
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2019

1

Abstract— Rescue robots can be used in urban search and
rescue (USAR) applications to perform the important task of
exploring unknown cluttered environments. Due to the
unpredictable nature of these environments, deep learning
techniques can be used to perform these tasks. In this paper, we
present the first use of deep learning to address the robot
exploration task in USAR applications. In particular, we
uniquely combine the traditional approach of frontier-based
exploration with deep reinforcement learning to allow a robot to
autonomously explore unknown cluttered environments.
Experiments conducted with a mobile robot in unknown
cluttered environments of varying sizes and layouts showed that
the proposed exploration approach can effectively determine
appropriate frontier locations to navigate to while being robust to
different environment layouts and sizes. Furthermore, a
comparison study with other frontier exploration approaches
showed that our learning-based frontier exploration technique
was able to explore more of an environment earlier on, allowing
for potential identification of a larger number of victims at the
beginning of the time-critical exploration task.

Index Terms— Search and Rescue Robots; Autonomous
Agents; Deep Learning in Robotics and Automation

I. INTRODUCTION
obile rescue robots can be deployed in harsh urban
search and rescue (USAR) scenarios in order to assist in

exploring unknown cluttered environments, while searching for
trapped victims. The advantage of using such robots in USAR
is to help reduce the workload of rescue workers and improve
their situational awareness [1]. Moreover, rescue robots can be
used as additional agents to help speed up the search for
victims during such time sensitive missions.

To address the autonomous exploration problem for USAR
environments, rescue robots need to navigate to different
locations in an unknown environment in order to map the

environment and locate potential victims [2]. Simultaneous
localization and mapping (SLAM) techniques [3]–[5] can be
used to map areas the robots are exploring. To-date the most
common method used for exploring unknown USAR
environments is frontier exploration [2], [6]–[9]. In this
method, a robot is directed to explore the boundaries of an
already-explored area, i.e., the frontiers [10].

Frontier exploration techniques are mainly based on cost [8],
[9], [11], [12] or utility-based [2], [6], [7], [11] performance
metrics. In general, these approaches are optimized for a pre-
defined environment layout and an objective such as greedily
minimizing travel distance or maximizing information gain.
However, USAR environments affected by disasters are
unpredictable as their layout can significantly change post-
disaster, making the reliance on a known layout not possible.
Furthermore, USAR environments vary from each other and
are not identical.

The general robot exploration problem has also been
represented as a traveling salesman problem (TSP), in which
both a TSP solver using optimization and a frontier exploration
technique have been used [9]. The advantage of incorporating a
TSP solver in the exploration task is that a near optimal
solution can be obtained. However, a priori information of the
environment is still needed such as a topo-metric graph.

Machine learning (ML) techniques have become
increasingly popular in computer vision and robotics
applications. Traditional machine learning and deep learning
techniques have been applied to image classification [13]–[16],
target object detection [17], [18], robot-team work division
[18], and robot visual odometry [19], [20] problems.

With respect to the robot exploration problem, reinforcement
learning (RL) has been used for exploring unknown
environments. In particular, RL approaches have been used to
teach robots how to explore a variety of unknown
environments over time [21]. However, these approaches
require robot state features to be handcrafted and suffer from
the curse of dimensionality [22]. This limits their application to
fully observable environments with low-dimensional state
spaces [23].

 Recently, deep reinforcement learning (DRL) approaches
have been proposed to address these issues. In DRL, state
features are learned automatically, and dimensionality can be
reduced through iterative interactions with the environment
[22]. DRL techniques have mainly been proposed for robot
navigation in unknown environments, which requires a robot to

Deep Reinforcement Learning Robot for Search
and Rescue Applications: Exploration in

Unknown Cluttered Environments
Farzad Niroui, Student Member, IEEE, Kaicheng Zhang, Student Member, IEEE,

Zendai Kashino, Student Member, IEEE, and Goldie Nejat, Member, IEEE

M

Manuscript received: September 10, 2018; Revised December 6, 2018;
Accepted January 2, 2019.

This paper was recommended for publication by Editor Youngjin Choi
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by the Natural Sciences and Engineering Council of Canada,
and the Canada Research Chairs program.

All authors are with the Autonomous Systems and Biomechatronics
Laboratory in the Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, ON M5S 3G8, Canada. (email:
{farzad.niroui, kc.zhang} @mail.utoronto.ca, {zendkash, nejat}
@mie.utoronto.ca).

