

End-to-End Deep Reinforcement Learning for
Exoskeleton Control

Lowell Rose, Michael C.F. Bazzocchi, Member, IEEE, Goldie Nejat, Member, IEEE

Abstract—Patient-specific control and training on lower body
exoskeletons can help improve a user’s gait during post-stroke
rehabilitation by increasing their amount of participation and
motor learning. Traditionally, adaptive control techniques have
been used to provide personalization and synchronization with
exoskeleton users, but they require predefined dynamics models
of the user and exoskeleton. However, these models can be difficult
to accurately define due to the complexity of the human-robot
interaction. Most recently deep reinforcement learning techniques
have shown potential to effectively learn control schemes without
the need for system dynamics models. In this paper, we present for
the first time an end-to-end model-free deep reinforcement
learning method for an exoskeleton that can learn to follow a
desired gait pattern, while considering a user’s existing gait
pattern and being robust to their perturbations and interactions.
We demonstrate the effectiveness of our proposed method for user
personalization of gait training in simulated experiments.

Keywords—lower body exoskeletons, deep reinforcement
learning, patient-specific control, exoskeleton control

I. INTRODUCTION
 Lower body exoskeletons are increasingly being used for the
gait rehabilitation of persons post-stroke [1], [2] and have been
shown to be effective intervention tools for these patients [3].
They can aid in recovering gait symmetry, range of motion,
increasing walking speed, as well as improving overall mobility
and function [3]–[5].
 Previous research on exoskeleton control has mainly focused
on improving trajectory tracking, while imposing a specific gait
pattern on a patient [6]–[8]. It has been found that while this
provides some improvement in post-stroke recovery, it can also
lead to a decrease in patient participation and motor learning,
therefore resulting in less improvement in gait recovery for these
individuals [6], [9]. Gait training that is specifically personalized
for users has been found to be more effective at gait recovery
[7], [10]–[13]. To achieve this, adaptive control techniques and
learning-based control methods have been proposed; however,
both often require a predefined dynamics model of the user and
exoskeleton.
 Adaptive control techniques use the dynamics models to
represent the equations of motion of the exoskeleton, and
determine the actuator torques necessary to control the

exoskeleton in the presence of human interaction [9], [14]–[20].
To-date adaptive controllers allow exoskeletons to adjust and
synchronize to users online [9], [14], [15], and try to account for
some of the dynamic uncertainties and perturbations resulting
from the human-robot interaction and variations in the behavior
of different users [16]–[20]. However, due to the complex nature
of the human-exoskeleton interaction, including the non-linear
characteristics of this interaction and resulting dynamic
uncertainties and perturbations, these models are not able to
accurately and fully describe the interaction dynamics between
the exoskeleton and user [17], [21]–[24].

More recently, reinforcement learning (RL) techniques have
been used to improve upon the adaptive controllers by learning
to optimize and personalize control parameters. RL allows for
the automated iterative tuning of parameters by maximizing a
reward [25], [26]. However, these RL techniques still must
incorporate previously formulated dynamics models or must
learn these models through transition probabilities of state-
action pairs [27]. Furthermore, they can only learn in discrete
observation spaces and produce discrete actions which are
represented as control parameters (stiffness, damping) [26],
[28]–[30] or discrete joint torques [31], due to the curse of
dimensionality [32].
 Model-free deep reinforcement learning (DRL) can
potentially be used for exoskeleton control, where deep neural
networks are used to represent the policy and value functions of
RL. Their advantages over RL-based approaches are that they
can learn high dimensional exoskeleton joint angles (which
include position, velocity and acceleration information) and
provide continuous actions such as joint torques, through only
an agent interacting with a physics-based simulation
environment [23]. Therefore, they do not require a previously
defined or learned dynamics model. To-date, DRL has not yet
been used in the control of exoskeletons in order to learn gait
patterns.

In this paper, we investigate for the first time the
development of an end-to-end DRL exoskeleton control method
for user personalization of gait training. Our novel approach
allows for model-free learning of a desired gait pattern, where
the torque values of hip, knee, and ankle actuators of an
exoskeleton are learned from scratch to achieve a desired gait,
while considering a user’s existing gait pattern and their
perturbations. This unique control method can adapt the level of
assistance needed as patients progress in their physiotherapy and
therefore can be trained for individual patients.

