
 

  

 

 

Abstract— Individuals living with cognitive impairments are 
faced with unique challenges in completing important activities 
of daily living such as dressing. In this paper, we present the 
first socially assistive robot-wearable sensors system to provide 
dressing assistance through social human-robot interactions. A 
novel robot-wearable architecture is development to classify, 
prompt and provide feedback on user dressing actions. Namely, 
strain sensor based smart clothing on the user are used for joint 
angle mapping, which are then classified into different dressing 
steps. The robot uses a MAXQ hierarchical learning method to 
learn assistive behaviors to aid a user with the sequence of 
dressing steps. Experiments were validated the performance of 
the joint angle mapping model, dressing action classifier, and 
behavior adaptation modules as well as the overall system for 
dressing assistance.  

I. INTRODUCTION 

Activities of daily living (ADLs) such as eating, 
dressing, and grooming are essential everyday tasks for 
personal independence [1]. For individuals living with mild 
to moderate cognitive impairments [2] or stroke [3], these 
tasks can be difficult to complete on their own. ADL 
limitations can have a negative effect on the overall 
wellbeing and quality of life (QoL) of these individuals [1]. 
Dressing is essential not only in being able to select and put 
clothes on/off based on the activities engaged in and the 
weather, it is also critical to self-confidence and personal 
identity [4]. As a result, individuals who are physically 
assisted with dressing by caregivers or assistive 
technologies, when they are capable of completing the task 
themselves, have reduced confidence and lose their ability 
for self-expression [5]. 

A handful of assistive technologies for dressing 
assistance have been developed and can be categorized as: 1) 
dressing recommendation applications [6],[7], and 2) robots 
that provide physical assistance using their manipulators 
[8]–[11]. Dressing recommendation applications provide 
cognitive assistance by giving clothing suggestions to relieve 
the burden of decision making, however they fail to monitor 
the user state such as compliance or disengagement as they 
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lack the necessary sensory inputs. Robotic systems directly 
undertake the dressing task for the user and are currently 
limited to helping put on one type of clothing such as hats 
[8] or sleeveless jackets [11]. 

In general, physical assistance solutions can pose 
potential safety risks in the event of system malfunction 
including collisions with the robot, user loss of balance, or 
an invalid motion performed by the robot that strains the 
user due to limited range of motion [12]. Given the 
psychological and cognitive consequences of dressing 
dependency, the demand placed on caregivers, and the 
limitations of current assistive technologies for dressing, 
there exists a need to develop socially assistive robots to 
help users dress themselves through human-robot interaction 
(HRI) using their own existing capabilities.  

Our own previous work in this area has focused on the 
development of a clothing recommendation robot and 
corresponding app that is able to autonomously recommend 
clothing options from a user’s wardrobe, personalized to an 
activity, weather, and clothing preferences [13], [14]. 
However, it only recommended outfits to wear and did not 
assist in the dressing task. Furthermore, we have developed 
cost-effective smart clothing consisting of integrated 
switches to identify user dressing states [15]. Although, the 
smart clothing could be used to give feedback on user 
dressing actions, it customized the garment with the required 
sensors, limiting its generalizability to multiple people and 
clothing types.  

In this paper, we present a novel socially assistive robot 
(SAR) for autonomous dressing assistance that uses a strain 
sensor based smart clothing to classify dressing actions and 
adapt its assistive behaviors. To the authors’ knowledge, this 
is the first SAR-wearable system for dressing assistance. 
Strain sensor arrays embedded in smart clothing are used to 
output joint angles, which are classified into different 
dressing steps. The robot uses a MAXQ hierarchical learning 
approach to learn assistive behavior strategies based on these 
dressing steps for various clothing items. 

II. RELATED WORK 

Herein, we present the literature on: 1) robotic 
technologies for dressing, 2) smart clothing for user motion 
detection, and 3) wearable sensors for assistive robotic 
applications.  

A. Robotic Technologies for Dressing 
Robotic assistance for dressing has mainly focused on 

physical assistance of robot manipulators putting clothing on 
a stationary user [8]–[11]. For example, in [8], the Baxter  

Socially Assistive Robotics and Wearable Sensors for Intelligent 
User Dressing Assistance* 

Fraser Robinson, Student Member, IEEE, Zinan Cen, Student Member, IEEE, Hani 

Naguib, and Goldie Nejat, Member, IEEE 

Fraser Robinson
IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) 2022
This is the author’s version of an article that has been published. Changes were made to this version by the publisher prior to publication.