Digital Object Identifier (DOI): see top of this page.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to
publication. The final version of record is available at: https://doi.org/10.1109/LRA.2019.2891991

https://doi.org/10.1109/LRA.2019.2891991

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2019

learn how to avoid obstacles while traversing the environment
[24]–[26]. To-date, DRL has yet to be used to develop
exploration strategies for unknown cluttered environments such
as those found in USAR applications.

To address the limitations of existing frontier exploration
and traditional machine learning techniques, our research
focuses on the first use of deep learning for the robot
exploration problem in USAR applications. Namely, our
contribution consists of the design of a novel DRL network
architecture for frontier exploration to allow a robot to
autonomously explore unknown environments. In particular,
we develop a unique exploration approach which integrates
DRL with frontier exploration to allow a robot to learn from its
own experiences while being robust enough to generate
exploration strategies for varying unknown environments. The
objective of our approach is to maximize the robot's
information gain early on during exploration. This is a desired
behavior to allow the robot to find trapped victims within an
environment as quickly as possible.

II. RELATED WORK
Exploration in unknown environments is generally achieved

using frontier exploration. Frontier-based techniques can be
categorized into: 1) utility-based [2], [6], [7], [11], or 2) cost-
based [8], [9], [11], [12] approaches. In USAR applications,
utility-based frontier exploration approaches have mainly been
used. For example, in our own previous work, we developed a
direction-based frontier exploration technique [2], [6]. The
approach utilized a utility function which weighted the three
parameters of terrain type (e.g., open unvisited, unvisited
climbable, unknown obstacle), neighboring cell states, and
travel distance to determine an exploration direction for the
robot. In both simulated and real experiments, a mobile robot
was able to successfully explore unknown cluttered USAR-like
environments.

In [7], a multi-criteria technique was used to determine
which frontier to explore based on the distance to a frontier,
information gain, and the robot’s ability to transmit
information back to a base station. The approach was compared
to other approaches which evaluated frontiers based on just
distance or a combination of distance and information gain. For
simulated USAR-like indoor environments, it was found that,
on average, the proposed multi-criteria approach outperformed
the other strategies.

A cost-based frontier exploration technique was presented in
[8] where frontier locations were selected based on the robot’s
orientation. Namely, a set of selection rules were defined in
order to reduce the expended energy in the exploration task by
trying to avoid repeatedly navigating in the same area. In
simulated experiments, this approach outperformed a utility-
based technique in terms of exploration distance, repeated
coverage and energy.

For frontier exploration in USAR, what is common amongst
the different approaches is that the parameters considered for
formulating the strategies are fixed throughout the task and
they each have a constant weight assigned to them. Therefore,
the formulated strategies will only perform well in certain
environments with specific layouts. Our goal with DRL is to
formulate an exploration strategy which generalizes to more

environment layouts. Moreover, we want the DRL exploration
strategy to evolve as the exploration task progresses in order to
satisfy our objective to maximize the robot's information gain
early on during exploration.

A. DRL-based Exploration
DRL methods have been developed to solve complex

problems such as determining robot motion primitives in
unknown environments [24]–[26]. For USAR applications,
DRL has been applied to the robot visual servoing problem
based on the detection of a target object [18]. As previously
mentioned, DRL addresses the limitations of traditional RL
techniques which suffer from the curse of dimensionality due
to large state and action spaces by learning low-dimensional
state features of high-dimensional states from sensory data
[22]. For example, Deep Q-networks (DQNs) utilize large
neural networks as the function approximator for value-based
RL. In [24], a DQN was used to learn robot movement
directions (forward, right, left) using depth images as input to
the network. Simulations performed in corridors showed that
the robot could navigate straight and circular corridors while
avoiding walls.

In general, a DQN works with a large input space but it can
suffer from slow convergence speed. To improve upon the
DQN approach, Asynchronous Advantage Actor-critic (A3C)
was developed [27]. A3C uses asynchronous gradient descent
to optimize deep neural network controllers. This approach can
significantly accelerate both the optimization and training
processes. A3C is an on-policy learning algorithm, which
maintains a policy and an estimate of the value function.
Multiple parallel actor-learner threads are involved
simultaneously, each of which operate in an isolated
environment and determine accumulated loss in order to update
weights of a central deep neural network, where the latter is
shared among all threads [27].

In [25], an A3C DRL approach which provided a robot with
long-term memory was presented. The robot learned the
representation of a global map from sensory data and used this
information to explore unknown regions of an environment. 2D
and 3D simulations were conducted in rooms with obstacles,
where a robot successfully explored the unknown environment
by implementing the primitive actions of standing still, turning
left or right, and moving forwards. This approach was
compared to both random walk and A3C with no long-term
memory, and the proposed approach had a higher success rate
for the exploration task.

