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Abstract— Rescue robots can be used in urban search and 
rescue (USAR) applications to perform the important task of 
exploring unknown cluttered environments. Due to the 
unpredictable nature of these environments, deep learning 
techniques can be used to perform these tasks. In this paper, we 
present the first use of deep learning to address the robot 
exploration task in USAR applications. In particular, we 
uniquely combine the traditional approach of frontier-based 
exploration with deep reinforcement learning to allow a robot to 
autonomously explore unknown cluttered environments. 
Experiments conducted with a mobile robot in unknown 
cluttered environments of varying sizes and layouts showed that 
the proposed exploration approach can effectively determine 
appropriate frontier locations to navigate to while being robust to 
different environment layouts and sizes. Furthermore, a 
comparison study with other frontier exploration approaches 
showed that our learning-based frontier exploration technique 
was able to explore more of an environment earlier on, allowing 
for potential identification of a larger number of victims at the 
beginning of the time-critical exploration task.  

Index Terms— Search and Rescue Robots; Autonomous 
Agents; Deep Learning in Robotics and Automation 

I. INTRODUCTION 
obile rescue robots can be deployed in harsh urban 
search and rescue (USAR) scenarios in order to assist in 

exploring unknown cluttered environments, while searching for 
trapped victims. The advantage of using such robots in USAR 
is to help reduce the workload of rescue workers and improve 
their situational awareness [1]. Moreover, rescue robots can be 
used as additional agents to help speed up the search for 
victims during such time sensitive missions.  

To address the autonomous exploration problem for USAR 
environments, rescue robots need to navigate to different 
locations in an unknown environment in order to map the 

environment and locate potential victims [2]. Simultaneous 
localization and mapping (SLAM) techniques [3]–[5] can be 
used to map areas the robots are exploring. To-date the most 
common method used for exploring unknown USAR 
environments is frontier exploration [2], [6]–[9]. In this 
method, a robot is directed to explore the boundaries of an 
already-explored area, i.e., the frontiers [10].  

Frontier exploration techniques are mainly based on cost [8], 
[9], [11], [12] or utility-based [2], [6], [7], [11] performance 
metrics. In general, these approaches are optimized for a pre-
defined environment layout and an objective such as greedily 
minimizing travel distance or maximizing information gain. 
However, USAR environments affected by disasters are 
unpredictable as their layout can significantly change post-
disaster, making the reliance on a known layout not possible. 
Furthermore, USAR environments vary from each other and 
are not identical.    

The general robot exploration problem has also been 
represented as a traveling salesman problem (TSP), in which 
both a TSP solver using optimization and a frontier exploration 
technique have been used [9]. The advantage of incorporating a 
TSP solver in the exploration task is that a near optimal 
solution can be obtained. However, a priori information of the 
environment is still needed such as a topo-metric graph.    

Machine learning (ML) techniques have become 
increasingly popular in computer vision and robotics 
applications. Traditional machine learning and deep learning 
techniques have been applied to image classification [13]–[16], 
target object detection [17], [18], robot-team work division 
[18], and robot visual odometry [19], [20] problems. 

With respect to the robot exploration problem, reinforcement 
learning (RL) has been used for exploring unknown 
environments. In particular, RL approaches have been used to 
teach robots how to explore a variety of unknown 
environments over time [21]. However, these approaches 
require robot state features to be handcrafted and suffer from 
the curse of dimensionality [22]. This limits their application to 
fully observable environments with low-dimensional state 
spaces [23]. 

 Recently, deep reinforcement learning (DRL) approaches 
have been proposed to address these issues. In DRL, state 
features are learned automatically, and dimensionality can be 
reduced through iterative interactions with the environment 
[22]. DRL techniques have mainly been proposed for robot 
navigation in unknown environments, which requires a robot to 
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learn how to avoid obstacles while traversing the environment 
[24]–[26]. To-date, DRL has yet to be used to develop 
exploration strategies for unknown cluttered environments such 
as those found in USAR applications. 

