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Abstract—Patient-specific control and training on lower body 
exoskeletons can help improve a user’s gait during post-stroke 
rehabilitation by increasing their amount of participation and 
motor learning. Traditionally, adaptive control techniques have 
been used to provide personalization and synchronization with 
exoskeleton users, but they require predefined dynamics models 
of the user and exoskeleton. However, these models can be difficult 
to accurately define due to the complexity of the human-robot 
interaction. Most recently deep reinforcement learning techniques 
have shown potential to effectively learn control schemes without 
the need for system dynamics models. In this paper, we present for 
the first time an end-to-end model-free deep reinforcement 
learning method for an exoskeleton that can learn to follow a 
desired gait pattern, while considering a user’s existing gait 
pattern and being robust to their perturbations and interactions. 
We demonstrate the effectiveness of our proposed method for user 
personalization of gait training in simulated experiments.  

Keywords—lower body exoskeletons, deep reinforcement 
learning, patient-specific control, exoskeleton control 

I.   INTRODUCTION 
 Lower body exoskeletons are increasingly being used for the  
gait rehabilitation of persons post-stroke [1], [2] and have been 
shown to be effective intervention tools for these patients [3]. 
They can aid in recovering gait symmetry, range of motion, 
increasing walking speed, as well as improving overall mobility 
and function [3]–[5]. 
 Previous research on exoskeleton control has mainly focused 
on improving trajectory tracking, while imposing a specific gait 
pattern on a patient [6]–[8]. It has been found that while this 
provides some improvement in post-stroke recovery, it can also 
lead to a decrease in patient participation and motor learning, 
therefore resulting in less improvement in gait recovery for these 
individuals [6], [9]. Gait training that is specifically personalized 
for users has been found to be more effective at gait recovery 
[7], [10]–[13]. To achieve this, adaptive control techniques and 
learning-based control methods have been proposed; however, 
both often require a predefined dynamics model of the user and 
exoskeleton.  
 Adaptive control techniques use the dynamics models to 
represent the equations of motion of the exoskeleton, and  
determine the actuator torques necessary to control the 

exoskeleton in the presence of human interaction [9], [14]–[20]. 
To-date adaptive controllers allow exoskeletons to adjust and 
synchronize to users online [9], [14], [15], and try to account for 
some of the dynamic uncertainties and perturbations resulting 
from the human-robot interaction and variations in the behavior 
of different users [16]–[20]. However, due to the complex nature 
of the human-exoskeleton interaction, including the non-linear 
characteristics of this interaction and resulting dynamic 
uncertainties and perturbations, these models are not able to 
accurately and fully describe the interaction dynamics between 
the exoskeleton and user [17], [21]–[24].  

More recently, reinforcement learning (RL) techniques have 
been used to improve upon the adaptive controllers by learning 
to optimize and personalize control parameters. RL allows for  
the automated iterative tuning of parameters by maximizing a 
reward [25], [26]. However, these RL techniques still must 
incorporate previously formulated dynamics models or must 
learn these models through transition probabilities of state-
action pairs [27]. Furthermore, they can only learn in discrete 
observation spaces and produce discrete actions which are 
represented as control parameters (stiffness, damping) [26], 
[28]–[30] or discrete joint torques [31], due to the curse of 
dimensionality [32].  
 Model-free deep reinforcement learning (DRL) can 
potentially be used for exoskeleton control, where deep neural 
networks are used to represent the policy and value functions of 
RL. Their advantages over RL-based approaches are that they 
can learn high dimensional exoskeleton joint angles (which 
include position, velocity and acceleration information) and 
provide continuous actions such as joint torques, through only 
an agent interacting with a physics-based simulation 
environment [23]. Therefore, they do not require a previously 
defined or learned dynamics model. To-date, DRL has not yet 
been used in the control of exoskeletons in order to learn gait 
patterns.  