In [26], an A3C network was designed for a robot to
navigate rough terrain in USAR environments, where goal
target locations were provided. The network was trained to
formulate primitive robot motion actions such as moving
forward, moving backwards, and turning. The overall
navigation task was achieved by the robot performing a series
of these primitive actions in order to reach the a priori defined
target locations. The approach was successfully tested in
varying 3D simulated USAR-like environments.

Existing DRL approaches have been investigated for
traversing corridors [24], rooms [25], and USAR-like
environments [26], where the output of the networks are robot
movement commands used to either navigate around obstacle
or to specific locations. However, to-date, DRL has not yet

NIROUI et al.: Deep Reinforcement Learning Robot for Search and Rescue Applications: Exploration in Unknown Cluttered Environments 3

been used to directly determine an exploration strategy that will
allow the robot to search an unknown environment in order to
maximize its knowledge gain. This exploration strategy must
be able to effectively decide the optimal locations for the robot
to explore. This is different from the motion problems
addressed in [24]–[26], which focus on determining robot
motion primitives to either simply move in a certain direction
or to already defined target locations.

III. DEEP LEARNING ROBOT ARCHITECTURE FOR
EXPLORATION IN USAR

Our proposed learning-based exploration architecture is
presented in Fig. 1. The World Model generates a 2D
occupancy grid (i.e., map) of the environment while a robot
explores the unknown environment. The Exploration module
uses this occupancy grid as well as odometry data to determine
a frontier location to explore. This frontier location is sent to
the Navigation module which computes a navigation path for
the robot to this location, that is implemented using the Low-
level Controller.

A. World Model
The 2D occupancy grid of the environment is generated

using depth information from the 3D sensor, and the robot
odometry information. The terrain in the occupancy grid is
classified as open, occupied, and unknown cells. As the robot
explores an environment, its information gain is determined by
identifying the number of new open or occupied cells in the
occupancy grid.

B. Exploration Module
For the Exploration module, we have designed an A3C

network for frontier exploration, as shown in Fig. 2.
1) Inputs

The input to the network consists of the 2D occupancy grid,
the locations of all possible frontiers, and the robot location.
Each input is represented as a 64 by 64 array.

The scaling of the occupancy grid to the network input
dimension is achieved in a two-step process. First, the cells of
the occupancy grid are grouped into 10×10 regions to remove
redundant cells and to down scale the grid without losing
useful information. For each region, the total number of cells in
each cell category (open, occupied and unknown) is multiplied
by its corresponding weight of 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and
𝑤𝑤𝑜𝑜𝑜𝑜𝑢𝑢𝑜𝑜𝑜𝑜𝑢𝑢𝑜𝑜, respectively. Then, the region is assigned to the cell
category with the highest weighted sum. In the second step, the
already scaled-down occupancy grid is resized to the desired
input dimension using nearest-neighbor scaling.

For the frontier locations, all possible frontiers are identified
by first extracting the open and unknown cells from the
occupancy grid into two different layers. Then, the unknown
cells layer is dilated in order to overlap with the open cells
layer. The frontier boundaries are identified by performing
element wise operations between the two layers. Frontier
boundaries are then clustered using k-means to represent
individual locations, with each location representing a single
boundary.
2) Architecture

The network architecture contains multiple convolutional
layers. After each convolutional operation, we use an
exponential linear (ELU) activation function. In the design, the
skip architecture is used to preserve the details of the input
states which are found in earlier depths of the network [28].
Furthermore, a long short-term memory (LSTM) unit is used to
ensure that the network also considers previous robot state
features in order to make better decisions [29].

The output of the LSTM unit is directly used by the Actor
and Critic layers. From the Actor layer, a single parameter
representing a weight 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∈ (0,1) is obtained. The Filter
layer uses 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 in a cost-function to evaluate the cost of
each frontier location. This cost is based on the distance, d, to

Figure 2. The proposed A3C network architecture for robot exploration of an unknown cluttered environment.

