–Whitney U-test: U = 174.5, Z = 2.10, p = 0.018, r = 0.10,
We postulate that the higher GAS T scores in the group sessions were due to high task
cohesiveness within the group and people’s general preference to exercise in groups.

5.2. User State Detection and Robot Emotion Results

The average detected valence measured using the EEG sensor, engagement based on
the users’ VFOA, and heart rate for users in the one-on-one, group, and for all participants
are presented for each time period in Table 4. Participants, on average, from both one-on-
one sessions and group sessions had positive valence towards the robot for 87.73% of the
interaction of the time. For the group sessions, due to the large number of participants
we were unable to accurately measure engagement for every participant, and therefore
focus our discussions on the one-on-one sessions. All participants remained engaged
towards the robot, regardless of the level of complexity of the exercises, for 98.41% of the
interaction time. In addition, participants had an average heart rate of 82.37 bpm during
the interactions, and none of their heart rate exceeded the upper limit of the target range
(i.e., 120 bpm for 79 years old and 105 bpm for 97 years old).
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Table 4. The average and standard deviation of the percentage of time of the detected positive
valence, engagement towards the robot, and heart rate for one-on-one sessions, group sessions, and
all users combined.

User States Time Period One-on-One (x ± s)
Percent of Interaction Time

Group (x ± s)
Percent of Interaction Time

All Users (x ± s)
Percent of Interaction Time

Positive Valence (%)

First Week 93.04 ± 3.30 92.26 ± 2.94 92.89 ± 3.09
One Month 90.34 ± 5.65 90.26 ± 11.04 90.32 ± 6.26
Two Month 89.90 ± 13.69 97.49 ± 1.94 91.42 ± 12.51

Entire Duration 86.88 ± 17.76 91.13 ± 10.39 87.73 ± 16.68

Engagement (%)

First Week 98.49 ± 0.85 N/A 98.49 ± 0.85
One Month 98.93 ± 0.91 N/A 98.93 ± 0.91
Two Month 98.41 ± 1.85 N/A 98.41 ± 1.85

Entire Duration 97.29 ± 6.82 N/A 97.29 ± 6.82

Heart rate (bpm) Entire Duration 81.56 ± 3.91 85.61 ± 2.96 82.37 ± 3.97

As most users had positive valence and were engaged towards the robot, the robot
displayed happy emotions for the exercise sessions for the majority of these interactions.
Figure 6 presents the overall percentage of time the robot displayed each of the four
emotions. As can be seen from the figure, the happy emotion was displayed for 83.3%, 85%,
and 62% of time during the first week, after one month, and after two months, respectively.
The change in the emotions displayed by the robot facilitator can be attributed to the
increase in the difficulty of the exercises over time, as detailed in Section 4.2. This increase
in exercise difficulty resulted in more users displaying varying valence for which the robot
adopted other emotions to encourage the users.
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Detailed examples of user valence, engagement, and robot emotion for eight users in
one-on-one sessions, valence and robot emotions for the two users in the group sessions,
and results for all users during the first week, after one month, and after two months
are discussed below. We found no statistically significant difference in detected user
valence between the three time periods when conducting a non-parametric Friedman test;
X2 = 0.40, p = 0.819.



Robotics 2023, 12, 9 16 of 42

5.2.1. One-on-One Sessions

In all three time periods, the users were engaged above 98% of the time throughout the
one-on-one interactions. In the one-on-one sessions after the first week, Figure 7, Users 2–6
had positive valence throughout the session. The robot in turn displayed happy and
interested emotions. User 1 had positive valence for the majority of the session, however,
they had negative valence only during the open/close hands exercise (denoted as E7). This
negative valence was observed to be harder for this user due to the exercise being faster
than other exercises (an average of 1.16 s/repetition for E7 versus 3.6 s/repetition for the
others). The robot detected this negative valence and in turn displayed a sad emotion to
encourage the user to keep trying the exercise.
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during the first week.

Alternatively, User 7 first had negative valence during the introduction stage and then
had positive valence for the rest of the session. In general, Pepper first displayed the happy
emotion during the introduction and transitioned to interested. User 8 also had negative
valence during the open/close hands exercise (E7), in addition to the lateral trunk stretches
(E8), and two-arm lateral trunk stretches (E9) exercises. The robot displayed a combination
of sad and worried emotions during these exercises to encourage the user to continue. In
general, User 8 had difficulties performing arm exercises that were faster and had larger
arm movements due to their observed upper-limb tremors.

After one month, Figure 8, all users had positive valence, with the exception of
User 8 during the introduction and E1 stages. User 8 started with negative valence but
then increased to positive valence for the rest of the session. The robot responded by
displaying the sad emotion in E1 and then transitioned to interested and happy emotions
after detecting positive valence similar to the other users.
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Figure 8. User engagement, valence, and the corresponding robot emotion for one-on-one sessions
after one month.

After two months, the users, on average, displayed positive valence throughout the
exercise sessions, Figure 9. Four of the eight users always displayed positive valence (Users
2, 3, 5, and 7), for which the robot displayed both interested and happy emotions, Figure 9.
Furthermore, two of the four users who experienced negative valence only did so for some
exercises and not the entire two-month duration (Users 6 and 8). The overall positive
valence of the users was also reported in Table 4, where it was shown that users experience
positive valence for approximately 90% of the time after two months of interactions. This
result is also consistent with the self-reported positive valence of the users (Section 5.3).
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Both Users 1 and 4 had negative detected valence during this entire two-month
duration for which the robot displayed sad and worried emotions for encouragement. This
increased the robot’s expressions of the worried and sad emotions. User 6 had positive
valence except when performing combined arm raises, combined forward and downward
punches, and combined open arm stretches with two-arms LTS (E3-E5), for which the robot
emotion transitioned to a worried emotion. User 8, again, had negative valence during the
neck exercises (E1) and the combination of LTS and open/close hands and breaststrokes
(E2), and thus the robot displayed sad and worried emotions. This user also showed
negative valence during the neck exercises after one month but not during the first week,
which could be due to the fact that it was more strenuous to perform this exercise with
the 12 repetitions than with only 8 repetitions. When User 8 transitioned from negative
valence to positive valence in arm raises (E3), the robot transitioned to interested. However,
User 8 transitioned back to negative valence while performing the combination of forward
and downward punches (E4), and also the combination of open arm stretches and two-arm
LTS (E5), and the robot displayed worried emotions. User 8 was the only participant to
consistently have negative valence during all three sessions, which we believe could be
attributed to their physical impairment in completing the exercises.

5.2.2. Group Sessions

For the group sessions, as previously mentioned due to the large number of par-
ticipants we were unable to accurately measure engagement for every participant, we
therefore focus our discussion on user valence. However, it can be noted from our video
analysis that the majority of the group focused their attention on the robot throughout
each session, as they were consistently performing each exercise. Valence is discussed here
for two participants as a representative of the group, Figures 10–12. The participants had
an average detected positive valence of 92.26% of the interaction time after the first week,
90.26% after one month, and 97.49% after two months, respectively.

User 9, like most participants in the group session, had positive valence during all
time periods. During the first week, User 10 started with positive valence, and transitioned
to negative valence during several exercises including arm raises, downward punches,
breaststrokes, open/close hands, LTS, and two-arm LTS (E4–E9), which resulted in the
robot displaying sad and worried emotions.
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We investigated if there was any difference in detected valence between the one-on-
one sessions and the group sessions. In general, detected valence for the group sessions
(x = 91.13, s = 10.39) was higher than the one-on-one sessions (x = 90.31, s = 6.26).
However, no statistical significance was found using a non-parametric Mann–Whitney
U-test: U = 1449.0, Z = −1.070, p = 0.284, r = 1.42.

