
 

Abstract—This paper presents a novel method for the 
optimal deployment of multi-robot teams for autonomous, 
coordinated wilderness search and rescue. The new concept of 
iso-probability curves, used to represent the time-varying 
prediction of a lost person’s probable location within the search 
area, is utilized to effectively distribute the search effort. The 
proposed method can be used for initial deployment, as well as 
subsequent on-line re-deployment to address the dynamic 
nature of the search for a moving lost person in a growing 
search area with varying terrain. The modularity of the 
proposed method allows the user to define and utilize different 
objective functions and weigh them according to the goal at 
hand. The two specific objective functions considered in this 
paper are (minimizing) search time and (maximizing) the 
probability of success. A simulated realistic wilderness search 
scenario demonstrates the integration of optimal deployment 
within the overall search methodology. 
 

Index Terms—Optimal deployment, multi-robot 
coordination, wilderness search and rescue (WiSAR) 
 

I. INTRODUCTION 
ILDERNESS Search and Rescue (WiSAR) deals with 
the problem of locating mobile lost persons in 
unbounded, inland environments with varying and 

often complex terrains [e.g., 1, 2]. The use of robotic teams 
in WiSAR has been a topic of recent interest, with the 
primary focus being on developing effective search 
strategies. In contrast to WiSAR, research efforts in Urban 
Search and Rescue (USAR), where the aim is to find 
stationary survivors amidst collapsed structures, continue to 
be mainly on the development of specialized robots [e.g., (3-
5)]. Furthermore, search strategies developed for USAR are 
not readily applicable to WiSAR.  

Search methodologies, as formulated in Search Theory 
literature, determine the optimal allocation of search effort to 
locate a stationary or moving target [6-9]. Their dependence 
on optimization modeling and analytical solutions [8, 9] 
make it difficult to address real-life factors that influence a 
WiSAR search scenario, such as varying terrain, finding 
clues, and different target physiologies and psychologies. 
Some works [8, 10-13] do consider a limited number of 
additional factors, but do not present a comprehensive, on-
line method suitable for automation with multiple robots. 
Thus, the purpose of our recent research has been to develop 
an effective multi-robot coordination (MRC) methodology 
for autonomous search in WiSAR applications [14, 15]. This 
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paper addresses one specific issue in this endeavor, namely, 
optimal deployment of multi-robot teams. 

Deployment problems in the literature have generally 
either referred to multi-agent formations [16-18] or to 
coverage of a bounded area via the dispersion of multiple 
agents [10, 19, 20]. An example of the former is [17], where 
a user specifies the deployment locations and a general 
deployment strategy for a team of multiple heterogeneous 
robots. A lowest-cost assignment (in terms of route-length 
and time) of robots to locations is determined based on 
hierarchical task network planning and constraint reasoning 
techniques. In [18], uncertainty is considered in the 
deployment of a network of mobile robots towards a fixed, 
steady-state spatial configuration. A stochastic gradient 
descent algorithm guides the robots and a potential function 
is suitably chosen such that the goal configuration 
corresponds to its minimum value.  

As a coverage task, for example, the deployment problem 
in [10] involves determining the number and size of robot-
groups that should be unloaded from a carrier, and the initial 
robot locations. A solution that can cover the deployment 
area within the maximum coverage time allowed is 
determined iteratively by varying the number and sizes of 
groups based on heuristics. In [19], the time required to 
decrease uncertainty density of the environment below a 
specified level (through effective coverage) is compared for 
both combined and sequential deploy-and-search strategies 
with random and greedy searches. Deployment is conducted 
by performing a centroidal Voronoi partition of the search 
space. However, the approach used to update the 
probabilistic information is applicable only to static, 
bounded environments. 

In summary, existing deployment methods account for a 
limited scope of factors when determining deployment 
solutions. The problem is one of either attaining a particular 
formation, or of covering an area under robot sensors as 
completely as possible, neither of which considers optimal 
positioning of robots with respect to metrics important for a 
WiSAR search operation. Furthermore, incorporation of 
uncertainty is only in terms of an unknown, static 
environment with an a priori known, continuous 2D 
uncertainty distribution. In WiSAR, however, robot 
deployment requires initially assigning multiple robots to 
positions that help to optimize the search, based on 
probabilistic information of a lost target’s location. As well, 
subsequent on-line re-deployment of the robots must be 
conducted to address the dynamic nature of the search for a 
moving target in a growing search area, who may leave 
behind clues and whose motion is influenced by terrain 
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topology and lost-person psychology. The aforementioned 
deployment methods cannot address these issues, and, thus, 
a specialized solution, such as the one proposed in this 
paper, is required. 