Figure 1. Robot exploration architecture for USAR.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2019

each frontier location from the robot’s current location as
measured using the A* algorithm, and the potential information
gain, g, at the frontier location determined by the number of
unknown cells surrounding the frontier location in the robot’s
2D occupancy grid. The overall cost function is formulated as:

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 �̅�𝑑 + (1 −𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)(1 − �̅�𝑔) , (1)

where �̅�𝑑 and �̅�𝑔 are the normalized distance and information
gain for a frontier location. Once all the frontier location costs
have been determined, the location with the lowest cost is
chosen for the robot to navigate to.
3) Objective Function

The objective of our approach is to maximize the total
information gain along the robot’s navigation path:

 max�∑ (∑ 𝑔𝑔𝑗𝑗)𝑑𝑑𝑜𝑜𝑜𝑜
𝑗𝑗=1

𝑁𝑁
𝑜𝑜=1 + (𝐷𝐷ℎ − ∑ 𝑑𝑑𝑜𝑜𝑁𝑁

𝑜𝑜=1)∑ 𝑔𝑔𝑜𝑜𝑁𝑁
𝑜𝑜=1 � , (2)

where N is the total number of frontiers a robot navigates to in
an exploration episode. For step 𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁, the robot travels a
distance of 𝑑𝑑𝑜𝑜 and obtains an information gain of 𝑔𝑔𝑜𝑜. 𝐷𝐷ℎ is a
distance horizon determined by the environment size, namely,
by defining an overall travel distance as a common scale for
each environment to compare against.

C. Navigation Module
A frontier location chosen by the Exploration module is

provided to the Navigation module, where the A* algorithm is
then used to generate a path from the robot’s current location to
the frontier location. The Robot Operating System (ROS)
move-base package [30] is used to generate movement
commands along this path.

D. Training
To train the A3C network, a modified version of the 2D

simulator, Turtlebot Stage [31], in ROS was used. A Turtlebot
with both odometry and 3D sensory information was used to
explore cluttered unknown environments. For grouping regions
of the 2D occupancy grid, the weights of 0.08, 0.9 and 0.02
were used for 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , and 𝑤𝑤𝑜𝑜𝑜𝑜𝑢𝑢𝑜𝑜𝑜𝑜𝑢𝑢𝑜𝑜, respectively.
These weights were found through trial and error to be the best
in preserving the useful information of the occupancy grid.

We used an AMD Ryzen Threadripper 1950x CPU for the
training process. Ten actor-learner threads (e.g., agents) were
utilized for training our A3C network. An additional agent, the
test agent, was used for monitoring the progress of the training.
Herein, an agent represents a single robot deployed in a unique
randomly generated 1,600 m2 cluttered environment. The
agent’s starting location within each environment was also
random. This was done to avoid overfitting to a single
environment. Fig. 3 shows an example of an unknown
environment being explored, with possible and chosen frontier
locations shown as red and green dots, respectively.

A single exploration of an environment was defined as an
episode. At the start of each episode, the agents made a local
copy of the global policy parameter, 𝜃𝜃, and value function
parameter, 𝜃𝜃𝑣𝑣. Then, each agent at step 𝑖𝑖 and with state 𝑐𝑐𝑜𝑜
performed action 𝑎𝑎𝑜𝑜 based on policy 𝜋𝜋(𝑎𝑎𝑜𝑜|𝑐𝑐𝑜𝑜; 𝜃𝜃), and received a
reward 𝑟𝑟𝑜𝑜 for transitioning to a new state 𝑐𝑐𝑜𝑜+1 [27]. The state
consists of a combination of the 2D occupancy grid, agent
location and frontier locations, and an action is the goal frontier

location of the network. State transition occurs by the agent
navigating to a frontier location. This procedure was repeated
until the exploration task was finished or the maximum step
size, 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 , of 30 had been reached. Both 𝜃𝜃 and 𝜃𝜃𝑣𝑣 were then
updated as follows [27], [32]:

 ∆𝜃𝜃 = 𝛻𝛻𝜃𝜃 log𝜋𝜋(𝑎𝑎𝑜𝑜|𝑐𝑐𝑜𝑜 ; 𝜃𝜃)𝐴𝐴(𝑐𝑐𝑜𝑜 , 𝑎𝑎𝑜𝑜; 𝜃𝜃𝑣𝑣) , (3)

 ∆𝜃𝜃𝑣𝑣 = 𝐴𝐴(𝑐𝑐𝑜𝑜 , 𝑎𝑎𝑜𝑜; 𝜃𝜃𝑣𝑣)𝛻𝛻𝜃𝜃𝑣𝑣 𝑉𝑉(𝑐𝑐𝑜𝑜; 𝜃𝜃𝑣𝑣) , (4)

where:

𝐴𝐴(𝑐𝑐𝑜𝑜 , 𝑎𝑎𝑜𝑜; 𝜃𝜃𝑣𝑣) = ∑ 𝛾𝛾𝑜𝑜𝑟𝑟𝑜𝑜+𝑗𝑗𝑢𝑢−1
𝑗𝑗=0 + 𝛾𝛾𝑢𝑢𝑉𝑉(𝑐𝑐𝑜𝑜+𝑢𝑢; 𝜃𝜃𝑣𝑣) −

 𝑉𝑉(𝑐𝑐𝑜𝑜; 𝜃𝜃𝑣𝑣) , (5)

and 𝐴𝐴(𝑐𝑐𝑜𝑜 , 𝑎𝑎𝑜𝑜; 𝜃𝜃𝑣𝑣) is an estimation of the advantage function that
quantifies the additional benefit for taking an action in a certain
state. 𝑘𝑘 is the total number of steps from the current step 𝑖𝑖 to
the last step 𝑁𝑁 in an episode, and 𝑉𝑉 is the estimated value
function that quantifies the additional benefit for taking an
action in a certain state.

For training, a discount factor of 𝛾𝛾=0.99 and a learning rate
of 𝛼𝛼=0.0001 were used. An agent received the following
reward:

 𝑟𝑟𝑜𝑜 = �
0 , 𝑖𝑖 ≠ 𝑁𝑁

∑ (∑ 𝑔𝑔𝑗𝑗) 𝑜𝑜𝑖𝑖
𝑖𝑖
𝑗𝑗=0

𝑁𝑁
𝑖𝑖=1 +�𝐷𝐷ℎ−∑ 𝑜𝑜𝑖𝑖

𝑁𝑁
𝑖𝑖=1 �∑ 𝑔𝑔𝑖𝑖

𝑁𝑁
𝑖𝑖=1

𝐷𝐷ℎ ∑ 𝑔𝑔𝑖𝑖𝑁𝑁
𝑖𝑖=1

, 𝑖𝑖 = 𝑁𝑁 . (6)

The reward is given when an agent completes an episode
and is dependant on the information gain and travel distance of
the agent at every step during the episode. The objective is to
provide higher rewards to an agent which has obtained more
information about the environment during the earlier steps of
an episode. Therefore, the weights of the network are tuned to
prefer actions (frontier locations) which maximize the total
information gain of an agent in the shortest distance possible.

Fig. 4 shows the progress of the training as recorded by the
test agent, which shows the reward initially increasing and
distance decreasing, and then both parameters converging. An
episode, on average, took 2 minutes to complete. The test agent
completed 1,760 episodes and the training agents, on average,
completed 3,570 episodes. Overall, our model took 119 hours
to train.

Figure 3. Example of a robot exploring a simulated environment
(40 × 40 𝑚𝑚2) during training. Red points are potential frontier locations,
and the green point is the chosen frontier.

NIROUI et al.: Deep Reinforcement Learning Robot for Search and Rescue Applications: Exploration in Unknown Cluttered Environments 5

IV. EXPERIMENTS
To investigate the feasibility of our proposed architecture for

exploration in cluttered unknown environments, we conducted
three sets of experiments: 1) a performance and scalability test
for our learning-based frontier exploration approach in varying
environments, 2) a comparison of our proposed learning-based
frontier exploration approach with six other frontier exploration
techniques, and 3) the deployment of our approach on a
physical mobile robot exploring an unknown cluttered
environment.

A. Performance and Scalability Study
The Turtlebot Stage simulator was used with 30 randomly

generated environments with sizes of 20 × 20 𝑚𝑚2, 60 ×
60 𝑚𝑚2 and 80 × 80 𝑚𝑚2, respectively. The robot was able to
explore, on average, 98.4%, 98.1% and 97.6% of these
environments, respectively. There were some small unmapped
regions (a few pixels in size) that were within the level of
sensory noise. Fig. 5 shows an example environment for each
environment size. Even though our A3C network was trained
using 40 × 40 𝑚𝑚2 environments, it was able to explore these
randomly generated environments of different sizes. It is
important to note, that the (down and up) scaling of the 2D

occupancy grids to the necessary network input dimension did
not affect the ability of the exploration approach in determining
appropriate frontier locations for the robot to navigate to. All
the important features of the occupancy grid were preserved.

B. Comparison Study
The performance of our learning-based frontier exploration

approach was then compared with utility-based and cost-based
frontier exploration methods presented in [7] that are
applicable to our exploration problem, and a policy-based
exploration approach that was shown to outperform traditional
frontier exploration approaches in many scenarios [8]. These
techniques are based on the following strategies:

1) Cost: This approach always selects the nearest frontier
during exploration.