 

  

 

robot was used in a dressing assistance system that would 
map manipulator motions for putting on clothes to angular 
velocities, and then generate user repositioning requests 
when the action was out of the robot’s reach. A camera-
based skeleton joint tracker was used to track the user 
position relative to the robot. Test trials consisting of Baxter 
placing a hat on a person showed it was adaptable to user 
constraints but faced challenges in maintaining an accurate 
user model when Baxter’s arms obstructed the camera field 
of view. To address occlusion from robot arms and the 
clothing itself, in [9], an RGB-D camera facing the user was 
implemented with Baxter to assist with putting on a jacket. 
When elbows became occluded, positional information from 
other joints such as the shoulder and hip were used with a 
recurrent neural network (RNN) to predict the location of 
user elbow joints. Regression trees learned the most 
influential features in determining elbow locations which 
were used as inputs to the RNN for elbow location 
prediction in 3D space.  

Force-torque sensors have also been used by robotic 
manipulators as the main sensory inputs [10],[11]. In [10], a 
PR2 robot with a haptic feedback controller was used for 
upper body dressing assistance with t-shirts and hospital 
gowns. The robot learned dressing techniques using deep 
reinforcement learning (DRL) based on haptic feedback 
from its arm joint sensors to infer joint locations first in 
simulation and then on the physical PR2 robot. Initial sim-
to-real experiments showed success on other physical robots 
acting as users with limited mobility. In [11], the Baxter 
robot was used for putting on a sleeveless jacket using a 
probabilistic user tracking model developed from torque-
force information with the goal of minimizing forces 
between the user and robot. After an RGB-D camera was 
used for initializing the user model, tracking was achieved 
with only the torque sensors on Baxter’s arm joints. 
Manipulation goal locations were provided by a hierarchical 
multitask controller using probabilistic models. Initial results 
showed the robot was capable of dressing users with various 
ranges of motion.  

In addition to physical assistance, socially assistive 
robots have also been developed to assist with dressing tasks 
by providing clothing selections [13], [14] and verification if 
clothes are put on correctly [15]. In [13], [14], the Leia robot 
provided clothing recommendations using a multinomial 
logistic regression (MLR) approach. User preferences for 
clothing items were updated using stochastic gradient 
descent. An app was developed in correspondence with 
robot emotional behaviors to guide the user through the 
selection. User studies showed the system was adaptable, 
provided appropriate recommendations, and was easy to use.  

In [15], a smart collared shirt was developed with built-
in sensors for detecting dressing states which were proposed 
as input to the Pepper robot for providing informed dressing 
task feedback to a user. The sensors included: 1) an IR LED 
at the front of the shirt used for detecting front/back 
orientation, 2) contact switches on the buttons to detect if 
they were fastened, and 3) capacitive switches on the arm 
sleeves and back to detect the presence of a torso or arms 
respectively. Initial results validated that using these sensory 

inputs, the smart system was able to classify different 
dressing states including correctly worn, partially worn, 
backwards, or inverted.  

B. Smart Clothing for User Motion Detection  
Smart clothing integrates flexible and conformable 

sensors and transducers into a garment [16]. They provide 
sensory information of user motions with respect to: 1) joint 
positions [17] or 2) joint angles [18], [19]. In addition, 
wearable sensors can address challenges faced by camera-
based systems such as occlusion and varying lighting 
conditions [17]. Among the many modalities that have been 
studied for motion detection, three types of sensors are the 
most common: inertial measurement unit (IMU) [17], optical 
fiber sensors (OFS) [20], and strain sensors [18], [19], [21].  

Strain sensor-based smart clothing use resistance or 
capacitance signals to determine joint angles. Smart clothing 
developed for one degree of freedom (DOF) joints such as 
smart gloves [21] place one strain sensor across the joint of 
interest to detect motion. Mapping between joint angles and 
sensor signals for 1-DOF joints is achieved through linear 
regression [21]. To detect motion of joints with multiple 
DOF, sensor arrays are embedded in smart clothing. Deep 
learning methods such as convolutional neural networks 
(CNN) [18] are commonly utilized as regression models to 
obtain joint angles. To train these networks via supervised 
learning, the sensor signal is used as the input and ground 
truth joint angles are found using camera-based systems. 