In this paper, we investigate for the first time the 
development of an end-to-end DRL exoskeleton control method 
for user personalization of gait training. Our novel approach 
allows for model-free learning of a desired gait pattern, where 
the torque values of hip, knee, and ankle actuators of an 
exoskeleton are learned from scratch to achieve a desired gait, 
while considering a user’s existing gait pattern and their 
perturbations. This unique control method can adapt the level of 
assistance needed as patients progress in their physiotherapy and 
therefore can be trained for individual patients. 
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II.   RELATED WORKS  
Previous work that has focused on the development of 

exoskeleton control with patient-specific adaptation can be 
categorized into: 1) adaptive control methods [18]–[20], [33]–
[36], and 2) reinforcement learning methods [26], [28]–[31]. 
DRL techniques have been proposed for learning human and 
biped locomotion [22], [37]–[42], as well as learning upper and 
lower limb exoskeleton-based control policies [43]–[45], but 
have not yet been applied to end-to-end exoskeleton control for 
gait pattern training. 
A.   Adaptive Control Methods for Exoskeletons 

Adaptive control techniques utilize dynamics models for 
both the user and exoskeleton in order to attempt to personalize 
to various users through adaptation of subject-specific 
parameters such as step length or walking speed [18], [34], or 
synchronize with a user’s movements through online adaptation 
and feedback [19], [20], [35], [36].  

In [18], a dual unscented Kalman filter was used to predict 
and generate exoskeleton trajectories based on the 
spatiotemporal features of a user’s gait. This was accomplished 
with a partial coupled dynamics model of a human and 
exoskeleton, where the exoskeleton and user’s limb were 
modeled as one body. An impedance supervisory controller was 
then used to follow a trajectory and synchronize with the user 
during their locomotion.  

In [19], a compliance controller was used to provide motion 
control to an exoskeleton based on tracking a user’s joint angles, 
foot pressure, and trunk inclination. A parameterized trajectory 
was created and deployed on the exoskeleton. The controller 
used the generated trajectory as equilibrium points, while 
allowing the exoskeleton to deviate slightly from these points 
when perturbed by the user in order to achieve compliance.  

In [34], an exoskeleton was controlled using end point model 
predictive control (MPC) to create joint trajectories online. 
Step-length, swing duration and walking speed were used as 
inputs to create end point references for the MPC controller. 
This allowed for user-specific gait assistance within the swing 
portion of a gait pattern.  

In [20], an assist-as-needed method was presented, where an 
exoskeleton only enacts force on a user when they cannot reach 
a desired goal on their own. An impedance-based force-field 
controller was designed to assist users by tracking the interaction 
forces between the user and the exoskeleton. The level of 
impedance was then adjusted based on whether the user was 
within the defined force-field. In [33], an impedance controller 
was also implemented to enable assist-as-needed control, by 
adjusting the end-point stiffness of the exoskeleton depending 
on the user’s kinematic deviations in their gait phases. 

In [36], a bipedal robot control design was adapted for an 
exoskeleton for spinal cord injury patients in order to allow them 
to walk without additional balance support. This method used a 
feedback controller, based on virtual constraints, to output a 
velocity regulating parameter comprised of the forward hip 
velocity of the exoskeleton, and posture regulating terms to 
synchronize the other joints. This method took advantage of 
offline trajectory optimization techniques to design gaits that 
could be tracked efficiently online. 

In [35], a linear quadratic regulator (LQR) was used to 
improve trajectory tracking control on a lower limb exoskeleton, 
and to account for disturbances resulting from human-

exoskeleton interactions. The LQR control inputs consisted of a 
feedforward reference torque, and feedback proportional, 
integral, and derivative actions. The parameters of the 
exoskeleton dynamics model were then derived experimentally 
through least squares estimation.  

The aforementioned control methods require defined 
dynamics models of the exoskeleton and user. However, 
accurate models can be difficult to obtain due to the 
human-exoskeleton interaction and the resulting non-linear 
characteristics of this interaction [46], [47]. Therefore, 
typically, to facilitate the use of these adaptive control schemes, 
these models have been simplified by considering: 1) only the 
interaction forces between the exoskeleton and user [20], or 2) 
the human and exoskeleton as one body [18], [19], [34], [35].  
B.   Reinforcement Learning in Exoskeleton Control 

Reinforcement learning (RL) has been used in exoskeleton 
control to: 1) optimize parameters of adaptive controllers  
[26], [28], 2) account for user-exoskeleton interactions [30], 
[31], or 3) provide assist-as-needed control [29].  

In [26], dynamic movement primitives (DMPs) were used 
for an exoskeleton to model human movement trajectories and 
adapt to user motions. A coupled cooperative primitive (CCP) 
was defined, which incorporated an interaction term into a 
conventional DMP, using an impedance-based spring-damper 
model to describe the interaction. The CCPs were first learned 
through imitation learning using motion trajectories of users, 
then RL was used to update the stiffness, damping and scaling 
parameters of the CCPs. Using RL to learn these parameters 
resulted in the reduction of human and exoskeleton interactive 
forces and dynamic uncertainties. 