5.3. Self-Reported Valence (SAM Scale)

The reported valence from the five-point SAM scale questionnaire measured during
the first week, one month, and two months for one-on-one sessions, group sessions, and
all users combined are presented in Table 5. The valence is on a scale of −2 (very negative
valence), −1 (negative valence), 0 (neutral), +1 (positive valence), and +2 (very positive
valence). All users, in general, reported positive valence throughout the study with the
average valence of 1.33, 1.30, and 1.19 after the first week, one month, and two months,
respectively.
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Table 5. SAM scale results.

Session Type
First Week One Month Two Months

x s x̃ x s x̃ x s x̃

One-on-One 1.25 0.83 1.50 1.25 0.83 1.50 1.38 0.70 1.50
Group 1.37 0.81 2.00 1.32 1.08 2.00 1.11 0.91 1.00

All 1.33 0.82 2.00 1.30 1.01 2.00 1.19 0.86 1.00

This lower reported valence in the group sessions was due to participants stating they
would like the robot to be taller and bigger for them to see it better, as in the group sessions
the robot was placed further away from them to accommodate more participants. However,
none of the users in the one-on-one sessions had this concern since they were interacting
with the robot at a closer distance, Figure 5.

We also investigated if there were any differences between the one-on-one and group
sessions during different time periods. One-on-one sessions, in general, had lower reported
valence than group sessions during the first week (one-on-one: x = 1.25, s = 0.83, x̃ = 1.50;
group: x = 1.37, s = 0.81, x̃ = 2.00) and one month (one-on-one: x = 1.25, s = 0.83,
x̃ = 1.50; group: x = 1.32, s = 1.08, x̃ = 2.00). However, one-on-one ses-
sions had higher valence (x = 1.38, s = 0.70, x̃ = 1.50) than the group sessions
(x = 1.11, s = 0.91, x̃ = 1.00) after two months. No statistically significant difference
was observed for these differences using a non-parametric Mann–Whitney U-test for the
first week: U = 70.0, Z = 0.33, p = 0.37, r = 0.08, one month: U = 68.0, Z = 0.45, p = 0.33,
r = 0.105, and two months: U = 65.0, Z = 0.60, p = 0.27, r = −0.15.

5.4. Robot Perception Questionnaire

The results from the five-point Likert scale robot perception questionnaire measured
after one month and two months for one-on-one, group sessions, and all users combined
are summarized in Table A7 (in Appendix B) and Figure 13. For each construct, questions
that were negatively worded were reverse-scored for analysis. The internal consistency
of each construct measured at each month was determined using Cronbach’s α [73]. The
α coefficient for constructs C1–C4, ranged from 0.75 to 0.81 for one-month, and 0.68–0.88
for two-month, respectively. A value of 0.5 and above can be considered as acceptable for
short tests [74,75].
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5.4.1. Acceptance

Robot Acceptance (C1) results showed that participants from both user groups (one-
on-one and group-based) had high acceptance of the robot at the end of two months
(x̃ = 4.0, IQR = 1.75). The participants enjoyed using the robot for exercising (x̃ = 5.0,
IQR = 2.00) and more than half of them (67%) reported they would use the robot again
(x̃ = 5.0, IQR = 2.00) after two months of interaction. They found the sensors comfortable
to wear (negatively worded, x̃ = 4.0, IQR = 2.00).

In general, an increase in this construct was observed from one month (x̃ = 4.0,
IQR = 1.75) to two months (x̃ = 5.0, IQR = 2.00) for all participants. However, there was
no statistically significant difference found using a non-parametric Wilcoxon Signed-rank
test: W = 238.5, Z = −0.49, p = 0.63, r = −0.10.

On average, participants in the one-on-one sessions had similar Likert ratings as
the group sessions for one month (one-on-one: x̃ = 4.0, IQR = 1.00; group: x̃ = 4.0,
IQR = 2.00) but slightly lower ratings than the group sessions for two months (one-on-one:
x̃ = 4.5, IQR = 2.00; group: x̃ = 5.0, IQR = 2.00). No statistically significant difference
was observed between these two interaction types using a non-parametric Mann–Whitney
U-test for the one month: U = 295.5, Z = 0.16, p = 0.44, r = 0.03, and two months:
U = 284.0, Z = 0.41, p = 0.34, r = 0.07.

5.4.2. Perceived Usefulness and Ease of Use

Participants found the perceived usefulness and ease of use (C2) of the robot to
be positive after one month (x̃ = 5.0, IQR = 1.00) with a slight decrease after two
months (). A statistically significant difference between these months was observed us-
ing a non-parametric Wilcoxon Signed-rank test: W = 1950.5, Z = −2.71, p = 0.01,
r = 0.18. Users agreed that the exercises with the robot were good for their overall health
(x̃ = 5.0, IQR = 1.00), more than half of them (67%) found the robot was helpful for
doing exercises (negatively worded, x̃ = 1.0, IQR = 2.00) and 63% also believed the robot
motivated them to exercise (x̃ = 4.0, IQR = 2.00). The majority also (96%) found the
robot clearly displayed each exercise (x̃ = 4.0, IQR = 1.00) and trusted (74%) its advice
(negatively worded, x̃ = 2.0, IQR = 1.50). However, as users reported that they could not
set up the equipment (e.g., robot and computer) by themselves, they were neutral about
the ease of use of the robot (negatively worded, x̃ = 3.0, IQR = 2.00).

In general, participants in the one-on-one sessions had similar ratings for this con-
struct as the group sessions both after one month (one-on-one: x̃ = 5.0, IQR = 1.00;
group: x̃ = 5.0, IQR = 2.00) and two months (one-on-one x̃ = 4.0, IQR = 2.00; group:
x̃ = 4.0, IQR = 2.00). However, there was no statistically significant difference for
perceived usefulness and ease of use using a non-parametric Mann–Whitney U-test for
both one month: U = 3355.5, Z = 1.21, p = 0.11, r = −0.10, and two months:
U = 3351.0, Z = 1.14, p = 0.13, r = −0.10.

5.4.3. Perceived Sociability and Intelligence

In general, participants in one-on-one sessions (one month: x̃ = 4.5, IQR = 1.25; two
months: x̃ = 4.0, IQR = 2.00) found the robot more sociable and intelligent than those in
the group sessions (one month x̃ = 4.0, IQR = 2.00; two months: x̃ = 3.0, IQR = 1.00).
Statistically significant differences were found for both time periods using a non-parametric
Mann–Whitney U-test after one month: U = 514.0, Z = 1.84, p = 0.03, r = −0.25, and
two months: U = 490.0, Z = 2.10, p = 0.01, r = −0.28. As there are more participants
in the group sessions and the robot did not respond to the user states of all of them, in
general, they were neutral about whether the robot understood what they were doing
during the exercises (x̃ = 3.0, IQR = 1.00) and if the robot displayed appropriate emotions
(x̃ = 3.0, IQR = 1.00). However, the two participants that wore the sensors were able to
identify the robot’s emotions through eye color (worded negatively, x̃ = 1.0, IQR = 0.00)
and vocal intonation (x̃ = 4.5, IQR = 0.50). In the one-on-one sessions, they thought the
robot understood what they were doing (x̃ = 4.5, IQR = 1.25) as a result of direct feedback
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from the robot, and were able identify the robot’s emotions (70% of participants) mainly
through its vocal intonation (x̃ = 4.0, IQR = 1.25), and 50% through the display of eye
colors (negatively worded, x̃ = 2.0, IQR = 3.00), respectively.