II. PROBLEM DESCRIPTION  
The primary difficulty in any WiSAR search scenario is 

the probabilistic representation of a target’s location as a 
function of time. An effective representation must address 
the following real-life factors for the optimal deployment of 
resources: target physiology and psychology, irregular 
terrain, and found clues. Prior to the formulation of the 
deployment problem in Sub-Sections B and C below, our 
novel target-location prediction model reported earlier in 
[14, 15] is first summarized in Sub-Section A.  

A. Proposed Search Methodology for Autonomous WiSAR 
A typical robotic WiSAR scenario is assumed to proceed 

as follows: first, a notification arrives of a missing person 
(i.e., the target). The last known position (LKP) coordinates 
of the target at time t = 0 s are given. Next, to initially 
deploy the robots and start the search process, the target 
motion behavior is predicted using a key construct 
developed in our research: the iso-probability curves. 

1) Construction of Iso-Probability Curves 
Iso-probability curves represent the probabilistic 

information about the target’s location within the search area 
at any given time. They are constructed using a one-
dimensional target-location probability density function 
(PDF) for the likely location of the target along a single line 
of travel. It is assumed, herein, that the target can move in 
any direction, θ [0°, 360°], from his/her LKP = (x0, y0). 
Given a PDF, p(v, θ), v , v ≥ 0, for all the possible mean 
target speeds [21], a target-location PDF, p(r, θ, t), for the 
distance, r , r ≥ 0, along a given direction (ray) emanating 
from the current LKP can be obtained. Assuming a bounded 
normal distribution for the (nominal) mean target-speed 
PDF, the target-location PDF, p(r, θ, t), also becomes a 
normal distribution (see [14] for more details), Fig. 1(a).  

Each ray emanating from the LKP is sub-divided at key 
cumulative-probability points for the target location. The 
loci of all common points form contours, referred to 
hereafter as iso-probability curves. A curve formed from the 
locus of X% points bounds the region that has an X% chance 
of containing the target. Fig. 1(b) illustrates the formation of 
iso-probability curves for 8 rays with identical PDFs on all 
rays. Methods have also been devised to scale the PDFs to 
incorporate the effect of varying terrain and obstacles, so 
that in general, the curves would have irregular shapes, [14]. 

2) Propagation of Iso-Probability Curves  
As search time passes, the iso-probability curves need to 

be propagated outwards to account for the possible 
continued target motion. Making the conservative estimate 
that the target moves at constant speed in a fixed direction 
outward from the LKP, this propagation is accomplished by 
multiplying the mean target-speed PDF corresponding to 
each ray by the total time passed since the target was at the 
LKP. 

The effect of clues is addressed by taking the coordinates 
of the newly-found clue as the new LKP, and reconstructing 
the iso-probability curves based on the elapsed time since 
the target dropped the clue. For clues that only indicate 
position, conservative speed and path estimates can be made 
for the time the clue was dropped, and the additional time 
for which the target would have been moving. 
 

 
Fig. 1. Iso-probability curves. 

 
3) A Search Strategy 

A basic search strategy that utilizes the iso-probability 
curves could require each robot to: (i) start on its assigned 
curve; (ii) move in a direction tangent to it in a clockwise 
manner at a predetermined constant speed for a fixed short 
amount of time; (iii) change direction to move on a new line, 
tangent to an imaginary circle centered at the current LKP, 
with a radius equal to the distance from the LKP to the 
current position of the robot; and, (iv) return to its respective 
curve via the shortest path and restart the basic motion 
strategy whenever the curves are propagated outward. 

The search strategy may also be modified to account for 
target psychological behavior. For example, 1 to 6 year-old 
children, when lost, seek out a place of shelter after an initial 
period of random motion, [21]. Search robots on the nearest 
iso-probability curves would, thus, make a detour to known 
shelters for a close-up investigation at regular time intervals. 

B. Problem Formulation for Initial-Deployment  
In our proposed approach to conducting WiSAR based on 

the use of iso-probability curves, as introduced above, the 
first task at hand is the effective initial deployment of search 
effort. Since iso-probability curve density guides search 
effort allocation, the deployment problem would, thus, 
involve determining the optimal number of curves and their 
optimal positions within the search region. However, one 
must note that every time the search-engine of the 
deployment optimization process evaluates the ‘goodness’ of 
a set of iso-probability curves, the calculation of the 
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corresponding objective-function value relies on the 
balanced distribution of robots on these curves, Fig. 2. 