In [28], RL was used for learning personalized parameters 
for an admittance controller, in order to reduce interaction forces 
between a user and a lower limb exoskeleton, while following a 
reference trajectory. The optimal parameters of stiffness and 
damping for the admittance controller were learned and tuned 
based on the performance of the user by using joint angle error 
and user-exoskeleton contact forces as observations. In [48], a 
similar method was employed for learning optimal impedance 
control parameters for an upper limb exoskeleton. 

In [31], RL was used to design a model-reference 
compliance controller and to track a reference trajectory for a 
lower limb exoskeleton. Using Q-learning, the exoskeleton 
tracked a reference trajectory by observing discretized 
exoskeleton joint angles, velocities, and accelerations, and 
outputted joint torque values to a joint-based compliance 
controller. The compliance controller was added to incorporate 
safety features into the exoskeleton to allow for perturbations 
from the user, by modeling the exoskeleton joints as a second 
order mass-spring-damper system. The mass-spring-damper 
model was then used to account for interaction torque from the 
user and adjust joint torques accordingly.  

In [30], assistive strategies for an upper limb exoskeleton 
were learned from interactions between an exoskeleton and user. 
Model-based RL was used to learn a dynamics model and 
control policies from limited data. The user moved a simulated 
arm with their muscle-activations recorded with 
electromyography (EMG), and a model-based policy search 
method found the optimal torque to assist the user in completing 
a reaching task and reduce the observed EMG signals.  



 

In [29], an actor-critic based approach was used to model an 
impedance controller for assist-as-needed control of an ankle 
exoskeleton. The RL agent adjusted the level of assistance by 
altering the stiffness parameter of the force-field provided by the 
impedance controller, based on the user’s performance. 
Performance was gauged by gathering observations of the 
tracking errors from a reference trajectory. This allowed for the 
controller to assist users in tracking a sinusoidal reference 
trajectory shown on a screen.  

The aforementioned RL approaches were used for tuning or 
finding optimal parameters of a controller [26], [28]–[30] or for 
tracking a reference trajectory through modeled joints [31]. 
However, they also require a predefined dynamics model or 
need to learn the dynamics model by using the transition 
probabilities of state-action pairs. In general, RL is also 
constrained to discrete low-dimension observation and action 
spaces as it is not able to handle high dimensional or continuous 
systems [49]. However, exoskeleton control requires continuous 
high-dimensional observation and continuous action spaces to 
represent the joint angles, velocities, accelerations and actuator 
torques,  and discretizing these spaces is difficult as there are too 
many state-action pairs to store [32].  

C.   Deep Reinforcement Learning for Exoskeletons and 
Locomotion  

 Deep reinforcement learning (DRL) has the ability to learn 
in the high-dimensional continuous observation and continuous 
action spaces by mapping the states to actions through the use of 
deep neural networks [32]. Therefore, it can overcome the 
limitations of standard reinforcement learning methods, while 
not requiring a predefined or learned dynamics model. The 
ability to learn in these spaces allows for more information to be 
provided to the controller, which can therefore output more 
accurate control torques [50]. To-date, model-free DRL has 
been used to learn: 1) human locomotion [37]–[39], 2) control 
of bipedal robots [22], [40]–[42], and 3) control of upper and 
lower limb exoskeleton joints [43]–[45].  
 In [37]–[39], DRL was used to learn locomotion skills for 
human musculoskeletal models. This was done with 
observations of joint angles, velocities, and accelerations, and 
joint torques or muscle activations as actions. DRL has also been 
successful in learning locomotion and motor skills for biped or 
legged robots, with stability, speed, and distance traversed as 
learning goals [22], [40]–[42].  
 With respect to exoskeletons, in [44], DRL was used to learn 
an optimal controller for enabling functional electrical 
stimulation (FES) of an upper limb while wearing a passive 
elbow exoskeleton. This was accomplished using a Proximal 
Policy Optimization (PPO) method. The learning agent took 
angular position, velocity and acceleration of the elbow, and the 
deviation from the expected goal as observations. This allowed 
for learning continuous actions of electrical stimulations to the 
arm muscles in order to enact elbow extension movements and 
for the user to reach specified elbow angles.   
 In [43], DRL was used to learn a fall predictor and recovery 
policy for an exoskeleton that was designed to assist in fall 
prevention of elderly users, by providing small torque 
adjustments to a user’s locomotion when a potential fall was 
detected. PPO was used to learn a policy for human locomotion, 
and the simulated locomotion data was then used to train the fall 