This research is supported by the EMHSeed Fund, the Natural Sciences and
Engineering Research Council of Canada (NSERC), and the Canada Research
Chairs Program. All authors are with the Autonomous Systems and
Biomechatronics Laboratory of the Department of Mechanical and Industrial
Engineering at the University of Toronto (lowell.rose@mail.utoronto.ca;
michael.bazzocchi@utoronto.ca; nejat@mie.utoronto.ca).

II. RELATED WORKS
Previous work that has focused on the development of

exoskeleton control with patient-specific adaptation can be
categorized into: 1) adaptive control methods [18]–[20], [33]–
[36], and 2) reinforcement learning methods [26], [28]–[31].
DRL techniques have been proposed for learning human and
biped locomotion [22], [37]–[42], as well as learning upper and
lower limb exoskeleton-based control policies [43]–[45], but
have not yet been applied to end-to-end exoskeleton control for
gait pattern training.
A. Adaptive Control Methods for Exoskeletons

Adaptive control techniques utilize dynamics models for
both the user and exoskeleton in order to attempt to personalize
to various users through adaptation of subject-specific
parameters such as step length or walking speed [18], [34], or
synchronize with a user’s movements through online adaptation
and feedback [19], [20], [35], [36].

In [18], a dual unscented Kalman filter was used to predict
and generate exoskeleton trajectories based on the
spatiotemporal features of a user’s gait. This was accomplished
with a partial coupled dynamics model of a human and
exoskeleton, where the exoskeleton and user’s limb were
modeled as one body. An impedance supervisory controller was
then used to follow a trajectory and synchronize with the user
during their locomotion.

In [19], a compliance controller was used to provide motion
control to an exoskeleton based on tracking a user’s joint angles,
foot pressure, and trunk inclination. A parameterized trajectory
was created and deployed on the exoskeleton. The controller
used the generated trajectory as equilibrium points, while
allowing the exoskeleton to deviate slightly from these points
when perturbed by the user in order to achieve compliance.

In [34], an exoskeleton was controlled using end point model
predictive control (MPC) to create joint trajectories online.
Step-length, swing duration and walking speed were used as
inputs to create end point references for the MPC controller.
This allowed for user-specific gait assistance within the swing
portion of a gait pattern.

In [20], an assist-as-needed method was presented, where an
exoskeleton only enacts force on a user when they cannot reach
a desired goal on their own. An impedance-based force-field
controller was designed to assist users by tracking the interaction
forces between the user and the exoskeleton. The level of
impedance was then adjusted based on whether the user was
within the defined force-field. In [33], an impedance controller
was also implemented to enable assist-as-needed control, by
adjusting the end-point stiffness of the exoskeleton depending
on the user’s kinematic deviations in their gait phases.

In [36], a bipedal robot control design was adapted for an
exoskeleton for spinal cord injury patients in order to allow them
to walk without additional balance support. This method used a
feedback controller, based on virtual constraints, to output a
velocity regulating parameter comprised of the forward hip
velocity of the exoskeleton, and posture regulating terms to
synchronize the other joints. This method took advantage of
offline trajectory optimization techniques to design gaits that
could be tracked efficiently online.

In [35], a linear quadratic regulator (LQR) was used to
improve trajectory tracking control on a lower limb exoskeleton,
and to account for disturbances resulting from human-

exoskeleton interactions. The LQR control inputs consisted of a
feedforward reference torque, and feedback proportional,
integral, and derivative actions. The parameters of the
exoskeleton dynamics model were then derived experimentally
through least squares estimation.

The aforementioned control methods require defined
dynamics models of the exoskeleton and user. However,
accurate models can be difficult to obtain due to the
human-exoskeleton interaction and the resulting non-linear
characteristics of this interaction [46], [47]. Therefore,
typically, to facilitate the use of these adaptive control schemes,
these models have been simplified by considering: 1) only the
interaction forces between the exoskeleton and user [20], or 2)
the human and exoskeleton as one body [18], [19], [34], [35].
B. Reinforcement Learning in Exoskeleton Control

Reinforcement learning (RL) has been used in exoskeleton
control to: 1) optimize parameters of adaptive controllers
[26], [28], 2) account for user-exoskeleton interactions [30],
[31], or 3) provide assist-as-needed control [29].

In [26], dynamic movement primitives (DMPs) were used
for an exoskeleton to model human movement trajectories and
adapt to user motions. A coupled cooperative primitive (CCP)
was defined, which incorporated an interaction term into a
conventional DMP, using an impedance-based spring-damper
model to describe the interaction. The CCPs were first learned
through imitation learning using motion trajectories of users,
then RL was used to update the stiffness, damping and scaling
parameters of the CCPs. Using RL to learn these parameters
resulted in the reduction of human and exoskeleton interactive
forces and dynamic uncertainties.