To address the limitations of existing frontier exploration 
and traditional machine learning techniques, our research 
focuses on the first use of deep learning for the robot 
exploration problem in USAR applications. Namely, our 
contribution consists of the design of a novel DRL network 
architecture for frontier exploration to allow a robot to 
autonomously explore unknown environments. In particular, 
we develop a unique exploration approach which integrates 
DRL with frontier exploration to allow a robot to learn from its 
own experiences while being robust enough to generate 
exploration strategies for varying unknown environments. The 
objective of our approach is to maximize the robot's 
information gain early on during exploration. This is a desired 
behavior to allow the robot to find trapped victims within an 
environment as quickly as possible. 

II. RELATED WORK 
Exploration in unknown environments is generally achieved 

using frontier exploration. Frontier-based techniques can be 
categorized into: 1) utility-based [2], [6], [7], [11], or 2) cost-
based [8], [9], [11], [12] approaches. In USAR applications, 
utility-based frontier exploration approaches have mainly been 
used. For example, in our own previous work, we developed a 
direction-based frontier exploration technique [2], [6]. The 
approach utilized a utility function which weighted the three 
parameters of terrain type (e.g., open unvisited, unvisited 
climbable, unknown obstacle), neighboring cell states, and 
travel distance to determine an exploration direction for the 
robot. In both simulated and real experiments, a mobile robot 
was able to successfully explore unknown cluttered USAR-like 
environments.   

In [7], a multi-criteria technique was used to determine 
which frontier to explore based on the distance to a frontier, 
information gain, and the robot’s ability to transmit 
information back to a base station. The approach was compared 
to other approaches which evaluated frontiers based on just 
distance or a combination of distance and information gain. For 
simulated USAR-like indoor environments, it was found that, 
on average, the proposed multi-criteria approach outperformed 
the other strategies.  

A cost-based frontier exploration technique was presented in 
[8] where frontier locations were selected based on the robot’s 
orientation. Namely, a set of selection rules were defined in 
order to reduce the expended energy in the exploration task by 
trying to avoid repeatedly navigating in the same area. In 
simulated experiments, this approach outperformed a utility-
based technique in terms of exploration distance, repeated 
coverage and energy.    

For frontier exploration in USAR, what is common amongst 
the different approaches is that the parameters considered for 
formulating the strategies are fixed throughout the task and 
they each have a constant weight assigned to them. Therefore, 
the formulated strategies will only perform well in certain 
environments with specific layouts. Our goal with DRL is to 
formulate an exploration strategy which generalizes to more 

environment layouts. Moreover, we want the DRL exploration 
strategy to evolve as the exploration task progresses in order to 
satisfy our objective to maximize the robot's information gain 
early on during exploration. 

A. DRL-based Exploration 
DRL methods have been developed to solve complex 

problems such as determining robot motion primitives in 
unknown environments [24]–[26]. For USAR applications, 
DRL has been applied to the robot visual servoing problem 
based on the detection of a target object [18]. As previously 
mentioned, DRL addresses the limitations of traditional RL 
techniques which suffer from the curse of dimensionality due 
to large state and action spaces by learning low-dimensional 
state features of high-dimensional states from sensory data 
[22]. For example, Deep Q-networks (DQNs) utilize large 
neural networks as the function approximator for value-based 
RL. In [24], a DQN was used to learn robot movement 
directions (forward, right, left) using depth images as input to 
the network. Simulations performed in corridors showed that 
the robot could navigate straight and circular corridors while 
avoiding walls.  

In general, a DQN works with a large input space but it can 
suffer from slow convergence speed. To improve upon the 
DQN approach, Asynchronous Advantage Actor-critic (A3C) 
was developed [27]. A3C uses asynchronous gradient descent 
to optimize deep neural network controllers. This approach can 
significantly accelerate both the optimization and training 
processes. A3C is an on-policy learning algorithm, which 
maintains a policy and an estimate of the value function. 
Multiple parallel actor-learner threads are involved 
simultaneously, each of which operate in an isolated 
environment and determine accumulated loss in order to update 
weights of a central deep neural network, where the latter is 
shared among all threads [27].  