For complex joint surfaces that are covered by large 
muscles, such as the shoulder or hip, sensor placement on 
the smart clothing is an active area of research. In [18], 50 
reflective markers were distributed across smart pants 
around the right hip joint in a grid pattern, and 6 cameras 
were used to capture the motion of these markers during 
running. Distance between neighboring markers was 
obtained by subtracting the 3D positions of these markers 
and was used to predict the hip angles. A combination of 
genetic algorithm and sequential forward methods were used 
to find the optimal sets of markers and thus sensor locations 
that produced the highest prediction accuracy. However, 
using such methods to obtain sensor placement requires 
specialized equipment. 

An alternative approach to using reflective markers and 
camera-based systems is to use theoretical lines of non-
extension on the human body that neither stretch or contract 
during motion [22]. This concept was utilized in [19] to 
develop smart clothing for 3-DOF shoulder motion tracking 
using eight capacitive sensors. The sensors were placed 
perpendicular to the lines of non-extensions to maximize the 
deformation of sensors during motion. Despite the linearity 
and low hysteretic behavior of capacitive sensors, their 
sensitivity can be low. Contrary to capacitive sensors, 
resistive sensors can have much higher sensitivity with the 
tradeoff of low linearity and high hysteresis [23]. In 
addition, each capacitive sensor used in smart clothing 
requires a capacitance-to-voltage converter that has high 
power consumption, whereas the readout system (voltage 
divider) for resistive sensors consumes much less power.  



 

  

 

C. Wearable Sensors for Socially Assistive Robotics 
Wearable sensors for people have been used specifically 

by SARs for user state estimation including for the detection 
of engagement [24],[25] and emotions [26],[27]. 

For example, in [24] the social robot Brian was 
developed to provide cognitive interventions for card 
matching memory games. A heart rate sensor worn on their 
ear was used to determine user arousal as either low or high 
based on changes in heart rate relative to the user’s resting 
heart rate. This was combined with activity performance to 
define user state, to which the robot adapted its emotional 
assistive behavior. User study results showed Brian’s ability 
to maintain positive user states during the game. However, 
since heart rate alone cannot capture activity progress, 
sensors such as a webcam were required for full user state 
classification.  

In [25], the Nao robot was used to assist users in 
memory cognitive training based on their task performance 
and task engagement. A Muse EEG headband was used to 
measure raw EEG signals of different frequency ranges to 
provide an engagement score. Using the engagement score 
and the current game score as a reward, the SAR adapted its 
behavior to encouraging or challenging. In [27], the Muse 
EEG headband was also used to develop a user affect 
detection model for the Pepper robot via eliciting user 
emotional responses. EEG signals were used by a fast 
Fourier transform to give power spectral density features 
which were input into a multilayer perceptron neural 
network to classify user valence and arousal levels. Initial 
user studies showed classification results were limited due to 
intra-user variability.  

In [26], a negative emotion management system was 
developed using a smart shirt with embedded ECG sensors 
for a SAR to initiate interactive emotion improving 
conversations with users. Recurrence quantitative analysis 
was used on training data to extract EEG plot features such 
as the percentage of recurrence points and input them to 
various ML algorithms such as decision trees to classify 
between negative or non-negative emotional states. Results 
showed accurate emotional classification by the system and 
confirmed the robot’s potential to improve moods.  

In summary, wearable sensors have mainly been used to 
obtain psychological signals for HRI. To the authors’ 
knowledge, user motion monitoring using wearable sensors, 
particularly strain sensors, has not been developed for ADL 
task assistance including dressing.  

III. SOCIAL ROBOT-WEARABLE SENSORS DRESSING 
ASSISTANT ARCHITECTURE 

The proposed socially assistive robot-wearable system 
architecture is presented in Fig. 1. Sensory inputs are 
provided by our novel Strain Sensor Smart Clothing on the 
user. Resistance signals from the smart clothing are used by 
the Joint Angle Mapping Model to output rotations in either 
the 1-DOF elbow or 3-DOF shoulder joints. These angles are 
then provided to the Dressing Step Classifier to classify the 
user’s dressing actions. The Robot Adaptive Behavior 
Deliberation uses this action to determine the SAR’s assistive 

behaviors displayed by the Leia robot using a combination of 
speech and gestures.  

 
Figure 1.  SAR-wearable proposed architecture. 