In [28], RL was used for learning personalized parameters
for an admittance controller, in order to reduce interaction forces
between a user and a lower limb exoskeleton, while following a
reference trajectory. The optimal parameters of stiffness and
damping for the admittance controller were learned and tuned
based on the performance of the user by using joint angle error
and user-exoskeleton contact forces as observations. In [48], a
similar method was employed for learning optimal impedance
control parameters for an upper limb exoskeleton.

In [31], RL was used to design a model-reference
compliance controller and to track a reference trajectory for a
lower limb exoskeleton. Using Q-learning, the exoskeleton
tracked a reference trajectory by observing discretized
exoskeleton joint angles, velocities, and accelerations, and
outputted joint torque values to a joint-based compliance
controller. The compliance controller was added to incorporate
safety features into the exoskeleton to allow for perturbations
from the user, by modeling the exoskeleton joints as a second
order mass-spring-damper system. The mass-spring-damper
model was then used to account for interaction torque from the
user and adjust joint torques accordingly.

In [30], assistive strategies for an upper limb exoskeleton
were learned from interactions between an exoskeleton and user.
Model-based RL was used to learn a dynamics model and
control policies from limited data. The user moved a simulated
arm with their muscle-activations recorded with
electromyography (EMG), and a model-based policy search
method found the optimal torque to assist the user in completing
a reaching task and reduce the observed EMG signals.

In [29], an actor-critic based approach was used to model an
impedance controller for assist-as-needed control of an ankle
exoskeleton. The RL agent adjusted the level of assistance by
altering the stiffness parameter of the force-field provided by the
impedance controller, based on the user’s performance.
Performance was gauged by gathering observations of the
tracking errors from a reference trajectory. This allowed for the
controller to assist users in tracking a sinusoidal reference
trajectory shown on a screen.

The aforementioned RL approaches were used for tuning or
finding optimal parameters of a controller [26], [28]–[30] or for
tracking a reference trajectory through modeled joints [31].
However, they also require a predefined dynamics model or
need to learn the dynamics model by using the transition
probabilities of state-action pairs. In general, RL is also
constrained to discrete low-dimension observation and action
spaces as it is not able to handle high dimensional or continuous
systems [49]. However, exoskeleton control requires continuous
high-dimensional observation and continuous action spaces to
represent the joint angles, velocities, accelerations and actuator
torques, and discretizing these spaces is difficult as there are too
many state-action pairs to store [32].

C. Deep Reinforcement Learning for Exoskeletons and
Locomotion

 Deep reinforcement learning (DRL) has the ability to learn
in the high-dimensional continuous observation and continuous
action spaces by mapping the states to actions through the use of
deep neural networks [32]. Therefore, it can overcome the
limitations of standard reinforcement learning methods, while
not requiring a predefined or learned dynamics model. The
ability to learn in these spaces allows for more information to be
provided to the controller, which can therefore output more
accurate control torques [50]. To-date, model-free DRL has
been used to learn: 1) human locomotion [37]–[39], 2) control
of bipedal robots [22], [40]–[42], and 3) control of upper and
lower limb exoskeleton joints [43]–[45].
 In [37]–[39], DRL was used to learn locomotion skills for
human musculoskeletal models. This was done with
observations of joint angles, velocities, and accelerations, and
joint torques or muscle activations as actions. DRL has also been
successful in learning locomotion and motor skills for biped or
legged robots, with stability, speed, and distance traversed as
learning goals [22], [40]–[42].
 With respect to exoskeletons, in [44], DRL was used to learn
an optimal controller for enabling functional electrical
stimulation (FES) of an upper limb while wearing a passive
elbow exoskeleton. This was accomplished using a Proximal
Policy Optimization (PPO) method. The learning agent took
angular position, velocity and acceleration of the elbow, and the
deviation from the expected goal as observations. This allowed
for learning continuous actions of electrical stimulations to the
arm muscles in order to enact elbow extension movements and
for the user to reach specified elbow angles.
 In [43], DRL was used to learn a fall predictor and recovery
policy for an exoskeleton that was designed to assist in fall
prevention of elderly users, by providing small torque
adjustments to a user’s locomotion when a potential fall was
detected. PPO was used to learn a policy for human locomotion,
and the simulated locomotion data was then used to train the fall