In [25], an A3C DRL approach which provided a robot with 
long-term memory was presented. The robot learned the 
representation of a global map from sensory data and used this 
information to explore unknown regions of an environment. 2D 
and 3D simulations were conducted in rooms with obstacles, 
where a robot successfully explored the unknown environment 
by implementing the primitive actions of standing still, turning 
left or right, and moving forwards. This approach was 
compared to both random walk and A3C with no long-term 
memory, and the proposed approach had a higher success rate 
for the exploration task.  

In [26], an A3C network was designed for a robot to 
navigate rough terrain in USAR environments, where goal 
target locations were provided. The network was trained to 
formulate primitive robot motion actions such as moving 
forward, moving backwards, and turning. The overall 
navigation task was achieved by the robot performing a series 
of these primitive actions in order to reach the a priori defined 
target locations. The approach was successfully tested in 
varying 3D simulated USAR-like environments. 

Existing DRL approaches have been investigated for 
traversing corridors [24], rooms [25], and USAR-like 
environments [26], where the output of the networks are robot 
movement commands used to either navigate around obstacle 
or to specific locations. However, to-date, DRL has not yet 
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been used to directly determine an exploration strategy that will 
allow the robot to search an unknown environment in order to 
maximize its knowledge gain. This exploration strategy must 
be able to effectively decide the optimal locations for the robot 
to explore. This is different from the motion problems 
addressed in [24]–[26], which focus on determining robot 
motion primitives to either simply move in a certain direction 
or to already defined target locations. 

III. DEEP LEARNING ROBOT ARCHITECTURE FOR 
EXPLORATION IN USAR 

Our proposed learning-based exploration architecture is 
presented in Fig. 1. The World Model generates a 2D 
occupancy grid (i.e., map) of the environment while a robot 
explores the unknown environment. The Exploration module 
uses this occupancy grid as well as odometry data to determine 
a frontier location to explore. This frontier location is sent to 
the Navigation module which computes a navigation path for 
the robot to this location, that is implemented using the Low-
level Controller. 

A. World Model 
The 2D occupancy grid of the environment is generated 

using depth information from the 3D sensor, and the robot 
odometry information. The terrain in the occupancy grid is 
classified as open, occupied, and unknown cells. As the robot 
explores an environment, its information gain is determined by 
identifying the number of new open or occupied cells in the 
occupancy grid.  

B. Exploration Module 
For the Exploration module, we have designed an A3C 

network for frontier exploration, as shown in Fig. 2. 
1) Inputs 

The input to the network consists of the 2D occupancy grid, 
the locations of all possible frontiers, and the robot location. 
Each input is represented as a 64 by 64 array.  

The scaling of the occupancy grid to the network input 
dimension is achieved in a two-step process. First, the cells of 
the occupancy grid are grouped into 10×10 regions to remove 
redundant cells and to down scale the grid without losing 
useful information. For each region, the total number of cells in 
each cell category (open, occupied and unknown) is multiplied 
by its corresponding weight of 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 
𝑤𝑤𝑜𝑜𝑜𝑜𝑢𝑢𝑜𝑜𝑜𝑜𝑢𝑢𝑜𝑜, respectively. Then, the region is assigned to the cell 
category with the highest weighted sum. In the second step, the 
already scaled-down occupancy grid is resized to the desired 
input dimension using nearest-neighbor scaling. 

For the frontier locations, all possible frontiers are identified 
by first extracting the open and unknown cells from the 
occupancy grid into two different layers. Then, the unknown 
cells layer is dilated in order to overlap with the open cells 
layer. The frontier boundaries are identified by performing 
element wise operations between the two layers. Frontier 
boundaries are then clustered using k-means to represent 
individual locations, with each location representing a single 
boundary. 
2) Architecture 

The network architecture contains multiple convolutional 
layers. After each convolutional operation, we use an 
exponential linear (ELU) activation function. In the design, the 
skip architecture is used to preserve the details of the input 
states which are found in earlier depths of the network [28]. 
Furthermore, a long short-term memory (LSTM) unit is used to 
ensure that the network also considers previous robot state 
features in order to make better decisions [29].  