A.  Strain Sensor Smart Clothing 
We designed and fabricated Piezoresistive (PZT) strain 

sensors to be used within our proposed smart clothing. These 
PZT sensors are composed of two layers – an elastomer 
layer and a conductive layer. The elastomer layer is made 
from a thermal polyurethane (TPU) fibrous mat, and the 
conductive layer is made from carbon nanotube (CNT) ink 
using a procedure similar to [28]. The sensor structure and 
fabrication process are shown in Fig. 2. The TPU fibrous 
mat is fabricated through electrospinning: a nanofabrication 
technique using high voltage to deposit nanofibrils solution 
on a substrate. Rectangular strips are then cut from the TPU 
fibrous mat to form the elastomer layer of the sensor and 
CNT ink is dispensed onto it. After airdrying at room 
temperature, copper foil electrodes are attached to both ends 
of the sensor using silver paste. 

 
Figure 2.  Nanofabrication of the thin film structure of sensor. 

As shown in Fig. 3, one PZT sensor is placed across each 
elbow joint (location 1) on the capitellum perpendicular to 
the rotational axis to maximize elongation during elbow 
movement. Four PZT sensors (locations 2-5) are placed on 
various locations to maximize elongation during shoulder 
motions [19]. Sensors are detachable to ensure similar 
placement for users of different body shapes. In total, five 
PZT sensors are used on each side of the body to measure the 
1-DOF motion of the elbows and 3-DOF motion of the 
shoulders. Resistance of the sensor is measured using a 
voltage divider: 



 

  

 

                               R = R' (Vin  - Vout) / Vout                          (1) 

where R’ is the resistance of the fixed resistor, Vin is the 
supplied voltage of the voltage divider, and Vout is the 
measured voltage signal. An Arduino Nano is used to collect 
Vout signals and convert them to R {r1, r2 … r10} signals 
according to Eq. (1) for each side of the upper limb.  

 
Figure 3.  Sensor placecment (purple) on smart clothing design. 

B. Joint Angle Mapping Model 
Decoupled from the array of resistances R, two separate 

arrays Rleft and Rright for each side of the user are considered to 
determine two sets of shoulder and elbow angles: 

Θleft {θ1 … θ4} = f (Rleft {r1 … r5})         (2) 

Θright {θ5 … θ8} = g (Rright {r6 … r10})      (3) 

where functions f and g each take five sensor resistance 
signals and convert them into four joint angles. Elbow joint 
angles, θ1 and θ5, are single angles since the forearm and 
bicep are on the same plane, while the shoulder angles are 
represented as two sets of three Euler angles {θ2, θ3, θ4} and 
{θ6, θ7, θ8} in the order of ψ, θ, ϕ. 

A 2D-CNN approach was developed for functions f and g 
in Eqs. (2) and (3). To consider inter-signal features between 
all sensors, a signal image was used equivalent to the activity 
image representation of wearable sensor data in [29]. The 
signal image concatenates three reordered duplicates of the 
resistance arrays (Rleft or Rright) such that each resistance 
signal ri neighbors each other signal in Rleft or Rright. A 
window size of 25 timesteps was used to filter sudden 
fluctuations while ensuring fast processing time. The 
inclusion of past timesteps also allows the CNN to learn from 
past motion to address sensor hysteresis. This results in a 
final signal image of dimensions 15x25 input to the CNN 
with two convolutional layers using 2x3 kernels to identify 
features between the signals before two fully connected 
layers outputting four continuous joint angles per side in the 
Θleft and Θright arrays.  

The CNN model was trained by sampling the sensor array 
at 100 Hz to obtain R and was labelled by simultaneously 
calculating and recording the ground truth joint angles, Θ’. 
Ground truth angles were obtained from a RGB-D sensor and 
Nuitrack skeleton tracking software [30], matching the time 
stamp of Θ’ and the last element in R. During data collection, 
users would mimic dressing steps such as arm through, head 
through, and button up. 35,000 R to Θ’ mappings were 
obtained, which were randomly used for training, validation, 
and test sets based on a 70%, 20%, 10% split. The loss 
function was the root mean squared error (RMSE) between 
output and actual joint angles to capture the continuous 
nature of the signal. Hyperparameters such as learning rate, 

batch size, and model depth were tuned based on the RMSE 
of the validation set. The final joint angle mapping model 
outputs joint angles at 50 Hz.  