Determining the balanced distribution of robots among a 
given set of iso-probability curves was addressed in our 
earlier work [14, 15]. It will, thus, be only briefly 
summarized below, prior to a detailed discussion of the 
optimization process for determining the optimal number of 
curves and their locations. 
 

 
 

Fig. 2. The initial-deployment problem. 

1) Determining Resource Allocation Among Iso-
Probability Curves 

The metric for the allocation of robots to a set of iso-
probability curves in our work aims at achieving a balanced 
search effort by all sub-sets of robots assigned to individual 
curves. One can note that curves positioned further out from 
the LKP would have greater perimeter length and, thus, they 
must be allocated proportionately more robots compared to 
curves closer to the LKP. The ratio of the radial distance of 
each nominal curve from the LKP, relative to that of the first 
nominal curve in the curve-set can be used for the purpose of 
this allocation-balancing. These ratios would need to be 
multiplied by a scaling-factor and rounded to the nearest 
integer to yield a valid number of robots. 
 

2) Determining The Optimal Number of Iso-Probability 
Curves and Their Positions 

For the optimization problem formulated herein, the 
decision variables are the number of curves, Nc, and the 
position, Rc, of the center of the curve-set (expressed as the 
cumulative probability value under the target-location PDF 
up to the position of the center). To ensure that the 
optimization is feasible for on-line mode, the problem is 
simplified by assuming that the inter-curve spacing, Dc, is a 
constant, user-selected parameter. This spacing is the 
difference in the position (cumulative probability) values of 
any two adjacent curves. Given these three quantities, the 
position value, Rp, of any curve, p, is determined as: 

 (1) 

As often done in Search Theory literature [6, 8], search 
effectiveness can be quantified in terms of: the total time 
taken to find the target (search time), and the probability of 
finding the target (success rate). These two metrics are 
detailed next. 

a) A Search-Time Metric: Let’s assume that the Nr,p robots 
deployed on the pth iso-probability curve are uniformly 
distributed along its perimeter, and travel clockwise along 
the perimeter. Thus, if the target happens to be located on 
one of the curves, the robots assigned to that curve would 

‘find’ the target. A measure of the search time would, then, 
be equivalent to the distance, on average, that a robot would 
have to travel on its curve to ‘find’ the target – defined by 
half the curve-length between any two adjacent robots on 
that curve. The average search time metric for any given 
curve, p [1, Nc], with circumference, Cp, is expressed as: 

 (2) 
This average search time per curve can be normalized by 

taking its ratio to the average search time for the “100%” 
curve that has been allocated a single robot (i.e., the worst-
case search time, given by half the circumference, ½·C100). 
Subsequently, averaging the normalized search times of all 
the curves yields the overall average search time measure as: 

 (3) 

b) A Success-Rate Metric: Let us assume that each robot 
has a sensing range of rd, and follows curve, p, located at r = 
Lp,i from the LKP on a ray, i [1, Nrays]. Then, the success 
rate for that curve from the perspective of this ray can be 
taken as the area (probability) under the target-location PDF 
on that ray between Lp,i – rd and Lp,i + rd. Averaging the 
probability values over all rays and summing this average 
probability over all curves, gives the overall search success 
rate measure. Assuming a normal distribution, Ni(ri, , 

), for the target-location PDF on each ray, i, the overall 
search success rate becomes: 

 (4) 

c) A Multi-Objective Metric: An overall objective function 
can quantify search effectiveness as a weighted sum of 
multiple objective functions, such as the above two metrics, 
weighted by  and , respectively: 

 (5) 

The constraints for this formulation are the upper and 
lower bounds on the two decision variables. With respect to 
curve-set position, Rc, since an iso-probability curve must 
have some finite distance from the LKP, the user must 
specify a minimum position, Rmin. However, a target-location 
PDF with infinite range, such as the normal distribution, 
does not have a finite 100% cumulative probability point, 
and must be truncated. We define the 100% iso-probability 
curve position as the point on the ray corresponding to r = 
( D + 3 D). Thus, Rc can range from Rmin to the cumulative 
probability value, Rmax, corresponding to r = ( D + 3 D):  

User-specified  , (6) 

 (7) 

The lower bound on Nc is 1 curve, but the upper bound 
depends on two considerations. First, given values for Rc and 
Dc, the maximum number of curves is limited by the 
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available space in the range [Rmin, Rmax]. Secondly, the 
available number of robots, Nr, must be allocated to each 
curve following the resource allocation method mentioned 
earlier. Thus, an iterative process must be used to determine 
the upper bound, Nc_max, where curves are added 
symmetrically about Rc until any one of the above two 
conditions cannot be satisfied: 

 , (8) 

 (9) 

C. Problem Formulation for Re-Deployment 
Since the environment, target-state, and probabilistic 

target information are dynamically changing in the WiSAR 
problem, on-line re-deployment of the iso-probability curves 
and the robots assigned to them, beyond the initial first 
deployment, is also required during the search process to 
maintain the optimality of the search. As summarized in Fig. 
3, at a given time instant, the re-deployment problem is 
identical to initial deployment in determining the optimal 
number of iso-probability curves and their locations, except 
for an additional task of re-assigning robots to new curves. 
 