2) Utility: This approach chooses the frontier location with
the largest potential information gain.

3) Hybrid: This approach uses a combination of distance cost
and information gain using different weights in choosing a
frontier location. We investigated three variations of this hybrid
(H) approach with the following weight values for distance
cost and information gain: a) 0.75-0.25, b) 0.50-0.50, and c)
0.25-0.75, respectively.

4) Policy: For this approach, a robot followed a policy which
was a predefined set of exploration rules. Starting with the
robot’s heading direction, the first frontier in the clockwise
direction and within a 10 m radius is chosen. If no such frontier
exists, a random frontier is selected.

All approaches were implemented for 50 randomly
generated cluttered environments. After each trial, the objective
function (2) was evaluated for the specific techniques. Herein,
we set the horizon, 𝐷𝐷ℎ, to be the total distance the robot
traveled in the environment when it used the A3C network in
order to be able to compare the performance of other
exploration techniques to our proposed method.

Fig. 6 shows the average normalized objective function
value for each technique in our comparison. The A3C network
had the highest average value of 0.67, followed by the hybrid
0.75-0.25 weighting method with a value of 0.65. Fig. 7 shows
the exploration progress of the robot as it traversed the same
environment using the different techniques. In the majority of
the trials, our learning-based exploration technique had more

Figure 5. Example of a 20 × 20 𝑚𝑚2 (left), 60 × 60 𝑚𝑚2 (middle) and 80 × 80 𝑚𝑚2 (right) environment used for the performance and scalability study.

Figure 4. Total distance traveled (the distance traversed by the agent in a
single episode) and reward per episode for the test agent.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2019

information gain early on, as is also shown in Fig. 7. For time-
critical USAR missions, this behavior allows for a robot to
explore more of the environment sooner in order to locate
trapped victims faster.

A statistically significant difference was determined across
all the tests using the non-parametric Friedman test in SPSS
(𝜒𝜒2(6) = 250.32, 𝑝𝑝 < 0.0001). Post hoc analysis was
conducted using Wilcoxon signed-rank tests for pairs of
exploration techniques with Bonferroni correction applied,
changing the significance level to 𝛼𝛼𝑟𝑟𝑜𝑜𝑣𝑣𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜 = 0.001, with an
original 𝛼𝛼 of 0.05 and 50 tests. It was identified that there is a
statistically significant higher average objective function value
when using the A3C network when compared to the 6 other
exploration techniques, Table I. The z test statistic and two-
sided p-values of the Wilcoxon signed-rank tests are reported
in Table I, where all p-values are less than 0.001.

C. Physical Experiments in USAR-like Environments
Experiments in an unknown cluttered USAR-like

environment were performed with our overall architecture
using a physical Turtlebot 2 with an onboard Hokuyo URG-
04LX-UG01 Scanning Laser Rangefinder. The A3C network
used the weights obtained from the simulation training stage. In

order for the robot to simultaneously map and explore the
environment, the ROS gmapping SLAM package [5] was used.
The inputs for mapping included wheel odometry and laser
rangefinder data. The move-base package [30] was used for
navigation to frontier locations. The environment, Fig. 8, was
15 × 15 m2 and consisted of three regions with obstacles and a
single entry between these regions. We investigated the
performance of the robot with respect to the total percentage of
the environment explored. Overall, the robot was able to
explore the environment (97% coverage) by visiting 44 frontier
locations after traveling 95 m in 835 seconds. The map created
by the robot, along with its path and the visited frontier
locations are presented in Fig. 9. The average computation time
to choose a frontier location was 1.2 s. A video showing the
robot implementing our exploration strategy is presented here
on our YouTube channel.

V. CONCLUSIONS
In this paper, we have developed a unique approach which

combines an A3C network with frontier exploration in order to
learn an efficient exploration strategy based on high-
dimensional robot states. Experiments with a mobile robot
showed that the robot was able to effectively explore different
unknown environments with varying sizes while generating
appropriate frontier locations to navigate to. A comparison
study with our proposed learning-based exploration method
and traditional exploration techniques showed that our method
was able to explore more of the environment early on and had a

TABLE I. WILCOXON SIGNED-RANK TEST RESULTS FOR PAIRWISE
COMPARISONS WITH THE A3C NETWORK (WITH Z TEST STATISTIC AND THE

TWO-SIDED P-VALUE).

 z p

Cost -5.121 < 0.0001

Utility -6.154 < 0.0001

H:75-25 -3.77 0.000164

H:50-50 -5.343 < 0.0001

H:25-75 -6.096 < 0.0001

Policy -6.154 < 0.0001

Figure 8. Experimental environment showing the three regions and the
Turtlebot.