Overall, the perceived sociability and intelligence from both interaction types were
positive for one month (x̃ = 4.0, IQR = 2.00) and then became neutral after two months
(x̃ = 3.0, IQR = 2.00). Though, no statistically significant difference was found be-
tween one to two months using a non-parametric Wilcoxon Signed-rank test: W = 475.5,
Z = −1.82, p = 0.069, r = 0.14.

5.4.4. Robot Appearance and Movements

In general, participants reported positive perception of the robot’s appearance and
movements (x̃ = 5.0, IQR = 2.00). Seventy percent of them were able to follow the
robot movements (negatively worded, x̃ = 1.0, IQR = 2.00), found it had a clear voice
(x̃ = 5.0, IQR = 1.50) and were able to understand the robot’s instructions (negatively
worded, x̃ = 1.0, IQR = 1.00). In addition, more than half (59%) found the robot’s size
appropriate for exercising (x̃ = 4.0, IQR = 2.00) with only 19% from the group sessions
preferring the robot to be larger and taller like an adult human.

Participants in the group sessions initially had a high positive rating for this construct
(x̃ = 5.0, IQR = 1.00) similar to those in the one-on-one sessions (x̃ = 5.0, IQR = 1.25)
after one month, but as they engaged more with the robot their ratings became less positive
in the group sessions (x̃ = 4.0, IQR = 2.00), in contrast to the one-on-one sessions, which
remained highly positive (x̃ = 5.0, IQR = 1.00) after two months. A statistically significant
difference was found after two months between these sessions: U = 948.5, Z = 1.98,
p = 0.02, r = −0.22. Some participants (19%) in the group sessions noted that the robot’s
size could be larger, as they reported slightly less positive rating when asked if the robot’s
size was appropriate for exercising (x̃ = 4.0, IQR = 1.25) than the participants in the
one-on-one sessions (x̃ = 4.5, IQR = 2.50).

5.4.5. Overall Experience

At the end of the study, the participants’ overall experience (in both one-on-one and
group sessions) showed that more than half of them (i.e., 56%) thought their physical
health was improved (x̃ = 4.0, IQR = 2.00) and were motivated to perform daily exercise
(x̃ = 4.0, IQR = 2.00). Overall, for the three participants who had a negative rating
(i.e., 15%), two of them reported that they hoped the exercise sessions could be longer
with more repetitions while the other one stated that they did not think they would get
healthier due to their age-related decline in physical functions. Participants, in general,
did not find the weekly sessions confusing (negatively worded, x̃ = 1.0, IQR = 1.00). In
addition, more than half of them (i.e., 56%) reported that they were more motivated about
performing daily exercises with the robot (x̃ = 4.0, IQR = 2.00). In our study, participants
were motivated to exercise and to continue exercising on a daily basis. This is consistent
with other multi-session robot exercise facilitation studies [7,9] which have shown that
motivation leads to improved user performance, such as decrease in exercise completion
time [7] and executing exercise movements correctly [9].

5.4.6. Robot Features and Alternative Activities

Participants ranked from 1 to 6 (1 being most preferred and 6 being least preferred)
which features of the robot they preferred the most, Table 6, as well as what other activities
they would like to do with the robot, Table 7. For both one-on-one and group sessions,
the most common preferred feature of the robot was its human-like arms and movements.
The group sessions also preferred the robot eyes (tied with number one preference). The
least preferred feature was the lower body as participants preferred to see the robot have
legs to engage in leg exercises as well. These findings are consistent with previous studies
comparing older age groups’ preferences in robots against other groups [76–78]. It was
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consistently found that older adults preferred features that were more human-like as they
were more familiar with human appearances.

Table 6. Ranking of preferred robot features.

Robot Features Group Sessions One-on-One Sessions All Users Combined

Eyes 1 (tied) 3 2
Arms and movement 1 (tied) 1 1

Voice 3 (tied) 2 3
Assistance 5 4 (tied) 5

Size 3 (tied) 4 (tied) 4
Lower body 6 6 6

Table 7. Ranking of preferred activities for the robot to assist with.

Activities Rank

Dressing 4
Meal eating 5

Meal preparation 6
Play games 1
Reminder 3
Escorting 2

Users ranked playing physical or cognitive stimulating games such as Pass the Ball
and Bingo games the highest as they wanted the robot to provide helpful interventions to
keep them active in daily life. In addition, as some users had difficulty going to their rooms
or to the washroom by themselves, Escorting was ranked next to ensure their safety while
going to places.

6. Discussions
6.1. User State Detection and Robot Emotion Results

For the one-on-one sessions, in general, users showed a slight decrease in valence for
the entire duration. We postulate that this decrease in valence was related to the change of
difficulty/complexity of the exercises in later sessions. The participants found the robot
increasingly more difficult to use from one month (x̃ = 1.0, IQR = 2.00) to two months
(x̃ = 3.0, IQR = 2.00); however, the robot’s behavior functionality remained the same and
acceptance of the robot was also found to be high throughout the duration of the study.
Several exercise studies have reported that an increase in exercise intensity is correlated
with a decrease in affective valence [79,80]. For example, a study on aerobic exercise,
such as running, found that people’s affective valence began to decline as intensity of
the exercise increased [79]. A similar study with older adults using the treadmill found
that affect declined across the duration of the one-on-one session and became increasingly
more negative as participants became more tired [80]. As mentioned, the intensity of
the exercises demonstrated in our study increased from 8 repetitions to 12 repetitions
in the second week, a combination of two exercises introduced in the third week and a
combination of three exercise introduced in the sixth week. The increase in complexity was
noted by the participants as additional comments in the two-month questionnaire, with
statements such as “I noticed the exercises are getting more difficult” from User 5, one of
the healthier participants.

In the group sessions, the negative valence during the first week for User 10 could be
due to the participant not being familiar or comfortable exercising with a robot at first, as
this user initially reported before the study that they did not have any prior experience
with a robot. Over time and through repetitions, however, the exercises became easier
for this user to follow (as observed in the videos) and resulted in them having positive
valence during the entire exercise session, Figure 12. Similar robot studies have found that



Robotics 2023, 12, 9 24 of 42

robot exercise systems become easier to understand over repeated sessions (i.e., from 1 to
3 sessions) based on the number of user help requests and an increase in average exercise
completion time [7]. We also note that the mean GAS T-scores of User 10 increased from
61.1 (87.3% exercise completion) in the user’s first session to 65.5 (93.5% completion) after
the user’s second session, showing a 6% overall improvement when exercising with the
robot. This is consistent with the literature where user performance measures and exercise
competition times have improved through some repetition (i.e., 1 to 4 sessions) [9].

The robustness of the robot’s emotion-based behaviors can be defined, herein, as its
ability to perform exercise facilitation while adapting to the user states in both the one-on-
one and group sessions. The changes in the emotions displayed by the robot, Figures 7–12,
illustrated its ability to adapt to changes in user state–allowing the robot to maintain, on
average, positive valence and high engagement from the users.