recovery policy. This also was accomplished using PPO, with 
hip joint angular position and velocity as observations, and hip 
joint torques as actions. A support vector machine (SVM) 
classifier was trained to predict states that could lead to potential 
falling actions, and a hip exoskeleton was then added to validate 
the fall recovery policy and provided actuator torques to assist 
with maintaining stability.  
 In [45], a rehabilitation training game was presented wherein 
a character in the game was directed by a user wearing an EMG-
controlled knee exoskeleton. The user’s muscle activity was 
recorded from a thigh worn EMG sensor and translated into 
exoskeleton movements which controlled the game character. 
To enable the DRL-based assistance, a deep-Q network 
algorithm (DQN) was used to gather image-based observations 
from the game interpreted through a convolutional neural 
network (CNN), and produced outputs of discrete movement 
actions to control the character. To assist the user in playing the 
game, the DRL agent was able to augment the user’s EMG-
based control by converting the game movements into joint 
angles on the exoskeleton.  

In general, the aforementioned DRL techniques have shown 
how DRL can be used to learn locomotion skills and help to 
control certain actions (elbow movements, maintaining 
balance). However, they have not focused on the specific 
problem of learning gait patterns for exoskeletons. End-to-end 
model-free DRL control methods, where actions are learned 
directly from raw sensor observations [51], can be specifically 
useful for such continuous and high-dimensional control tasks, 
as they do not require a dynamics model and can learn only from 
the exoskeleton directly interacting with the environment.  
 In this paper, we address the aforementioned limitations by 
developing a novel model-free DRL-based control technique 
that uniquely learns gait patterns for control of a lower limb 
exoskeleton. Our approach can be personalized for specific users 
by considering their specific gait patterns and perturbations, and 
observing their high-dimensional continuous hip, knee and 
ankle joint angles, velocities and accelerations, while providing 
appropriate actuator torques for the exoskeleton.  

III.   DRL FOR EXOSKELETON CONTROL 
Our DRL approach utilizes the Deep Deterministic Policy 

Gradient (DDPG) [32] algorithm from the Keras-RL  
library [52] for end-to-end learning of a patient-specific torque 
controller for a lower body exoskeleton. Our overall 
architecture is presented in Fig. 1. The DDPG agent is 
composed of an Actor and a Critic neural network to represent 
the policy and value functions, respectively [32]. The actor 
network takes actions based on its current policy and 
observations from the environment, and the critic evaluates 
these actions based on the observations and a reward.  
The simulation environment is composed of a simulated 
exoskeleton model paired to a musculoskeletal model, 
implemented in OpenSim-RL [53]. In our model-free deep 
reinforcement learning approach, however, this model is not 
learned by the policy, with learning only conducted through the 
simulated model interacting with the environment. The details 
of our DRL approach are discussed below. 



 

 
A.   Deep Deterministic Policy Gradient (DDPG) 

DDPG is a model-free off-policy actor-critic deep 
reinforcement learning method [32]. The learning agent gathers 
an observation state from a fully-observable environment, 𝑠" , 
takes an action,	  𝑎" , and receives a scalar reward, 𝑟" , in each 
timestep, 𝑡, while maximizing the expected future discounted 
cumulative reward [32]: 

 𝑅 = ∑ 𝛾(,-")/
,0" 	  𝑟,(𝑠,, 𝑎,) ,   (1) 

where 𝛾	   ∈ 	   [0, 1] is a discounting factor. 
The critic, 𝑄(𝑠, 𝑎), is learned using the Bellman equation to 

represent the value function, which describes the expected return 
after taking actions. The actor policy, µμ(𝑠|𝜃;), parameterized 
by mapping states to specific actions deterministically, is 
updated by following the policy gradient. Deep neural networks 
are used as function approximators [32]. 