Figure 7. Percentage of environment explored with respect to distance
traveled for all techniques for an example environment.

Figure 6. Average objective function values for all 7 techniques,
normalized according to the A3C total traveled distance.

https://youtu.be/fOot7VbCvx8

NIROUI et al.: Deep Reinforcement Learning Robot for Search and Rescue Applications: Exploration in Unknown Cluttered Environments 7

statistically significant higher average objective function value.
Our future work consists of extending our exploration approach
to incorporate varying cluttered terrain that the robot needs to
traverse such as climbable obstacles, and then testing our
architecture in larger varying environments with both dynamic
and static obstacles.

REFERENCES
[1] Y. Liu and G. Nejat, “Robotic Urban Search and Rescue: A Survey

from the Control Perspective,” J. Intell. Robot. Syst., vol. 72, no. 2,
pp. 147–165, Nov. 2013.

[2] F. Niroui, B. Sprenger, and G. Nejat, “Robot exploration in unknown
cluttered environments when dealing with uncertainty,” in Proc. IEEE
Int. Symp. Robot. Intell. Sensors, Ottawa, Canada, 2017, pp. 224–229.

[3] H. Wang, C. Zhang, Y. Song, and B. Pang, “Robot Arm Perceptive
Exploration Based Significant SLAM in Search and Rescue
Environment,” in International Journal of Robotics and Automation,
2018, vol. 33.

[4] T. D. Barfoot, State Estimation for Robotics. Cambridge: Cambridge
University Press, 2017.

[5] “gmapping - ROS Wiki.” [Online]. Available:
http://wiki.ros.org/gmapping. [Accessed: 24-Feb-2018].

[6] B. Doroodgar, Y. Liu, and G. Nejat, “A Learning-Based Semi-
Autonomous Controller for Robotic Exploration of Unknown Disaster
Scenes While Searching for Victims,” IEEE Trans. Cybern., vol. 44,
no. 12, pp. 2719–2732, Dec. 2014.

[7] N. Basilico and F. Amigoni, “Exploration strategies based on multi-
criteria decision making for searching environments in rescue
operations,” Auton. Robots, vol. 31, no. 4, p. 401, Sep. 2011.

[8] Y. Mei, Y.-H. Lu, C. S. G. Lee, and Y. C. Hu, “Energy-efficient
mobile robot exploration,” in Proc. IEEE Int. Conf. Robot. Autom.,
Orlando, FL, USA, 2006, pp. 505–511.

[9] S. Oßwald, M. Bennewitz, W. Burgard, and C. Stachniss, “Speeding-
Up Robot Exploration by Exploiting Background Information,” IEEE
Robot. Autom. Lett., vol. 1, no. 2, pp. 716–723, Jul. 2016.

[10] B. Yamauchi, “A frontier-based approach for autonomous
exploration,” in Proc. IEEE Int. Symp. Comput. Intell. Robot. Autom.,
Monterey, CA, USA, 1997, pp. 146–151.

[11] M. Juliá, A. Gil, and O. Reinoso, “A comparison of path planning
strategies for autonomous exploration and mapping of unknown
environments,” Auton. Robots, vol. 33, no. 4, pp. 427–444, Nov. 2012.

[12] S. Wirth and J. Pellenz, “Exploration Transform: A stable exploring
algorithm for robots in rescue environments,” in Proc. IEEE Int.
Workshop Safety, Security Rescue Robot., Rome, Italy, 2007, pp. 1–5.

[13] N. Ali et al., “A Hybrid Geometric Spatial Image Representation for
scene classification,” PLOS ONE, vol. 13, no. 9, p. e0203339, Sep.
2018.

[14] N. Ali et al., “A Novel Image Retrieval Based on Visual Words
Integration of SIFT and SURF,” PLOS ONE, vol. 11, no. 6, p.
e0157428, Jun. 2016.

[15] B. Zafar, R. Ashraf, N. Ali, M. Ahmed, S. Jabbar, and S. A.
Chatzichristofis, “Image classification by addition of spatial
information based on histograms of orthogonal vectors,” PLOS ONE,
vol. 13, no. 6, p. e0198175, Jun. 2018.