The output of the LSTM unit is directly used by the Actor 
and Critic layers. From the Actor layer, a single parameter 
representing a weight 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∈ (0,1) is obtained. The Filter 
layer uses 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 in a cost-function to evaluate the cost of 
each frontier location. This cost is based on the distance, d, to 

 
Figure 2.  The proposed A3C network architecture for robot exploration of an unknown cluttered environment. 

 
Figure 1.  Robot exploration architecture for USAR. 
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each frontier location from the robot’s current location as 
measured using the A* algorithm, and the potential information 
gain, g, at the frontier location determined by the number of 
unknown cells surrounding the frontier location in the robot’s 
2D occupancy grid. The overall cost function is formulated as: 

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  �̅�𝑑 + (1 −𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)(1 − �̅�𝑔) , (1) 

where �̅�𝑑 and  �̅�𝑔 are the normalized distance and information 
gain for a frontier location. Once all the frontier location costs 
have been determined, the location with the lowest cost is 
chosen for the robot to navigate to. 
3) Objective Function 

The objective of our approach is to maximize the total 
information gain along the robot’s navigation path: 

 max�∑ (∑ 𝑔𝑔𝑗𝑗  )𝑑𝑑𝑜𝑜𝑜𝑜
𝑗𝑗=1

𝑁𝑁
𝑜𝑜=1 + (𝐷𝐷ℎ − ∑ 𝑑𝑑𝑜𝑜𝑁𝑁

𝑜𝑜=1 )∑ 𝑔𝑔𝑜𝑜𝑁𝑁
𝑜𝑜=1 � , (2) 

where N is the total number of frontiers a robot navigates to in 
an exploration episode. For step 𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁, the robot travels a 
distance of 𝑑𝑑𝑜𝑜 and obtains an information gain of 𝑔𝑔𝑜𝑜. 𝐷𝐷ℎ is a 
distance horizon determined by the environment size, namely, 
by defining an overall travel distance as a common scale for 
each environment to compare against.  

C. Navigation Module 
A frontier location chosen by the Exploration module is 

provided to the Navigation module, where the A* algorithm is 
then used to generate a path from the robot’s current location to 
the frontier location. The Robot Operating System (ROS) 
move-base package [30] is used to generate movement 
commands along this path. 

D. Training 
To train the A3C network, a modified version of the 2D 

simulator, Turtlebot Stage [31], in ROS was used. A Turtlebot 
with both odometry and 3D sensory information was used to 
explore cluttered unknown environments. For grouping regions 
of the 2D occupancy grid, the weights of 0.08, 0.9 and 0.02 
were used for 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , and 𝑤𝑤𝑜𝑜𝑜𝑜𝑢𝑢𝑜𝑜𝑜𝑜𝑢𝑢𝑜𝑜, respectively. 
These weights were found through trial and error to be the best 
in preserving the useful information of the occupancy grid. 

We used an AMD Ryzen Threadripper 1950x CPU for the 
training process. Ten actor-learner threads (e.g., agents) were 
utilized for training our A3C network. An additional agent, the 
test agent, was used for monitoring the progress of the training. 
Herein, an agent represents a single robot deployed in a unique 
randomly generated 1,600 m2 cluttered environment. The 
agent’s starting location within each environment was also 
random. This was done to avoid overfitting to a single 
environment. Fig. 3 shows an example of an unknown 
environment being explored, with possible and chosen frontier 
locations shown as red and green dots, respectively.  