6.2. Self-Reported Valence (SAM Scale)

Both the detected (Figures 7–12) and self-reported valence (Table 5) results show that
the majority of users maintained a positive valence throughout the study. Namely, the
users generally felt positive valence during the (one-on-one and group) exercise sessions
and when having the opportunity to reflect on their experience after the sessions. Our
results are consistent to other studies that have also used EEG and self-reported to measure
affective responses during and after exercise sessions, however, without a robot [81,82].

Overall, we had a high participation rate for our study with 27 of 31 (87%) participants
completing the entire two-month sessions. We postulated that the positive valence with
the high participation rate, motivates the use of Pepper as an exercise companion. In [83],
it was found that positive affect responses during exercise was consistently linked to a
high likelihood in performing exercises in the future. Furthermore, in a non-robot study
reporting the role of affective states in the long-term participation of exercise specifically in
older adults, similar evidence was found [84]. The study cited positive affective responses
during exercise as an influential factor on participant belief on gaining benefit from and
participating in regular exercise.

6.3. Acceptance

The overall positive acceptance ratings can be attributed to the clear health benefits of
using the robot to motivate and engage users in exercise. In general, the level of acceptance
of a technology is high when older adults clearly understand the benefits of using the
technology [85,86]. For example, in [87] a robot’s ability to motivate users to dance and
improve health outcomes was identified as a facilitator for robot acceptance. In our study,
User 1 noted that “[they] hope[d] [they] will be healthier” by participating in the robot
study, and User 2 noted that “[they] think exercising is important” and reported that they
believed a robot that motivated them to exercise was good for them. The aforementioned
users had a clear understanding that Pepper was developed to autonomously instruct and
motivate them to engage in exercising, resulting in positive acceptance ratings.

6.4. Perceived Usefulness and Ease of Use

The perceived usefulness of the robot was expected to be similar between successive
exercise sessions (both one-on-one and group) as Pepper performed the same exercises.
Over time, however, there was a decrease. One of the main reasons for such a decrease
in this construct was that after getting familiar with the robot, four of the participants
reported they wished the robot could have had legs to facilitate leg exercises as well. As
the participants in our study became familiar with the robot, their expectations evolved
into wanting the robot to perform additional exercises.

6.5. Perceived Sociability and Intelligence

When validating the robot’s emotion module, after one month, users strongly agreed
that the robot displayed appropriate emotions (x̃ = 5.0, IQR = 1.25), while after two
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months, their responses were more neutral (x̃ = 3.0, IQR = 1.00), however, they agreed
that the robot’s overall feedback was appropriate (x̃ = 4.0, IQR = 2.00). We believe this
could be due to the robot using the same variation of social dialogue during the two-month
duration. In other studies that have observed a similar decrease in perceived sociability over
time have noted that this was due to the robot not engaging in on-the-fly and spontaneous
dialogue [88,89].

6.6. Robot Appearance and Movements

The position of the participants with respect to Pepper may have influenced their
opinion of the robot’s appearance and movements. Participants from the group sessions
that interacted with the robot were sitting in a semi-circle around the robot. As a result,
some participants were further back from the robot than others in the group session and
may have also not faced the robot directly, Figure 4, compared to those in the one-on-one
sessions. In the literature, the preferred robot size by older adults is strongly dependent
on the robot’s functionality [90–92]. In our study, as the robot’s main functionality is to
facilitate exercise, we postulate that some participants from the group sessions preferred
the robot to be larger so that they could more clearly see the robot and its movements.

6.7. Considerations and Limitations

We consider our HRI study to be long-term as it is repeated for multiple weeks
or months, as compared to short-term studies which consider a single session. This is
consistent with the literature, where three weeks was explicitly declared as long-term HRI
in [93], or two months in [94,95]. The latter is consistent with our study length. Furthermore,
length of time is not the only consideration when determining a study is long-term, as the
user group and interaction length are also considered. Our study is considered to be long-
term based on the older adult user group and the one-hour duration of each interaction
session. Other existing studies that have used a robot to facilitate exercise with older adults
have either only done so in a single user study session [7,8,23,24], or had users participate
in on average of in a total of three sessions [9] lasting on average of 15 min. The only
other long-term exercise study we are aware of with older adults is in [6], which was for a
10-week period.

We investigated if group exercise sessions would foster task cohesion. From analysis of
the videos, the participants were fully engaged with the robot and showed high compliance
with the exercises (there were no drop-outs observed). Participants were focused on
following the exercises the robot displayed as closely as possible and continued to do
so as the exercise became more complex later in the study. As future work, it would be
interesting to identify existing group dynamics prior to the study and after the study to
explore if such dynamics change or directly affect group cohesion and participant affective
responses. Research has shown that people prefer to exercise in groups and that group
cohesion is directly related to exercise adherence and compliance [96,97].

It is possible that participants were extrinsically motivated to participate in the study
from factors that we have not examined. For example, social pressure from peers or
care staff could have influenced participation in our study; however, participation was
completely voluntary, and no rewards were given; participants were allowed to withdraw
at any time. We postulate that the participants that completed this two-month HRI study
were more intrinsically driven based on their high ratings in their overall experience and
perceived usefulness of the robot, as older adults in have been found to be intrinsically
motivated by personal health and benefit, in addition to altruistic reasons [98,99].

In our study, participants in both types of interactions had comparable and high
acceptance of the robot and high perceived usefulness and ease of use of the robot, which
validates the use and efficacy of an exercise robot for both scenario types. The main differ-
ence was that users in the one-on-one sessions perceived the robot as more sociable and
intelligent, and had provided higher ratings for the robot’s appearance and its movements.
We believe that this difference is mainly due to: (1) the group setting design, which di-
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rectly resembles an exercise session with the human facilitator, participants were seated
in a half circle with an approximate radius of 2 m in front of the Pepper robot. The size
and distance to the robot may have affected their opinions on these constructs as some
participants mentioned they preferred the robot to be larger so that they could more clearly;
and, (2) the ability for the robot to provide personalized feedback to each member of the
group in addition to the overall group. We do note, however, that the questionnaire results
were relatively consistent in the group interactions with an average IQR of 1.48 for all the
constructs. This demonstrated that the robot’s emotional behavior being responsive to
only a small number of participants in the group did not have a significant impact on their
overall experience.

Our recommendation is to consider these aforementioned factors when considering
group-based interactions to improve perceptions of the robot as a facilitator. In general, in
non-robotic studies, research has shown that people prefer to exercise in groups, including
older adults [100,101], and this is worth investigating further in HRI studies with groups
while considering the above recommendations. For a robot to be perceived as sociable
or intelligent in a group session compared to one-on-one interactions, the robot should
provide general group feedback and personalized individual feedback for those in the
group that need it. Effective multi-user feedback in HRI remains a challenge due to the
majority of research focusing on feedback from one-on-one interactions [102]. Furthermore,
group-based emotion models require additional understanding of inter-group interactions,
as individuals identifying with the group and having in-group cohesion can also influence
user affect [103,104].