C. Dressing Step Classifier 
For the dressing task, joint angles need to be converted to 

task related data that the SAR can use to monitor user 
progress. Dressing steps were defined as distinct actions a 
user performs while dressing involving arm movements that 
can be captured by the smart clothing. They include: 1) right 
arm through, 2) left arm through, 3) head through, 4) button 
up, 5) zip up, or 6) random inaction/disengaged. A one-
dimensional moving window CNN was used for 
classification. Eight joint angles, {θ1 … θ8}, with a window 
size of 50 timesteps, equally 1 sec, formed an 8x50 tensor as 
the input to the dressing step classifier. The input tensor is 
first decoupled into eight 1x50 tensors and used by the CNN 
which consists of three convolutional layers with 1x3 kernels 
to extract action features. Then the action features from the 8 
joint angles are concatenated before entering three fully 
connected layers and being classified into one of the six 
dressing steps formatted in one-hot encoding. 

The model was trained using a labelled dataset with 24 
samples of each action performed with variation in motion 
path and speed. Each sample was collected by a user 
performing a single action once while wearing the smart 
clothing. Resistance signals R were then used to obtain joint 
angles Θ. To ensure a minimum of 4 samples for validation 
and testing for sufficient model tuning and accuracy 
assessment, the sets were split 66.6%, 16.7%, 16.7%. The 
loss function used was cross entropy to compare the output to 
the categorical target. Validation set accuracy was used to 
tune hyperparameters of learning rate and batch size.  

D. Robot Adaptive Behavior Deliberation  
We have developed an Adaptive Behavior Deliberation 

module for SAR assistance during dressing. A MAXQ 
reinforcement learning hierarchical method [31] is used to 
determine the robot’s behaviors. We choose MAXQ due to 
its temporal abstraction as users take different amounts of 
time to complete dressing steps, state abstraction for 
considering only relevant variables for a given subtask level 
such as the current clothing items for identifying the clothing 
type, and subtask abstraction to group similar actions that 
emerge during dressing given its repetitive nature. The 
overall MAXQ hierarchical task graph is presented in Fig. 4. 
The task graph follows the MAXQ decomposition structure, 
where a given Markov decision process (MDP) task M is 
decomposed into a finite set of sub‐tasks {M0, M1, …, Mn}.  

 
Figure 4.  MAXQ robot dressing assistance task graph. 



 

  

 

The Root Task is the overall dressing assistance task of 
helping a user put on clothing items. Subtasks Mi contain a 
set of actions A which are lower subtasks or primitive robot 
behavioral actions at the lowest level of the graph. The 1st 
level subtasks include Identify Clothing Type (Upper Body) 
and Identify Clothing Type (Lower Body), both of which 
determine the type of clothing the user should put on and if 
the clothing goes on the upper body or lower body of the 
user. The 2nd level subtasks of Put Body Part Through and 
Fasten identify the dressing step for the user to perform. The 
3rd level subtasks define the robot’s primitive behaviors to 
assist the user which include Instruct, Reengage, and Correct.  

Within the MAXQ graph, a set of states, S, have been 
defined for each subtask. These state functions beginning 
with the root task are: 1) Root Task, s(cd, cu), 2) Identify 
Clothing Type, s(c, pd, pu), 3) Put Body Part 
Through/Fasten, s(p, u), and 4) Instruct/Reengage/Correct, 
s(c, p, u). All state variables are declared using one-hot 
encoding. cd is the set of desired clothing items to be worn by 
the user to complete the dressing task and cu is the set of 
clothing items currently on the user. c is the current clothing 
item of interest, pd is the set of required dressing steps for 
this clothing item, and pu is the set of dressing steps the user 
has already completed for the current item. p is the current 
dressing step of interest and u is the user state described as 
the most recently completed dressing step. 

The Instruct primitive actions provide direct instructions 
to a user on how to complete a specific dressing step (right 
arm through, zip up, etc.) using different behavioral 
strategies. For users suffering from cognitive decline such as 
some older adults, distraction becomes more prevalent and 
can decrease task performance [32]. The Reengage primitive 
actions are used to re-engage a distracted user in completing 
the dressing task. The Correct primitive actions are used in 
the case when a user makes a dressing step mistake, 
providing varying behavior strategy prompts for correcting 
the error.  