During training, the critic network, 𝑄(𝑠, 𝑎|𝜃<), and the actor 
network, µμ(𝑠|𝜃;), are first randomly initialized with weights 𝜃< 
and 𝜃;. Target networks are also established, which are copies 
of the actor and critic networks, used to encourage a stable 
learning process and discourage divergence when updating the 
target value, 𝑄  [32]. These networks, 𝑄′  and µμ′ , have the 
following weights: 

𝜃<> 	  ← 	  𝜃<    (2) 
𝜃;> 	  ←	  𝜃; .    (3) 

A replay buffer, 𝐵, used to store transitions of experience 
(𝑠", 𝑎", 𝑟", 𝑠"AB), is also initialized. While training, a random 
process 𝒩 is initialized to encourage action exploration, based 
on an Ornstein Uhlenbeck Process [54], and a current 
observation state is received. The observations consist of the 
real-time joint angles for each hip, knee and ankle of the human 
model, the hip, knee and ankle actuator torque and velocity 
values of the exoskeleton, and the current goals. The goals at 
each timestep are comprised of the desired joint angles for the 
hip, knee, and ankle joints of the musculoskeletal model.  
 For each timestep, an action, 𝑎" 	  = 	  µμ(𝑠"|𝜃;)	  + 𝒩"  is 
selected and executed based on the current actor policy, and a 
reward and new state are obtained. State transitions are then 
stored in the replay buffer. A target Q value is obtained from the 
target networks, and the critic is then updated by minimizing the 
loss between the critic network and target critic network, 
summed over a batch of state transition samples from the replay 
buffer. The actor policy is then updated based on the policy 

gradient [32]. The parameter optimizer for the actor and critic 
neural networks is based on the Adam optimizer [55], with a 
learning rate of 0.001 being used for the actor and critic 
networks. 
 The target actor and critic networks are updated based on the 
main actor and critic networks, but with a soft update so that they 
slowly track the main networks to encourage learning stability 
[32]: 

𝜃<E 	  ← 	  𝜏𝜃< 	  +	  (1	  – 	  𝜏)𝜃<E         (4) 	  
𝜃;> 	  ← 	  𝜏𝜃; 	  +	  (1	   − 	  𝜏)𝜃;>,          (5) 

with 𝜏	   ≪ 1. 
 As each timestep progresses, the desired joint angle goals are 
updated to the next joint angle in the gait patterns. Eventually 
the agent learns to reach all these joint angles in sequence in 
order to maximize its reward and deploy the desired gait pattern. 
 In our implementation of DDPG, the actor network is 
comprised of the state observations as inputs, three hidden layers 
with rectified linear unit (ReLU) activations, and an output layer 
of actions with a sigmoid activation function. The critic network 
takes actions and state observations as inputs, and is comprised 
of three hidden layers with ReLU activations and an output layer 
with a linear activation.  

B.   Reward Function 
The reward function is comprised of the following 

components: 1) a reward based on the offset between the current 
and desired joint angles, and 2) a penalty for exceeding a 
maximum or minimum joint angle. This reward function allows 
the exoskeleton to follow a desired gait pattern by reducing the 
overall error between its joint angles and the desired joint angles, 
while providing additional penalties when an undesirable joint 
angle is reached. In this framework, a desired hip, knee and 
ankle joint angle is obtained from the desired gait pattern at each 
timestep, with the desired gait pattern updated at the beginning 
of each episode.  

The total cumulative reward, 𝑅J , for all joints, for each 
episode, E, over a number of steps, 𝑛, is defined as: 

𝑅J = ∑ (𝑤M𝑟,N + 	  𝑤O𝑟,P	   +	  𝑤Q𝑟,R)
S
,0T 	  ,      (6) 

where 𝑟, is the reward function for a particular joint, and ℎ, 𝑘, 𝑎 
represent the hip, knee, and ankle joints, respectively. 𝑤 is the 
weight for each joint. 
 The reward for each timestep 𝑟, is defined as: 

𝑟, = 𝑤Wℱ(𝑞,) +	  𝑤Z𝒢(𝑞,) ,        (7) 

where	  ℱ and  𝒢 are the components of the reward function, and 
𝑤W  and 𝑤Z their weights. 	  ℱ represents a reward based on the 
current joint angle offset, and 𝒢  represents a penalty for 
exceeding a maximum or minimum defined joint angle. 
 ℱ(𝑞,) is defined as a Gaussian function:  

ℱ(𝑞,) =
B

]√_`
𝑒-

b
cd
efg
h i

c

  ,     (8) 

where 𝜇  and 𝜎  are the mean and standard deviation 
respectively, and d is defined as the absolute difference between 
the current joint angle, 𝑞,, and the current desired joint angle, 
𝑞lm: 

𝑑 = o𝑞, − 𝑞lmo .          (9) 

 
Fig. 1. DRL architecture overview for exoskeleton control. 