The user states of the participants not wearing an EEG headband and heart rate
sensor in the group session were not monitored. This was due to the limitations with
these Bluetooth devices during deployment, where there would be interference between
multiple concurrent connections to the host computer when too many devices were on
the same frequency. As we obtained self-reported valence, regardless of this challenge,
we found that the self-reported valence was consistent within the overall group, and
furthermore the self-reported valence was consistent with the measured valence from
the two participants wearing the sensors. In the future, this limitation can be addressed
by using a network of intermediary devices that connect to the sensors via Bluetooth
and connect to a central host computer through a local network. Other solutions include
the use of sensors with communication technology that reduces the restrictions on the
number of connected devices (e.g., Wi-Fi-enabled EEG-sensors [105]). Other forms of user
state estimation that do not require wireless communication can also be considered. For
example, thermal cameras have been used to classify discrete affective states by correlating
directional thermal changes of areas of interest of the skin (i.e., portions of the face) with
affective states [106,107]. However, this relationship has been mainly with discrete states
such as joy, disgust, anger, and stress, and additional investigations would be necessary to
determine such a relationship with respect to the continuous scale of valence as considered
in this work. Thermal cameras have also been used for heart rate estimation by tracking
specific regions of interest of the body [108].

Lastly, the experimental design of our study was developed to accommodate the
age-related mobility limitations of older adults. For example, the exercises were conducted
with the users in a seated position and their range of motion and speed were designed by a
physiotherapist at our partner LTC home. We did note, however, that two participants in
the one-on-one sessions experienced some difficulties. As discussed in Section 5.1, User 7
participated in 12 of the 16 exercise sessions, and watched the robot in the remaining four
sessions. The robot moved too fast for them to always follow it. Similarly, as discussed in
Section 5.2, User 8 had difficulties in performing faster and larger motion arm exercises
due to their observed upper-limb tremors.
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6.8. Future Research Directions

Future research consists of longer-term studies to investigate health outcomes in long-
term care with an autonomous exercise robot and the impact of different robot platforms
with varying appearances and functionality on exercise compliance and engagement.
Literature has shown that upper-limb exercises can provide benefits in functional capacity,
inspiratory muscle strength, motor performance, range of motion, and cardiovascular
performance [109–111]. It will be worth exploring if robot-facilitated exercising can have
the same outcomes.

Robot attributes such as size and type, adaptive (also reported in [112]) and emotional
(also reported [113,114]) behaviors, and physical embodiment [7], can influence robot
performance and acceptance when interacting with users. Thus, these factors should be
further investigated for robot exercise facilitation with older adults.

Furthermore, we will also investigate incorporating other needed activities of daily
living with robots to study their benefits with the aim of improving quality of life of older
adults in the long-term care home settings.

7. Conclusions

In this paper, we present the first long-term exploratory HRI study conducted with an
autonomous socially assistive robot and older adults at a local long-term care facility to
investigate the benefits of one-on-one and group exercise interactions. Results showed that
participants, in general, had both measured and self-reported positive valence and had an
overall positive experience. Participants in both types of interactions had high acceptance
of the robot and high perceived usefulness and ease of use of the robot. However, the
participants in the one-on-one sessions perceived the robot as more sociable and intelligent
and had higher ratings for the robot’s appearance and its movements than those in the
group sessions.
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Appendix A. Details of the Social Robot Exercise Facilitator

Appendix A.1. Exercise Monitoring Module

Appendix A.1.1. Keypoints and Features

The keypoints acquired from the OpenPose model and their corresponding indices
are labeled in Figure A1a.
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where i ∈ {1,2, . . . ,67} are the index of each keypoint in Figure A1a.
In order to classify different poses during exercise, three input features are utilized

by the classification model: (1) relative distance features, ∆ij; (2) angle features, θijk; and
(3) confidence score features, Si, where i, j, k ∈ {1,2, . . . ,67} are the index of each keypoint
in Figure A1b. The relative distance and angle features are computed based on the spatial
positions of the keypoints while the confidence score features are acquired directly from the
OpenPose model. Examples of the relative distance features and angle features are labeled
in Figure A1b.

The relative distance features, ∆ij, are determined in the X and Y axes between two
keypoints
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The angle features, θijk, are computed between three keypoints,
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where
(

px,j, py,j
)

is the vertex of the angle.
The confidence score features, Si, are used to estimate the head rotation from the front

facing view during the neck exercises based on the confidence score of the ears such that a
cervical rotation of greater than 52◦ can be estimated by a confidence score of 0 in one of
the ears (i.e., S3 = 0 or S4 = 0) [116].
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To determine which arm is performing the exercises (e.g., forward punch and LTS),
the total displacement of each arm joints (i.e., wrist, elbow, and shoulder) are compared in
sequential frames during each repetition:

∆d = ∑
f

∑
j
‖Pi

l, f − Pi
l, f−1‖ −∑

f
∑

j
‖Pj

r, f − Pj
r, f−1‖ (A4)

where Pi
l, f−1 and Pj

r, f−1 denote the 2D vectors with the
(

px, py
)

coordinates for the left

and right arm joint j in the previous frame f − 1, Figure A2a; Pi
l, f and Pj

r, f denote the 2D
vectors in the current frame f, Figure A2b; and i ∈ {7, 8, 9} and j ∈ {10, 11, 12} which are the
index of the wrist, elbow, and shoulder joints for left and right arms, respectively. If ∆d is
greater than 0, then the left arm is performing the exercises. Otherwise, the right arm is
performing the exercises.

During each exercise repetition, the body poses are classified using the aforementioned
three input features (i.e., relative distance, angle, and confidence score features) based on
the completion of the required movements and range of motion performed as: (1) complete
pose, (2) partially complete pose, and (3) resting pose. The desired ranges of motion
are determined from motion ranges from healthy older adults [117,118]. The body pose
completion criteria for each exercise is presented in Table A1, and the specific features used
for the classification of each exercise are detailed in Table A2.

Table A1. Complete, partially complete, and resting poses for each exercise.

Exercises Complete Pose Partially Complete Pose Resting Pose

Open arm stretches

Open both arms from the center of the chest
and raise them at least 65◦ from the sides of
the body (i.e., (θ8 7 10 and θ7 10 11 ≥ 155◦)

while opening both arms [117].

Open both arms from the center of the chest
but not raise at least one arm to or above 65◦

from the sides of the body (i.e., θ8 7 10 and/or
θ7 10 11 < 155◦) while opening both

arms [117].

Neck exercises
(up and down)

Move the neck in both up and
down directions. Move the neck in only up or down direction.

Neck exercises
(left and right)

Rotate the neck to the left or right to
achieve a cervical rotation for at least 52◦

[118], which can be estimated when one of
the ears is invisible from the front view of

the person (i.e., confidence score S3 or
S4 = 0) [116].

Move the neck left or right but not to achieve
a cervical rotation for at least 52◦ (i.e.,
confidence score S3 and S4 > 0) [118].

Arm raises
Raise both arms to at least 65◦ from the

sides of the body (i.e., θ8 7 10 and
θ7 10 11 ≥ 155◦) [117].

Raise at least one arm but not to at least 65◦

from the sides of the body (i.e., θ8 7 10 and/or
θ7 10 11 < 155◦) [117].

Arms resting beside the
waistline, on the

armrest, or on the lap.

Downward punches
Raise both hands above the head (i.e.,
normalized ∆y,5 9 and ∆y,5 12 ≥ 0.025)
before each downward punch [118].

Raise at least one wrist but not above the
head (i.e., normalized ∆y,5 9 or

∆y,5 12 < 0.025) [118].

Breaststrokes Sweep both arms to the sides of the body
(i.e., ∆x,7 9 and ∆x,10 12 > 0.05).

Sweep only one arm to the side of the body
(i.e., ∆x,7 9 or ∆x,10 12 < 0.05).

Open/close hands Open and close both hands. Open and close at least one hand.