A single exploration of an environment was defined as an 
episode. At the start of each episode, the agents made a local 
copy of the global policy parameter, 𝜃𝜃, and value function 
parameter, 𝜃𝜃𝑣𝑣. Then, each agent at step 𝑖𝑖 and with state 𝑐𝑐𝑜𝑜  
performed action 𝑎𝑎𝑜𝑜 based on policy 𝜋𝜋(𝑎𝑎𝑜𝑜|𝑐𝑐𝑜𝑜; 𝜃𝜃), and received a 
reward 𝑟𝑟𝑜𝑜 for transitioning to a new state 𝑐𝑐𝑜𝑜+1 [27]. The state 
consists of a combination of the 2D occupancy grid, agent 
location and frontier locations, and an action is the goal frontier 

location of the network. State transition occurs by the agent 
navigating to a frontier location. This procedure was repeated 
until the exploration task was finished or the maximum step 
size, 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 , of 30 had been reached. Both 𝜃𝜃 and 𝜃𝜃𝑣𝑣 were then 
updated as follows [27], [32]: 

 ∆𝜃𝜃 = 𝛻𝛻𝜃𝜃 log𝜋𝜋(𝑎𝑎𝑜𝑜|𝑐𝑐𝑜𝑜 ; 𝜃𝜃)𝐴𝐴(𝑐𝑐𝑜𝑜 , 𝑎𝑎𝑜𝑜; 𝜃𝜃𝑣𝑣) , (3) 

 ∆𝜃𝜃𝑣𝑣 = 𝐴𝐴(𝑐𝑐𝑜𝑜 , 𝑎𝑎𝑜𝑜; 𝜃𝜃𝑣𝑣)𝛻𝛻𝜃𝜃𝑣𝑣 𝑉𝑉(𝑐𝑐𝑜𝑜; 𝜃𝜃𝑣𝑣 ) , (4) 

where: 

𝐴𝐴(𝑐𝑐𝑜𝑜 , 𝑎𝑎𝑜𝑜; 𝜃𝜃𝑣𝑣) = ∑ 𝛾𝛾𝑜𝑜𝑟𝑟𝑜𝑜+𝑗𝑗𝑢𝑢−1
𝑗𝑗=0 + 𝛾𝛾𝑢𝑢𝑉𝑉(𝑐𝑐𝑜𝑜+𝑢𝑢; 𝜃𝜃𝑣𝑣) −

                                                           𝑉𝑉(𝑐𝑐𝑜𝑜; 𝜃𝜃𝑣𝑣) , (5) 

and 𝐴𝐴(𝑐𝑐𝑜𝑜 , 𝑎𝑎𝑜𝑜; 𝜃𝜃𝑣𝑣) is an estimation of the advantage function that 
quantifies the additional benefit for taking an action in a certain 
state. 𝑘𝑘 is the total number of steps from the current step 𝑖𝑖 to 
the last step 𝑁𝑁 in an episode, and 𝑉𝑉 is the estimated value 
function that quantifies the additional benefit for taking an 
action in a certain state. 

For training, a discount factor of  𝛾𝛾=0.99 and a learning rate 
of 𝛼𝛼=0.0001 were used. An agent received the following 
reward: 

 𝑟𝑟𝑜𝑜 = �
0                             , 𝑖𝑖 ≠ 𝑁𝑁

∑ (∑ 𝑔𝑔𝑗𝑗) 𝑜𝑜𝑖𝑖
𝑖𝑖
𝑗𝑗=0

𝑁𝑁
𝑖𝑖=1 +�𝐷𝐷ℎ−∑ 𝑜𝑜𝑖𝑖

𝑁𝑁
𝑖𝑖=1 �∑ 𝑔𝑔𝑖𝑖

𝑁𝑁
𝑖𝑖=1

𝐷𝐷ℎ ∑ 𝑔𝑔𝑖𝑖𝑁𝑁
𝑖𝑖=1

, 𝑖𝑖 = 𝑁𝑁 . (6) 

The reward is given when an agent completes an episode 
and is dependant on the information gain and travel distance of 
the agent at every step during the episode. The objective is to 
provide higher rewards to an agent which has obtained more 
information about the environment during the earlier steps of 
an episode. Therefore, the weights of the network are tuned to 
prefer actions (frontier locations) which maximize the total 
information gain of an agent in the shortest distance possible.    