 
 

Fig. 3. The re-deployment problem. 
 

The re-assignment of robots to the new set of curves is a 
secondary optimization problem. As search progresses, the 
robots move and become distributed throughout the search 
area. If and when re-deployment becomes necessary, the 
robots would not necessarily be on their assigned curves. 
This requires the secondary task for optimal re-deployment: 
decide how to re-assign robots to the new optimal curves. 

The time spent by robots in trying to achieve a re-
deployment is time taken away from conducting the search. 
As a result, the optimality of the iso-probability curves, and 
of the search endeavor, could be compromised. Therefore, 
the objective of the optimal re-assignment problem is to 
minimize the distance travelled by the last robot to reach its 
assigned deployment position on a new curve.  

In order to ensure that re-deployment is achieved as 
quickly as possible, the optimization needs to assign robots 
to curves, and the robots take the shortest path to get there. 
The point at which they reach their assigned curve in this 

manner becomes their deployment position coordinates. 
Given an optimal solution to this re-assignment problem, the 
time taken for the last robot to reach its deployment position 
(i.e., the return-time) is compared to a user-specified 
maximum return-time threshold to see if the decision 
variables, Nc and Rc, are valid. 

Since there are always as many assigned positions on 
curves as there are robots, we define the binary decision 
variables, xipj [0, 1], representing the yes/no decision to 
assign robot i  [1, Nr] to deployment position j  [1, Nr,p] 
on curve p  [1, Nc]. A cost matrix is defined with a column 
for each position on each curve that must be filled (i.e., 
Curve 1 requiring Nr,1 robots is associated with the first Nr,1 
columns of this matrix; Curve 2 with the next Nr,2 columns, 
and so on). This produces an Nr×Nr cost matrix, where each 
element, cipj, represents the shortest-path distance between 
robot ri and curve pj. The objective is to select the robot re-
assignments that minimize the maximum return-distance 
among all the robots: 

 (10) 

Four constraints are required: each robot is assigned to only 
one deployment position (Eq. 11); each deployment position 
of each curve must have one robot assigned to it (Eq. 12); 
the total number of assignments must equal the total number 
of robots (Eq. 13); and, the decision variables must be 
integers that can only take on the values ‘0’ or ‘1’ (Eqs. 14 
and 15): 

 , (11) 

 , (12) 

 , (13) 

, (14) 

 (15) 

III. INTEGRATED RE-DEPLOYMENT SOLUTION 
METHODOLOGY 

We propose an integrated approach to solving the re-
deployment problem, Fig. 3, by simultaneously considering 
the selection of the optimal curve-set and the optimal robot 
re-assignments. Initial deployment, Fig. 2, is just a sub-
problem for the determination of the optimal curve set. 

The proposed integrated solution method combines: (i) a 
non-linear optimization technique, to determine the optimal 
iso-probability curves (Eqs. 5-9), with (ii) a method that 
solves the constrained optimization formulation (Eqs. 10-15) 
of the re-assignment problem, for any given parameter set 
value, , that is being evaluated.  
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A. Optimal Iso-probability Curves 
The primary optimization issue can be expressed as a 

general non-linear programming problem involving the 
minimization of Z1 (Eq. 5), with only inequality constraints 

 (Eqs. 6-9), where  is a given solution 
point vertex. Although any non-linear programming method 
may be used to solve it, the Flexible Tolerance Algorithm 
(FTA) [22] was adopted in our work. 

B. Optimal Re-Assignment of Robots 
The formulation of this secondary optimization problem 

given by Eqs. 10-15 produces a Linear Bottleneck 
Assignment Problem (LBAP). The optimal objective 
function value yields the minimized maximum robot-return-
distance. Dividing this value by the velocity of a search 
robot gives a time value, which is compared to the maximum 
return-time threshold to determine if a penalty should be 
applied. The LBAP can be solved efficiently via the 
Threshold Algorithm given in [23].  