Forward punches Extend each arm straight (i.e., θ7 8 9 or
θ10 11 12 ≥ 155◦) while punching [119].

Punch forward but do not fully extend the
arm straight (i.e., θ7 8 9 or

θ10 11 12 < 155◦) [119].

LTS
Raise each hand above the head (i.e.,

normalized ∆y,5 9 and ∆y,5 12 ≥ 0.025) while
stretching [118].

Raise each hand but not above the head (i.e.,
normalized ∆y,5 9 or ∆y,5 12 < 0.025) [118].

Two-arm LTS

Raise each hand above the head (i.e.,
normalized ∆y,5 9 and ∆y,5 12 ≥ 0.025) while
the other arm is extending to the side of the

body [118].

Raise each hand but not above the head (i.e.,
normalized ∆y,5 9 or ∆y,5 12 < 0.025) [118].
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Appendix A.1.2. Pose Classification

To create the training dataset for the exercise pose classification, two volunteers
recorded two exercise sessions with the robot. The volunteers were instructed to perform
each exercise with all three outcomes. Then two expert coders selected 30 samples for
each pose recorded from both volunteers, similar to [54] and [120]. To effectively identify
pose completion during exercise, multiple learning-based classifiers—including k-Nearest
Neighbor (k-NN), Multilayer Perceptron Neural Network (NN), Random Forest, and
Support Vector Machine (SVM)—were investigated using the scikit-learn library [121]. The
grid search strategy was used to optimize the parameters of each classification technique. A
standard 10-fold cross validation was used to evaluate each classifier for each exercise. The
classification rates are presented in Table A3. The Random Forest classifier was selected
as it achieved the highest average classification rate of classifying the exercise poses for
each exercise.

Appendix A.2. Exercise Evaluation Module

The performance of the Exercise Evaluation Module was evaluated by measuring the
GAS T-score of each user as measured by expert coders and comparing the results to those
estimated through the developed model. Namely, the GAS T-scores of each participant
were obtained from two expert coders independently coding the user body poses for
each exercise repetition during the sessions. For independent coding, both coders were
presented with videos of the interactions. Then they met to discuss their coded results to
obtain inter-coding consensus for reducing coder bias [122]. A Cohen’s kappa, κ = 0.75,
was determined between the two coders, indicating substantial agreement between these
coders. In Table A4, an overview of the (dis)agreements between the coders is presented for
each exercise type. In general, the two coders had an agreement rate of 90%, according to
the body pose completion criteria (e.g., complete, partially complete) outlined in Table A1.
The classification rates (defined by the number of classified repetition poses in agreement
with coded poses divided by the total number of repetitions) are presented in Table A5
for all repetitions of each exercise. In general, the robot was able to track and estimate
exercise poses correctly with an average classification rate of 89.44% using the Random
Forest model developed for the Exercise Monitoring Module trained for each exercise.
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Table A2. Classification features for each exercise.

Exercise Features

Open arm stretches

1. Distances of the wrists-shoulders (∆9 7, ∆12 10) and elbows-shoulders (∆8 7, ∆11 10) for
each arm in both x and y direction using Equation (A2).

2. Angles of elbows (θ7 8 9, θ10 11 12) and shoulders (θ8 7 10, θ7 10 11) for each arm using
Equation (A3).

Neck exercises (up and down)

1. Distances of the eyes-shoulders
(
∆y, 2 10, ∆y, 1 7

)
, nose-shoulders

(
∆y, 5 10, ∆y, 5 7

)
,

and nose-neck
(

∆y, 5 6) in the y direction using Equation (A2).
2. Angles of the nose (θ1 5 2) using Equation (A3).

Neck exercises (left and right)
1. Distances of the eyes-shoulders (∆x,2 10 , ∆x, 1 7), nose-shoulders (∆x,5 10 , ∆x,5 7),

and nose-neck (∆x,5 6) in the x direction using Equation (A2).
2. Confidence scores of the ears (S3 , S4).

Arm raises

1. Distances of the wrists-shoulders (∆9 7 , ∆12 10) and elbows-shoulders (∆8 7
, ∆11 10) for each arm in both x and y direction using Equation (A2).

2. Angles of elbows (θ7 8 9 , θ10 11 12) and shoulders (θ8 7 10 , θ7 10 11) for each arm using
Equation (A3).

Downward punches 1. Distances of the wrists-shoulders
(
∆y, 9 7 , ∆y, 12 10), and wrists-nose

(
∆y, 9 5

, ∆y, 12 5) for each arm in the y direction using Equation (A2).

Breaststroke

1. Distances of the wrists-shoulders (∆x, 9 7 , ∆x, 12 10), elbows-shoulders (∆x, 8 7
, ∆x, 11 10), elbows-nose (∆x, 8 5 , ∆x, 11 5), and wrists-nose (∆x, 9 5

, ∆x, 12 5) for each arm in the x direction using Equation (A2)
2. Angles of the elbows (θ7 8 9 or θ10 11 12) for each arm using Equation (A3)

Open/close hands
1. Average distances between fingertips and the wrists (∆x, 26 30 , ∆x, 26 34 , ∆x, 26 38

, ∆x, 26 42 , ∆x, 26 46 for the left hand and ∆x, 47 51 , ∆x, 47 55 , ∆x, 47 59 , ∆x, 47 63
, ∆x, 47 67 for the right hand) using Equation (A2)

Forward punches

1. Distances of the elbows-shoulders
(
∆y,8 7 , ∆y,11 10), wrists-shoulders

(
∆y,9 7

, ∆y,12 10), elbows-nose
(
∆y,8 5 , ∆y,11 5), and wrists-nose

(
∆y,9 5

, ∆y,12 5) for each arm in the y direction using Equation (A2)
2. Angles of the elbows (θ7 8 9 or θ10 11 12) for each arm using Equation (A3)

Lateral trunk stretch

1. Distances of the wrists-shoulders (∆9 7 , ∆12 10), elbows-shoulders (∆8 7
, ∆11 10), elbows-nose (∆8 5 , ∆11 5), and wrists-nose (∆9 5

, ∆12 5) for each arm in both x and y direction using Equation (A2)
2. Angles of the elbows (θ7 8 9 or θ10 11 12) and shoulders (θ8 7 10 , θ7 10 11) for each arm

using Equation (A3)

Two-arm lateral trunk stretch

1. Distances of the wrists-shoulders (∆9 7 , ∆12 10), elbows-shoulders (∆8 7
, ∆11 10), elbows-nose (∆8 5 , ∆11 5), and wrists-nose (∆9 5 , ∆12 5) for each arm in both x

and y direction using Equation (A2)
2. Angles of the elbows (θ7 8 9 or θ10 11 12) and shoulders (θ8 7 10 , θ7 10 11) for each arm

using Equation (A3)

Appendix A.3. User State Detection Module

Appendix A.3.1. Valence

The user’s valence is detected using data obtained through the EEG headband (Inter-
aXon Muse 2016); the four electrode locations are TP9, AF7, AF8, and TP10 described using
the International 10–20 system, Figure A3 [123].
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Table A3. Classification rates for each classifier and exercise.