 



 

 To assist in the learning process, a penalty is added if the 
defined maximum or minimum joint angles are exceeded 
during exploration, 𝒢(𝑞,):  

𝒢(𝑞,) = −𝑀(𝑦rst) −𝑀(𝑦ruv) ,          (10) 

where, 

𝑀(𝑦) = w0 𝑦 ≤ 0
𝑦 𝑦 > 0 ,  (11) 

𝑦rst = 𝑞, − 𝑞rst ,  (12) 

and, 

𝑦ruv = 𝑞ruv − 𝑞, .  (13) 

Above, 𝑞rst  and 𝑞ruv  are the defined maximum and 
minimum joint angles, respectively, the values of which are set 
as 20 degrees beyond the maximum and minimum desired joint 
angles. With the use of a ramp function 𝑀(𝑦), the penalty will 
only be applied if the maximum or minimum joint angles are 
exceeded. 

IV.   USER-EXOSKELETON SIMULATION ENVIRONMENT  
 The simulation environment used for training the controller 
incorporates both a 3D musculoskeletal human model and a 3D 
exoskeleton model. OpenSim-RL [53] is used to provide the 
reinforcement learning environment and agent. This RL 
environment is based on OpenAI Gym [56], a popular platform 
for performing deep reinforcement learning experiments and 
benchmarking.  

OpenSim-RL uses the OpenSim API platform to provide the 
physical simulation of the musculoskeletal model. This 
musculoskeletal model is derived from OpenSim’s Gait2392 
model, which is anatomically accurate and scaled to the  
proportions of a human with a height of 1.8 m and mass of 76.16 
kg [57]. The OpenSim API platform has previously been used 
to perform dynamic simulations of locomotion or muscle control 
analyses [58]–[60]. The Simbody physics engine [61] is used to 
provide the multibody dynamics for the motion and interaction 
of the musculoskeletal bones, joints, muscles, and exoskeleton 
linkages in the OpenSim-RL environment. The simulation 
environment is presented in Fig. 2. 

 

 
 We adapt a 3D hip-knee-ankle exoskeleton model from [60] 
that contains a thigh, shank, and foot linkage, as well as a hip 
attachment. This is added to the OpenSim environment and 
secured to the musculoskeletal model, with torque actuators 
added to each joint (as would be found on a hip-knee-ankle 
exoskeleton). Each exoskeleton joint has a specified range of 
motion, in order to simulate a range similar to real exoskeleton  
joints [62]. The forces incorporated in the simulation 
environment consist of ground reaction forces on the bottom of 
the exoskeleton foot plates, acceleration due to gravity, and joint 
limit constraints. The exoskeleton parameters incorporated are 
summarized in Table I. 
 A hip-knee-ankle joint torque pattern, also obtained from the 
OpenSim Gait2392 model, is applied to the joints of the 
musculoskeletal model in order to simulate a post-stroke 
individual’s baseline gait pattern. The corresponding joint angle 
pattern can be seen in Fig. 3. To obtain the desired gait pattern, 
Fig. 3, an inverse kinematic simulation is performed from 
motion tracking data provided by OpenSim [57] to generate a 
joint angle pattern for the hip, knee, and ankle. 

 

 

 
Fig. 2. Simulation environment in OpenSim-RL, composed of a 
musculoskeletal model with a hip-knee-ankle exoskeleton. 

 

TABLE I. EXOSKELETON PARAMETERS 

Link Thigh Shank Foot 
Length [m] 0.47 0.42 0.26 
Mass [kg] 1.5 1.5 0.5 
𝐼{{ [kg m2]* 0.015 0.059 0.337 
𝐼||  [kg m2] 0.005 0.003 0.009 
𝐼}} [kg m2] 0.014 0.057 0.338 

Joint Limits Hip Knee Ankle 
Maximum [º] 80 10 40 
Minimum [º] -80 -100 -40 

*The 𝐼{{, 𝐼||, and 𝐼}}, are the moment of inertia tensor’s diagonal values. 

 
 

 
Fig. 3. Desired gait pattern and the user baseline gait pattern used in training. 