C. Decision-Making Threshold 
The optimal re-deployment solution must be computed at 

regular time intervals for an intended future search time 
point, Tf. Upon obtaining this solution, the curves 
corresponding to the existing deployment solution being 
used at that time must be propagated up to Tf, and the 
objective function values (Eq. 5) for these two alternatives 
must be computed and compared. The new optimal solution 
is only used if the percentage difference between these two 
objective function values exceeds a user-specified threshold 
(i.e., if re-deployment is deemed to be beneficial). 

IV. ILLUSTRATIVE EXAMPLE OF DEPLOYMENT IN WISAR 
The proposed autonomous MRC method for WiSAR is 

applied to a realistic search scenario to demonstrate when 
and how optimal initial deployment, and re-deployment, 
would be beneficial. In this scenario, a 1 to 6 year old child 
is lost in a forest-type terrain that only allows for ground 
search. The search commander decides to perform an 
equally time- and success-critical search, assigning equal 
weights of wTs = wPs = 0.5. The simulator chooses a random 
target speed of 0.14 m/s (from the assumed mean target-
speed PDF) and a 20  travel direction. The target is assumed 
to be moving outward without stopping (i.e., worst-case 
scenario), with random variations of ±3  of ±0.014 m/s and 
±15°, respectively, every 120 s, to mimic drift. The target 
also ‘drops’ clues every 600 s. The nominal mean target-
speed PDF is scaled on-line during the search according to 
calculated instantaneous terrain slope along 8 rays. 

The target is assumed to have an 1800 s head-start, 
representing time taken for the search robots to be initially 
deployed around the LKP. After 2700 s, the target starts to 
seek shelter, which he/she can detect from a distance of 10 
m. If shelter is found, the target takes the shortest path to the 
shelter and remains there for the rest of the time.  

A total of 19 search robots, moving at constant speed, are 
available, 18 of which are assigned to iso-probability curves, 
while the 19th is restricted to search the area bounded by the 

innermost curve. The robots can detect the target within a 10 
m radius, and clues within a 3 m radius.  

Before starting the search, the optimal initial deployment 
solution is computed and utilized. At 300 s time intervals 
thereafter, the optimal re-deployment solution is computed 
and compared to the existing one. Re-deployment is 
implemented if the difference in objective function values 
between the two exceeds a threshold – set arbitrarily to 4% 
in our example. The return-time threshold (Tr_max) is 300 s. 

Figure 4 shows the initial optimal deployment solution (Nc 
= 6, Rc = 0.432). The small dots on the curves are the 
cumulative probability points on the rays and the large dark 
dots are the robots. The circles with solid and dashed lines 
represent the randomly placed (circular) terrain obstacles 
that are a priori known and unknown, respectively. The 
squares represent shelter locations, the large lighter-shaded 
dots are the clues, and the ‘×’ indicates the target. 

Figure 5 shows a re-deployment triggered at t = 2400 s 
(Nc = 7, Rc = 0.445), where the objective function value 
differs by ΔOB = 4.6% compared to the existing deployment 
solution. A second re-deployment (Nc = 7, Rc = 0.415, ΔOB 
= 5.8%) is triggered at t = 4500 s (Fig. 6). 

 

 
 

Fig. 4. Optimal deployment solution for wTs = wPs = 0.5 (t = 1800 s). 
 

 
 

Fig.5. Implementation of new optimal deployment solution (t = 2400 s). 
 

This simulation resulted in a successful search, and the 
target was found at time t = 4635 s. Figure 7 shows the paths 
taken by the target (thick, dark line leading to the ‘×’) and by 
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4 of the robots (thinner lines) throughout the search process. 
A plot of the percentage change in objective function values 
used to decide on re-deployment during the re-evaluations 
every 300 s is given in Fig. 8. 
 

 
 

Fig. 6. Implementation of new optimal deployment solution (t = 4500 s). 
 

 
 
Fig. 7. Paths of target and 4 of the robots throughout the search (t = 4635 s). 
 

 
 

Fig. 8. Plot of percentage difference in objective function values. 

V. CONCLUSIONS 
This paper has presented an optimal deployment 

methodology for multi-robot teams engaged in autonomous 
WiSAR. The proposed method utilizes the novel concept of 
iso-probability curves, which predict and represent a lost 
person’s motion behavior for WiSAR scenarios, in order to 
properly distribute search effort within a growing search 
area during initial deployment and subsequent re-
deployment, as required. A realistic WiSAR search 
simulation verified the ability of the method to successfully 
deploy robots within a dynamically changing environment. 
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