Compliance gaining behaviors (CGB) are strategies used 
by people [33] and robots [34] to persuade other people to 
change their behavior. The following strategies were chosen 
to provide robot assistance: 1) logic, 2) emotion, 3) direct 
request, 4) cooperate, and 5) motivate. Examples of each 
behavior strategy are presented in Table I. Logic and emotion 
strategies are based on HRI research that has shown these 
two CGBs to be the most effective in persuading users to use 
information provided by the SAR [34]. The remaining three 
strategies of direct request, cooperate, and motivate are based 
on clinical experience of caregivers assisting older adults to 
get dressed [35] and guidelines by the Alzheimer’s Society 
for effective dressing assistance which focus on clear 
communication, creating sense of teamwork, and providing 
consistent positive verbal encouragement [36]. Leia displays 
these strategies using a combination of speech and illustrative 
gesture to emphasize spoken ideas [37].  

Each subtask has a terminal condition. The Root Task 
terminal condition is cu = cd, signifying the user has put on 
all clothing in the desired outfit set. Identify Clothing Type 
has terminal condition pu = pd, signaling the current clothing 
item has been put on and a new item should be selected. Put 
Body Part Through/Fasten uses terminal condition u = p to 
determine whether the user followed the instruction provided. 

Since Instruct/Reengage/Correct are primitive actions. they 
terminate immediately using the selected behavior strategy.  

TABLE I.  BEHAVIOR FRAMEWORK EXAMPLES  

Action 
Type 

Behavior 
Strategy Utterance Gestures 

Instruct  Logic 

“My sensors tell me 
it’s time to put your 
right arm through 
your t-shirt”  

References self 

Reengage Emotion 
(Happy) 

“It would make me 
happy if you 
refocused and put 
your head through 
your t-shirt” 

 
Expansive for 
positive emotion 

Correct Direct 
Request 

“Incorrect step. 
Please undo when 
you buttoned up 
your dress shirt.” 

 
References user 
by pointing 

Instruct  Cooperate 
“Let’s work together 
to zip up your zip 
hoodie”  

References user 
and self 

Reengage Motivate 

“Refocus on putting 
your left arm 
through your dress. 
You can do it!”  

Quick moving 
celebration 

IV. EXPERIMENTS 

We performed several experiments to verify the 
performance of our robot-wearable architecture including: 1) 
the root-mean-square error (RMSE) of the Joint Angle 
Mapping Model, 2) the performance accuracy of the Dressing 
Step Classifier, 3) MAXQ convergence and cumulative 
reward based on the total number of required steps for the 
Robot Adaptive Behavior Deliberation module, and 4) the 
success rate of Leia correctly identifying and responding to a 
variety of user states and dressing step actions. 

A. Experiment #1: RMSE of Joint Angle Mapping Model 
RMSE was used to evaluate the performance of the Joint 

Angle Mapping Model, it represents the average deviation 
between the output joint angles θ and ground truth θ’ in the 
test set. The RMSE values for each joint angle in Θleft and 
Θright, are {9.7°, 2.6°, 6.9°, 5.8°} and {15.6°, 3.0°, 8.8°, 
13.0°}, respectively. To the best of the authors knowledge, 
this is the first smart clothing design that monitors both 
elbow and shoulder joint angles. Using the first iteration of 
sensors fabricated by our team, the RMSE values we 
obtained are relatively higher compared to existing 
constrained and higher power consumption smart clothing. 
For example, in [19], although elbow angles was not 
monitored, RMSE of shoulder Euler angles (ψ, θ, ϕ) were 
2.80°, 1.64° and 4.13°, respectively. Future sensor 
improvements will focus on fabrication optimization and 



 

  

 

improved characterization which can be easily integrated 
into the system due to its modularity.    

In general, joint angle mapping of the shoulders is more 
accurate than elbows, likely due to the larger strain produced 
by the bending of the elbows. As the strain sensors have low 
sensitivity at larger strain, the resistance signals saturate at 
strain around 50%, resulting in a greater error at large elbow 
bending angles. Even with this saturation, using a window of 
25 timesteps at 100 Hz the model learned to output the entire 
range of elbow joint angles by using relative changes in the 
resistance signal as seen in Fig. 5 and 6.  

 
Figure 5.  Left joint angle mapping model performance. 

 
Figure 6.  Right joint angle mapping model performance. 