Fig. 4 shows the progress of the training as recorded by the 
test agent, which shows the reward initially increasing and 
distance decreasing, and then both parameters converging. An 
episode, on average, took 2 minutes to complete. The test agent 
completed 1,760 episodes and the training agents, on average, 
completed 3,570 episodes. Overall, our model took 119 hours 
to train. 

 
Figure 3.  Example of a robot exploring a simulated environment            
(40 × 40 𝑚𝑚2) during training. Red points are potential frontier locations, 
and the green point is the chosen frontier.  
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IV. EXPERIMENTS 
To investigate the feasibility of our proposed architecture for 

exploration in cluttered unknown environments, we conducted 
three sets of experiments: 1) a performance and scalability test 
for our learning-based frontier exploration approach in varying 
environments, 2) a comparison of our proposed learning-based 
frontier exploration approach with six other frontier exploration 
techniques, and 3) the deployment of our approach on a 
physical mobile robot exploring an unknown cluttered 
environment. 

A. Performance and Scalability Study 
The Turtlebot Stage simulator was used with 30 randomly 

generated environments with sizes of 20 × 20 𝑚𝑚2, 60 ×
60 𝑚𝑚2 and 80 × 80 𝑚𝑚2, respectively. The robot was able to 
explore, on average, 98.4%, 98.1% and 97.6% of these 
environments, respectively. There were some small unmapped 
regions (a few pixels in size) that were within the level of 
sensory noise. Fig. 5 shows an example environment for each 
environment size. Even though our A3C network was trained 
using 40 × 40 𝑚𝑚2 environments, it was able to explore these 
randomly generated environments of different sizes. It is 
important to note, that the (down and up) scaling of the 2D 

occupancy grids to the necessary network input dimension did 
not affect the ability of the exploration approach in determining 
appropriate frontier locations for the robot to navigate to. All 
the important features of the occupancy grid were preserved. 

B. Comparison Study 
The performance of our learning-based frontier exploration 

approach was then compared with utility-based and cost-based 
frontier exploration methods presented in [7] that are 
applicable to our exploration problem, and a policy-based 
exploration approach that was shown to outperform traditional 
frontier exploration approaches in many scenarios [8]. These 
techniques are based on the following strategies: 

1) Cost: This approach always selects the nearest frontier 
during exploration.  

2) Utility: This approach chooses the frontier location with 
the largest potential information gain.  

3) Hybrid: This approach uses a combination of distance cost 
and information gain using different weights in choosing a 
frontier location. We investigated three variations of this hybrid 
(H) approach with the following weight values for distance 
cost and information gain: a) 0.75-0.25, b) 0.50-0.50, and c) 
0.25-0.75, respectively.   

4) Policy: For this approach, a robot followed a policy which 
was a predefined set of exploration rules. Starting with the 
robot’s heading direction, the first frontier in the clockwise 
direction and within a 10 m radius is chosen. If no such frontier 
exists, a random frontier is selected.  

All approaches were implemented for 50 randomly 
generated cluttered environments. After each trial, the objective 
function (2) was evaluated for the specific techniques. Herein, 
we set the horizon, 𝐷𝐷ℎ, to be the total distance the robot 
traveled in the environment when it used the A3C network in 
order to be able to compare the performance of other 
exploration techniques to our proposed method.  

Fig. 6 shows the average normalized objective function 
value for each technique in our comparison. The A3C network 
had the highest average value of 0.67, followed by the hybrid 
0.75-0.25 weighting method with a value of 0.65. Fig. 7 shows 
the exploration progress of the robot as it traversed the same 
environment using the different techniques. In the majority of 
the trials, our learning-based exploration technique had more 

 

Figure 5.  Example of a 20 × 20 𝑚𝑚2 (left), 60 × 60 𝑚𝑚2 (middle) and 80 × 80 𝑚𝑚2 (right) environment used for the performance and scalability study.  

 
Figure 4.  Total distance traveled (the distance traversed by the agent in a 
single episode) and reward per episode for the test agent. 
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information gain early on, as is also shown in Fig. 7. For time-
critical USAR missions, this behavior allows for a robot to 
explore more of the environment sooner in order to locate 
trapped victims faster.  