Classifier

Exercise K-Nearest Neighbor
(k-NN)

Multilayer Perceptron
Neural Network (NN) Random Forest (RF) Support Vector

Machine (SVM)

Open arm stretches 97.8% 96.7% 97.8% 91.1%

Neck exercises (up and down) 65.6% 74.4% 92.2% 54.4%

Neck exercises (left and right) 98% 98.0% 98.0% 78%

Arm raises 96.7% 98.9% 98.9% 87.8%

Downward punches 96.7% 94.4% 97.8% 94.4%

Breast-stroke 62.2% 88.9% 98.9% 64.4%

Open/close hands 88.3% 50.0% 97.5% 94.9%

Forward punches 71.4% 80.0% 92.7% 54.3%

Lateral trunk stretch 98.9% 98.3% 98.9% 97.8%

Two-arm lateral trunk stretch 97.8% 96.7% 98.4% 95.6%

Average 87.3% 87.6% 97.1% 81.3%

Table A4. Agreement and disagreement rates between coders.

Exercise Agreed Completion
(%)

Agreed Incompletion
(%)

Disagreement
(%)

Open arm stretches 21.5 68.76 9.74
Neck exercises (up and down) 71.72 16.01 12.27
Neck exercises (left and right) 68.05 18.86 13.09

Forward punches 51.52 35.48 13
Arm raises 69.24 19.56 11.2

Downward punches 69.35 25.04 5.61
Open/close hands 77.33 12.35 10.32

Breaststrokes 95.89 1.03 3.08
LTS 77.85 13.41 8.74

Two-arm LTS 79.85 11.80 8.35

Table A5. Exercise classification rate.

Exercise Classification Rate (%)

Open arm stretches 86.86
Neck exercises (up and down) 85.12
Neck exercises (left and right) 87.17

Forward punches 88.34
Arm raises 89.07

Downward punches 92.98
Breaststrokes 96.87

Open/close hands 90.14
LTS 89.79

Two-arm LTS 88.01

Average 89.44

The EEG signals are processed using the Muse LSL package [124], and two types of
EEG frequency domain features. With respect to the latter, the power spectral density
(PSD) feature and the frontal asymmetry features, are extracted from the EEG data for
valence classification. These two types of features have been used in real-time valence
detection [125]. The Fast Fourier Transform (FFT) is utilized to decompose the EEG signal
to extract the PSD [124]. This process is implemented through a 1 s sliding window with
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an overlap of 80% to reduce spectral leakage and minimize data loss [126]. Then, from
each electrode location, the PSD features are acquired in four distinct frequency bands:
θ (4–8 Hz), α (8–13 Hz), β (13–30 Hz), and γ (30–40 Hz) [125]. Frontal EEG asymmetry refers
to the difference in power between the left and right frontal hemispheres of the brain within
the α and β frequency bands [46]. The frontal EEG asymmetry features can be computed as
v1 to v4, through Equations (A5)–(A8), to determine valence [125].
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v1 =
αAF8

βAF8
− αAF7

βAF7
(A5)

v2 = ln(αAF7)− ln(αAF8) (A6)

v3 =
βAF7

αAF7
− βAF8

αAF8
(A7)

v4 = αAF8 − αAF7, (A8)

Above, αAF7, αAF8, βAF7, and βAF8 are the α and β band powers measured at the AF7
and AF8 locations shown in Figure A3.

In total, 20 features are utilized, which include 16 PSD features from the four frequency
bands; θ, α, β, and γ measured at the locations TP9, AF7, AF8, and TP10; and four frontal
EEG asymmetry features obtained from Equations (A5)–(A8).

During HRI, it was found that user valence is directly related to the interaction with
the robot itself [127–129]. This is based on the assumption that the user is engaged with
the robot, as disengaging and averting VFOA facilitates remembrance of other memories
that would influence user valence [130]. To accurately detect valence, it is important for
the valence detection model to be trained with valence that occurs with a robot [129]. For
valence elicitation, stimuli consisting of robot body movements to music were used to
induce positive and negative valence, which were designed in our previous work [43].

To obtain training data for valence elicitation, we recruited six older adults between
81 and 96 years old from the Yee Hong Centre for Geriatric Care. All were healthy older
adults with no or mild cognitive impairment with a Cognitive Performance Scale (CPS)
score of lower than three (i.e., intact or mild impairment) [62] and the Mini-Mental State
Exam (MMSE) score of greater than 19 (i.e., normal or mild impairment). The robot
displayed positive and negative valence stimuli to each participant while they wore the
EEG headband to better interpret and respond to users during HRI [129]. Each participant
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had two sessions; one was for inducing positive valence while the other was for inducing
negative valence. The stimuli were presented to each participant in a random order. Each
session was approximately 4 min in duration with a 5-min break after each session. During
the break, participants were asked to report their valence level using the Self-Assessment
Manikin (SAM) scale [71] to label the EEG training data. Among these older adults, three of
them were able to perceive both the positive valence and negative valence stimuli correctly
as intended, and their data were used as training data for valence classification. These EEG
signals share a similar pattern in PSD features of θ, α, β, and γ bands, which are used for
valence classification, among those in the same age range (e.g., 66 years and older) with
similar cognitive impairment levels [131,132]. A three hidden layer Multilayer Perceptron
Neural Network using the scikit-learn library [121] was used to classify user valence. A
10-fold cross validation was performed on the training data to evaluate the prediction
results, achieving a 77% classification rate. Our classification rate is comparable to or
higher than several other learning-based classification methods that also use EEG signals
for valence detection, which have reported rates between 57% and 76%, e.g., [133–137].

Appendix A.3.2. Engagement

The user’s engagement is estimated based on the orientation of their face and the
visibility of their ears. The user is considered engaged when their face is oriented within
45◦, Figure A4a, and not engaged when their face is oriented greater than 45◦ in either left
or right direction away from the robot, Figure A4b [138]:

θ f = sin−1
(

len − ren

len + ren

)
(A9)

where θ f is the orientation of the face, ren is the distance from the center of the right eye to
the nose, and len is the distance from the center of the left eye to the nose.

The visibility of the ears can be represented by the confidence scores of the ear key-
points obtained from the OpenPose model [31]. Therefore, the confidence scores of the ears
(S3 and S4) are also used as VFOA features for engagement detection such that the VFOA
features, fVFOA, can be expressed as:

fVFOA =
[
θ f S3 S4

]
. (A10)
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Figure A4. Engagement detection based on the user VFOA: (a) engaged; and (b) not engaged towards
the robot.

Two volunteers recorded two robot exercise sessions, engaged (i.e., looking at the
robot with θ f ≤ 45◦) and not engaged (i.e., not looking at the robot with θ f > 45◦) with the
robot, for creating a training dataset using the aforementioned VFOA features, fVFOA. The
dataset was used for training a k-NN classifier for engagement detection. Forty head pose
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samples for both engaged and not engaged were coded and selected by two experts. The
data from both volunteers were used to train the classifiers. By performing a 10-fold cross
validation on the training data, the k-NN classifier was able to achieve a classification rate
of 93% [31].

Appendix A.4. Robot Emotion Module

This module utilizes a robot emotion model that we have developed in our previous
work, which takes in the user states (i.e., user valence and engagement) to determine the
robot’s emotional behavior. This model has been adapted herein for our HRI study [55].

The robot emotional state for m robot emotions and l user states at time t, E′t can be
represented as:

Et = w1Ht + W2At, (A11)

E′t = f (Et) (A12)

where Et represents the robot emotion output vector, Ht is the robot emotional state vector
based on the emotional history at time t, and At is the user state input vector based on
both the user valence and engagement. In addition, w1 is a scalar that is the weight of
the influence of the robot emotional history on the current robot emotion. W2 is the robot
emotion state-human affect probability distribution. Finally, f (Et) is a winner-takes-all
function to determine the robot emotion to display.