B. Experiment #2: Dressing Step Classifier Performance 
A confusion matrix was used as the performance metric 

for the dressing step classifier to determine overall 
classification accuracy and identify the most challenging 
classes. An overall classification accuracy of 96% was 
obtained by the Dressing Step Classifier on 24 test samples 
of dressing actions. Fig. 7 presents the confusion matrix. 
There was a 25.0% rate of “head through” being 
misclassified as “button up”, hypothesized to be the result of 
the high elbow strain for both actions.  

 
Figure 7.  Confusion matrix for task classification. 

C. Experiment #3: Robot Adaptive Behavior Deliberation 
To test the adaptive behavior deliberation model, five 

different simulated users were created by defining user 
functions to return a dressing step based on the behavior 
strategy used and the requested dressing step. Each user had a 
different probability rate for complying, being disengaged, or 
making a mistake which were changed within the user if their 
preferred behavior strategy was used. Rewards given for the 
task levels in descending order were ± 5 for Root Task, ±3 for 
Identify Clothing Type, and ±1 for Put Body Part 
Through/Fasten. At the primitive level, a reward of 0 was 
given when the user performed the dressing step correctly as 
requested by the SAR. If the user performed an incorrect step 
or required reengagement, the reward was -1.   

To verify model convergence, one of the five simulated 
users was implemented in offline training with the adaptation 
framework for 10,000 iterations. The learning rate was α = 
0.01 as determined by testing to optimize reward stability and 
the epsilon was ε = 0.05 to maintain a chance of using 
unpreferred strategies and thus adjust to changes in user 
preferences over time. The MAXQ method converged as 
shown in Fig. 8. 

 
Figure 8.  Offline behavior adaption model convergence. 

To test framework adaptation capabilities, the remaining 
four users were implemented individually in online training 
for 20 full task completions using the same learning rate and 
epsilon values. As shown in Fig. 9, all users show significant 
improvements in task performance and an upward 
performance trend compared to the initial task completion. 
Fluctuations in cumulative reward are the result of simulated 
user randomness. The framework robustness can be observed 
in trials for users 1 and 2 where the model recovers from a 
poor result within one to two task completions.  



 

  

 

 
Figure 9.  Online behavior adaption with different users. 

D. Experiment #4: Overall System Performance 
A physical SAR-wearable system experiment was 

performed with a human user to measure system reliability. A 
user with normal cognition put on the smart clothing with 
strain sensors at the marked locations. Subsystem modules 
were run concurrently, and Leia provided assistive behaviors 
based on the user’s dressing step. Ten trials were conducted 
where the user would perform either: 1) the correct step, 2) 
no step, or 3) an incorrect step to trigger Instruct, Reengage, 
and Correct actions. The success of each trial was measured 
by whether Leia responded as expected to the user dress step, 
specifically if Leia: 1) correctly identified the executed 
dressing step and 2) responded to the identified dressing step 
with the correct behavior based on previously expressed user 
preferences. The user did not report any discomfort in 
wearing the sensors during the experiment.  

Table II presents the success rates for Leia identifying 
and responding correctly with an assistive action. The overall 
classification success rate was 86.7% and overall correct 
response behavior rate was 100%. Errors in identification 
occurred when the user performed the “head through” action 
which was improperly classified as “button up” or “zip up”. 
The success rate for dressing step classification is within 3% 
of the accuracy rate for other studies using strain sensors on 
elbow and shoulder joints for dynamic action classification 
such as police traffic signals [38]. However, our experiment 
considered more complex actions.  

TABLE II.  OVERALL SYSTEM PERFORMANCE 

Robot Action 
Condition 

No. of 
Trials 

Success Rate 
for Step 

Classification 

Success Rate 
for Assistive 

Behavior 
Instruct user  10 80.0% 100% 
Reengage user 10 100.0% 100% 
Correct user 10 80.0% 100% 
Total 30 86.7% 100% 

V. CONCLUSION 

In this paper, we present a novel social robot-wearable 
system to assist users with the ADL of dressing. A strain 
sensor smart clothing was designed and fabricated to detect 
upper body motion via joint angle mapping. A dressing step 
classifier converted these joint angles to task related user 
actions. The robot Leia then adapted its assistive behaviors 
based on user compliance using MAXQ learning. 
Experiments conducted validate the reliability and accuracy 

of the overall system as well as the individual modules. 
Identification error was attributed to sensor signal saturation 
and test set variation. Future work will include optimizing 
the sensory performance and conducting assistive HRI 
studies with our social robot-wearable system on users with 
diverse cognitive abilities. 
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