A statistically significant difference was determined across 
all the tests using the non-parametric Friedman test in SPSS 
(𝜒𝜒2(6) = 250.32, 𝑝𝑝 < 0.0001). Post hoc analysis was 
conducted using Wilcoxon signed-rank tests for pairs of 
exploration techniques with Bonferroni correction applied, 
changing the significance level to 𝛼𝛼𝑟𝑟𝑜𝑜𝑣𝑣𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜 = 0.001, with an 
original 𝛼𝛼 of 0.05 and 50 tests. It was identified that there is a 
statistically significant higher average objective function value 
when using the A3C network when compared to the 6 other 
exploration techniques, Table I. The z test statistic and two-
sided p-values of the Wilcoxon signed-rank tests are reported 
in Table I, where all p-values are less than 0.001. 

C. Physical Experiments in USAR-like Environments 
Experiments in an unknown cluttered USAR-like 

environment were performed with our overall architecture 
using a physical Turtlebot 2 with an onboard Hokuyo URG-
04LX-UG01 Scanning Laser Rangefinder. The A3C network 
used the weights obtained from the simulation training stage. In 

order for the robot to simultaneously map and explore the 
environment, the ROS gmapping SLAM package [5] was used. 
The inputs for mapping included wheel odometry and laser 
rangefinder data. The move-base package [30] was used for 
navigation to frontier locations. The environment, Fig. 8, was 
15 × 15 m2 and consisted of three regions with obstacles and a 
single entry between these regions. We investigated the 
performance of the robot with respect to the total percentage of 
the environment explored. Overall, the robot was able to 
explore the environment (97% coverage) by visiting 44 frontier 
locations after traveling 95 m in 835 seconds. The map created 
by the robot, along with its path and the visited frontier 
locations are presented in Fig. 9. The average computation time 
to choose a frontier location was 1.2 s.  A video showing the 
robot implementing our exploration strategy is presented here 
on our YouTube channel.  

V. CONCLUSIONS 
In this paper, we have developed a unique approach which 

combines an A3C network with frontier exploration in order to 
learn an efficient exploration strategy based on high-
dimensional robot states. Experiments with a mobile robot 
showed that the robot was able to effectively explore different 
unknown environments with varying sizes while generating 
appropriate frontier locations to navigate to. A comparison 
study with our proposed learning-based exploration method 
and traditional exploration techniques showed that our method 
was able to explore more of the environment early on and had a 

TABLE I.  WILCOXON SIGNED-RANK TEST RESULTS FOR PAIRWISE 
COMPARISONS WITH THE A3C NETWORK (WITH Z TEST STATISTIC AND THE 

TWO-SIDED P-VALUE). 
 

      z      p 

Cost -5.121 < 0.0001 

Utility -6.154 < 0.0001 

H:75-25 -3.77 0.000164 

H:50-50 -5.343 < 0.0001 

H:25-75 -6.096 < 0.0001 

Policy -6.154 < 0.0001 

 

 
Figure 8.  Experimental environment showing the three regions and the 
Turtlebot.  

 

 
Figure 7.  Percentage of environment explored with respect to distance 
traveled for all techniques for an example environment.  

 
Figure 6.  Average objective function values for all 7 techniques, 
normalized according to the A3C total traveled distance.  

https://youtu.be/fOot7VbCvx8
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statistically significant higher average objective function value. 
Our future work consists of extending our exploration approach 
to incorporate varying cluttered terrain that the robot needs to 
traverse such as climbable obstacles, and then testing our 
architecture in larger varying environments with both dynamic 
and static obstacles. 
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Figure 9.  The 2D occupancy grid map generated by the robot. The black, 
light gray and dark areas are occupied, open, and unknown cells, 
respectively. The robot’s path is represented by the blue line, and the red 
markers are the frontier locations that robot visited.  The start and end 
locations are labeled with “S” and “E”.  
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