[16] N. Ali, K. B. Bajwa, R. Sablatnig, and Z. Mehmood, “Image retrieval
by addition of spatial information based on histograms of triangular
regions,” Comput. Electr. Eng., vol. 54, pp. 539–550, Aug. 2016.

[17] R. Wang, H. Lu, J. Xiao, Y. Li, and Q. Qiu, “The Design of an
Augmented Reality System for Urban Search and Rescue,” in Proc.
IEEE International Conference on Intelligence and Safety for
Robotics (ISR), Shenyang, China, 2018, pp. 267–272.

[18] C. Sampedro, A. Rodriguez-Ramos, H. Bavle, A. Carrio, P. de la
Puente, and P. Campoy, “A Fully-Autonomous Aerial Robot for
Search and Rescue Applications in Indoor Environments using
Learning-Based Techniques,” J. Intell. Robot. Syst., Jul. 2018.

[19] S. Wang, R. Clark, H. Wen, and N. Trigoni, “DeepVO: Towards End-
to-end Visual Odometry with Deep Recurrent Convolutional Neural
Networks,” in Proc. IEEE International Conference on Robotics and
Automation (ICRA), 2017, pp. 2043–2050.

[20] S. Wang, R. Clark, H. Wen, and N. Trigoni, “End-to-end, sequence-
to-sequence probabilistic visual odometry through deep neural

networks,” Int. J. Robot. Res., vol. 37, no. 4–5, pp. 513–542, Apr.
2018.

[21] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement Learning in
Robotics: A Survey,” Int J Rob Res, vol. 32, no. 11, pp. 1238–1274,
Sep. 2013.

[22] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep Reinforcement Learning: A Brief Survey,” IEEE Signal
Process. Mag., vol. 34, no. 6, pp. 26–38, Nov. 2017.

[23] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[24] L. Tai and M. Liu, “A robot exploration strategy based on Q-learning
network,” in Proc. IEEE Int. Conf. Real-time Comput. Robot., Angkor
Wat, Cambodia, 2016, pp. 57–62.

[25] J. Zhang, L. Tai, J. Boedecker, W. Burgard, and M. Liu, “Neural
SLAM: Learning to Explore with External Memory,”
ArXiv170609520 Cs, Jun. 2017.

[26] K. Zhang, F. Niroui, M. Ficocelli, and G. Nejat, “Robot Navigation of
Environments with Unknown Rough Terrain Using deep
Reinforcement Learning,” in Proc. IEEE Int. Symp. Safety, Security,
Rescue Robot., Philadelphia, PA, USA, 2018, pp. 1–7.

[27] V. Mnih et al., “Asynchronous Methods for Deep Reinforcement
Learning,” in Proc. Int. Conf. Machine Learning - Volume 48, New
York, USA, 2016, pp. 1928–1937.

[28] R. Garg, V. K. B.G., G. Carneiro, and I. Reid, “Unsupervised CNN
for Single View Depth Estimation: Geometry to the Rescue,” in
Computer Vision – ECCV 2016, Amsterdam, The Netherlands, 2016,
pp. 740–756.

[29] M. Hausknecht and P. Stone, “Deep Recurrent Q-Learning for
Partially Observable MDPs,” in AAAI Fall Symp. Series, Arlington,
USA, 2015.

[30] “move_base - ROS Wiki.” [Online]. Available:
http://wiki.ros.org/move_base. [Accessed: 24-Feb-2018].

[31] “turtlebot_stage - ROS Wiki.” [Online]. Available:
http://wiki.ros.org/turtlebot_stage. [Accessed: 24-Feb-2018].

[32] A. Gruslys, W. Dabney, M. G. Azar, B. Piot, M. Bellemare, and R.
Munos, “The Reactor: A fast and sample-efficient Actor-Critic agent
for Reinforcement Learning,” ArXiv170404651 Cs, Apr. 2017.

Figure 9. The 2D occupancy grid map generated by the robot. The black,
light gray and dark areas are occupied, open, and unknown cells,
respectively. The robot’s path is represented by the blue line, and the red
markers are the frontier locations that robot visited. The start and end
locations are labeled with “S” and “E”.

	I. INTRODUCTION
	II. Related Work
	A. DRL-based Exploration

	III. Deep Learning Robot Architecture for Exploration in USAR
	A. World Model
	B. Exploration Module
	1) Inputs
	2) Architecture
	3) Objective Function

	C. Navigation Module
	D. Training

	IV. Experiments
	A. Performance and Scalability Study
	B. Comparison Study
	C. Physical Experiments in USAR-like Environments

	V. Conclusions
	References