 

V.   EXPERIMENTS 
In order to validate our DRL method for exoskeleton control 

of gait patterns, we first train the DDPG agent with the baseline 
and desired gait patterns. We then test the trained policy for 
controlling the exoskeleton joints.  
A.   Training  

Training was conducted with the OpenSim-RL framework, 
with a user baseline gait pattern and a desired gait pattern as 
shown in Fig. 3. Training was implemented on an Intel Core i7-
8700 CPU for over 2,200 episodes, with 308 timesteps per 
episode. After 1,300 episodes, the cumulative reward reached an 
average of approximately 63, as seen in Fig. 4. The parameters 
and weights for the reward function were defined as  
s = 5, µ = 0, 𝑤W  = 1, 𝑤Z= 0.002, and 𝑤M,𝑤O,𝑤Q= 1. The 
hyperparameters for the training and networks are as follows:  
g = 0.99, t = 0.001, and a learning rate of 0.001.  

B.   Testing  
Testing was conducted in two stages: 1) Stage 1, with the 

baseline and desired gait pattern used in training, and 2) Stage 
2, with adjusted baseline and desired gait patterns from the 
training. Stage 2 testing was used to investigate robustness to 
slight changes in the gait patterns. Namely, the baseline joint 
torque and desired joint angle values for each joint were adjusted 
by a scale factor.  
 For both stages, the exoskeleton performed 10 full gait 
cycles of the learned joint torque pattern, with the resulting hip, 
knee, and ankle joint angles of the musculoskeletal model 
averaged over the cycles.  
C.   Results 

The results of the tests in Stage 1 are presented in Fig. 5. The 
descriptive statistics for the error are also presented in Table II. 
It can be seen that the trained exoskeleton was able to follow the 
desired gait pattern closely throughout the gait cycle.  The mean 
absolute error ranged from 1.06 degrees for the ankle to 2.63 
degrees for the knee. The knee joint exhibited the largest error 
as it also has the largest range of motion of the three joints. The 
Stage 2 results for the scaled desired joint angle adjustments are 
presented in Fig. 6, with the descriptive statistics in Table III. 
Scaling factors of 0.5 and 0.8 applied to the desired joint angles 
were used to demonstrate deviations in the desired gait pattern 
that would be applicable during different stages of gait 
rehabilitation. It can be seen that the adjusted desired gait 
patterns were followed closely even though they were not used 

in training, with the mean absolute error ranging between 0.73 
degrees for the ankle to 1.72 degrees for the knee. As the range 
of motion of the desired gait pattern in the Stage 2 tests were 
lower, the errors are also lower across all joints. In general, the 
error ranges from our results are comparable to existing model- 
based adaptive and RL-based joint control methods, which have 
ranged from 1 degree to 5 degrees, i.e., [35], [28].  

 

 

 

 
Fig. 5. Desired and the exoskeleton trained joint angle patterns for the hip, 
knee, and ankle joints.  

TABLE II.  STAGE 1 GAIT PATTERN ERROR 

Exoskeleton 
joint 

Mean absolute 
error (degrees) 

Standard deviation 
(degrees) 

Hip 1.82 1.01 
Knee 2.63 1.72 
Ankle 1.06 1.05 

 

 

 
Fig. 6. Desired and exoskeleton gait patterns with the desired gait pattern 
scaled by a factor of 0.5 and 0.8. 

 

 
Fig 4. Cumulative reward per episode during training, averaged per 50 episodes. 

 



 

 
The results validate the effectiveness of our DRL method to 

learn and follow a desired gait pattern while accounting for a 
user baseline gait pattern as well as the ability to handle small 
deviations from the trained desired pattern.  

VI.   CONCLUSIONS 
In this paper, a novel method for end-to-end DRL for 

exoskeleton control was developed. Our approach allows for 
user personalization of gait training using Deep Deterministic 
Policy Gradient (DDPG). Control torque values are learned for 
the exoskeleton hip, knee and ankle joints directly from 
observed joint information, without the need of a predefined or 
learned dynamics model. The DDPG agent was trained and 
tested in a 3D simulated physics environment. Experimental 
results showed that the learned torque control allowed the 
exoskeleton to closely follow the trained desired gait pattern as 
well as small deviations from it. The ability of our controller to 
personalize to users can help increase motor learning and 
function during post-stroke gait rehabilitation, leading to greater 
improvements in recovery. Our future work consists of 
evaluating the controller for use with additional desired gait 
patterns unseen in training. 
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