Robot Emotion History Model

Human emotions are time-related processes such that the current emotion is often
influenced by past emotions [139]. Therefore, we integrate the nth order MM property we
have used in our previous work [54] to model the robot emotional state, which represents
the probability of the current emotion e0 is dependent on the previous emotional history, e1,
. . . , en [55]:

P(Ht = e0|Ht−1 = e1, . . . , H1 = et−1) = P(Ht = e0|Ht−1 = e1, . . . , Ht−n = en) (A13)

where e0, . . . , et ∈ {1, . . . , m} represent the displayed robot emotions.
In addition, the influence of a past emotion on the current emotion should decrease as

time passes [55]. A decay function is utilized to reduce the weight of each past emotion in
discrete time:

λi = e−ai, 0 < a < − ln(ε) (A14)

where λi is the weight of the robot emotion at discrete time i ∈ T+, a is the rate of the decay,
and ε is the lower threshold of the decay function.

The robot emotion transition probability, which represents the probability of the
current robot emotion based on the past n robot emotional steps, is modeled as:

P(Ht = e0|Ht−1 = e1, . . . , Ht−n = en) = ∑n
i=1 λiqeie0 (A15)

where qeie0 is an element of the m×m robot emotion transition probability matrix, Qi, and
n = T − 1.

Then, the robot emotion history model can be modeled as:

Ht = ∑n
i=1 λiQiHt−i (A16)

To estimate the robot emotion transition probability matrix, Qi, the transition frequency
f (i)kj from emotional state j to emotional state k is considered with history i:

F(i) =


f (i)11 . . . f (i)1m
...

. . .
...

f (i)m1 . . . f (i)mm

 (A17)
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Therefore, the estimated Qi can be represented as:

Q̂i =


q̂(i)11 . . . q̂(i)1m

...
. . .

...
q̂(i)m1 . . . q̂(i)mm

 (A18)

where q(i)kj is:

q(i)kj =


f (i)kj

∑m
j=1 f (i)kj

0

if ∑m
j=1 f (i)kj 6= 0

otherwise
(A19)

Appendix B. Robot Perception Questionnaire

Table A6. Robot Perception Questionnaire and results.

Construct Question
One Month Two Month

x s x̃ IQR x s x̃ IQR

C1: Acceptance

Q1. I like using the robot to do exercise 4.04 1.07 4.00 2.00 4.11 1.13 5.00 2.00
Q2. I would use the robot again 3.78 1.40 4.00 2.00 3.96 1.40 5.00 1.00

Q3. The sensor headband is uncomfortable
to wear * † 1.40 0.92 1.00 1.00 1.60 0.80 1.00 0.00

C2: Perceived
Usefulness and

Ease of Use

Q4. The exercises the robot got me to do are
good for my overall health 4.30 0.97 5.00 1.00 4.26 1.11 5.00 1.00

Q5. The robot is not helpful for doing exercise † 1.70 1.15 1.00 2.00 2.04 1.35 1.00 1.25
Q6. The robot clearly displays each exercise 4.44 1.10 5.00 1.00 4.37 0.82 4.00 0.25

Q7. The robot is difficult to use † 2.04 1.37 1.00 2.00 2.52 1.29 3.00 2.00
Q8. I can use the robot without any help 3.11 1.81 4.00 2.50 2.63 1.28 3.00 4.00

Q9. I don’t trust the robot’s advice † 1.67 1.09 1.00 1.50 2.04 1.07 2.00 1.25
Q10. The robot motivates me to exercise 4.33 1.09 5.00 2.00 3.85 1.24 4.00 1.00

C3:
Perceived

Sociability and
Intelligence

Q11. After each exercise, the feedback the robot
provided is appropriate 3.82 1.09 4.00 2.00 3.70 1.24 4.00 2.00

Q12. The robot understands what I am doing
during exercising 3.44 1.32 3.00 1.00 3.44 1.07 3.00 2.00

Q13. The robot displays appropriate emotions 4.00 1.33 5.00 1.00 3.33 1.09 3.00 1.25
Q14. I am not able to identify the robot’s

emotions through eye colors * † 2.30 1.19 2.00 2.75 2.40 1.50 2.00 1.75

Q15. I am able to identify the robot’s emotions
from vocal intonation * 4.40 0.92 5.00 0.75 3.70 1.01 4.00 1.00

C4:
Robot

Appearance
and

Movements

Q16. The robot moves too fast for me to follow † 1.82 1.36 1.00 2.00 2.00 1.31 1.00 2.00
Q17. I think the robot has a clear voice 4.33 1.16 5.00 1.50 4.19 1.25 5.00 1.00

Q18. I don’t understand the robot’s instructions † 1.82 1.31 1.00 1.00 1.67 1.16 1.00 1.25
Q19. I think the robot’s size is appropriate

for exercising 4.22 1.23 5.00 2.00 3.74 1.29 4.00 1.25

Overall
Experience
(2 months)

Q20. I feel my physical health is improved from
the exercise sessions with the robot N/A N/A N/A 2.00 3.70 1.24 4.00 2.00

Q21. I find what I am doing in the weekly
sessions confusing † N/A N/A N/A 1.00 1.67 1.12 1.00 1.00

Q22. As a result of these sessions, I am more
motivated to perform daily physical exercises N/A N/A N/A 2.00 3.70 1.08 4.00 0.00

Q23. The robot always seemed interested in
interacting with me N/A N/A N/A 1.50 3.56 1.13 3.00 1.00

* Questions that were only administrated to participants wearing the sensors. † Questions that were negatively
worded (i.e., 1 or 2 represent positive responses).
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Table A7. Robot perception questionnaire results for each construct for one-on-one sessions, group
sessions, and all users combined measured after one month and two months. The minimum (xmin),
median (x̃), mode (xMO), and interquartile range (IQR) are presented.

Construct Session Type
One Month Two Months

xmin xmax x̃ xMO IQR xmin xmax x̃ xMO IQR

C1: Acceptance
(One-Month: α = 0.75,
Two-Months: α = 0.88)

One-on-One 1 5 4.0 4 1.00 2 5 4.5 5 2.00
Group 1 5 4.0 5 2.00 1 5 5.0 5 2.00

All 1 5 4.0 5 1.75 1 5 5.0 5 2.00

C2: Perceived Usefulness and Ease of Use
(One-Month: α = 0.81,
Two-Months: α = 0.83)

One-on-One 1 5 5.0 5 1.00 1 5 4.0 5 2.00
Group 1 5 5.0 5 2.00 1 5 4.0 5 2.00

All 1 5 5.0 5 1.00 1 5 4.0 5 2.00

C3: Perceived Sociability and Intelligence
(One-Month: α = 0.79,
Two-Months: α = 0.68)

One-on-One 1 5 4.5 5 1.25 2 5 4.0 5 2.00
Group 1 5 4.0 5 2.00 1 5 3.0 3 1.00

All 1 5 4.0 5 2.00 1 5 3.0 3 2.00

C4: Robot Appearance and Movements
(One-Month: α = 0.80,
Two-Months: α = 0.72)

One-on-One 1 5 5.0 5 1.25 1 5 5.0 5 1.00
Group 1 5 5.0 5 1.00 1 5 4.0 5 2.00

All 1 5 5.0 5 1.00 1 5 5.0 5 2.00
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