recovery policy. This also was accomplished using PPO, with
hip joint angular position and velocity as observations, and hip
joint torques as actions. A support vector machine (SVM)
classifier was trained to predict states that could lead to potential
falling actions, and a hip exoskeleton was then added to validate
the fall recovery policy and provided actuator torques to assist
with maintaining stability.
 In [45], a rehabilitation training game was presented wherein
a character in the game was directed by a user wearing an EMG-
controlled knee exoskeleton. The user’s muscle activity was
recorded from a thigh worn EMG sensor and translated into
exoskeleton movements which controlled the game character.
To enable the DRL-based assistance, a deep-Q network
algorithm (DQN) was used to gather image-based observations
from the game interpreted through a convolutional neural
network (CNN), and produced outputs of discrete movement
actions to control the character. To assist the user in playing the
game, the DRL agent was able to augment the user’s EMG-
based control by converting the game movements into joint
angles on the exoskeleton.

In general, the aforementioned DRL techniques have shown
how DRL can be used to learn locomotion skills and help to
control certain actions (elbow movements, maintaining
balance). However, they have not focused on the specific
problem of learning gait patterns for exoskeletons. End-to-end
model-free DRL control methods, where actions are learned
directly from raw sensor observations [51], can be specifically
useful for such continuous and high-dimensional control tasks,
as they do not require a dynamics model and can learn only from
the exoskeleton directly interacting with the environment.
 In this paper, we address the aforementioned limitations by
developing a novel model-free DRL-based control technique
that uniquely learns gait patterns for control of a lower limb
exoskeleton. Our approach can be personalized for specific users
by considering their specific gait patterns and perturbations, and
observing their high-dimensional continuous hip, knee and
ankle joint angles, velocities and accelerations, while providing
appropriate actuator torques for the exoskeleton.

III. DRL FOR EXOSKELETON CONTROL
Our DRL approach utilizes the Deep Deterministic Policy

Gradient (DDPG) [32] algorithm from the Keras-RL
library [52] for end-to-end learning of a patient-specific torque
controller for a lower body exoskeleton. Our overall
architecture is presented in Fig. 1. The DDPG agent is
composed of an Actor and a Critic neural network to represent
the policy and value functions, respectively [32]. The actor
network takes actions based on its current policy and
observations from the environment, and the critic evaluates
these actions based on the observations and a reward.
The simulation environment is composed of a simulated
exoskeleton model paired to a musculoskeletal model,
implemented in OpenSim-RL [53]. In our model-free deep
reinforcement learning approach, however, this model is not
learned by the policy, with learning only conducted through the
simulated model interacting with the environment. The details
of our DRL approach are discussed below.

A. Deep Deterministic Policy Gradient (DDPG)

DDPG is a model-free off-policy actor-critic deep
reinforcement learning method [32]. The learning agent gathers
an observation state from a fully-observable environment, 𝑠" ,
takes an action,	 𝑎" , and receives a scalar reward, 𝑟" , in each
timestep, 𝑡, while maximizing the expected future discounted
cumulative reward [32]:

 𝑅 = ∑ 𝛾(,-")/
,0" 	 𝑟,(𝑠,, 𝑎,) , (1)

where 𝛾	 ∈ 	 [0, 1] is a discounting factor.
The critic, 𝑄(𝑠, 𝑎), is learned using the Bellman equation to

represent the value function, which describes the expected return
after taking actions. The actor policy, µμ(𝑠|𝜃;), parameterized
by mapping states to specific actions deterministically, is
updated by following the policy gradient. Deep neural networks
are used as function approximators [32].

During training, the critic network, 𝑄(𝑠, 𝑎|𝜃<), and the actor
network, µμ(𝑠|𝜃;), are first randomly initialized with weights 𝜃<
and 𝜃;. Target networks are also established, which are copies
of the actor and critic networks, used to encourage a stable
learning process and discourage divergence when updating the
target value, 𝑄 [32]. These networks, 𝑄′ and µμ′ , have the
following weights:

𝜃<> 	 ← 	 𝜃< (2)
𝜃;> 	 ←	 𝜃; . (3)

A replay buffer, 𝐵, used to store transitions of experience
(𝑠", 𝑎", 𝑟", 𝑠"AB), is also initialized. While training, a random
process 𝒩 is initialized to encourage action exploration, based
on an Ornstein Uhlenbeck Process [54], and a current
observation state is received. The observations consist of the
real-time joint angles for each hip, knee and ankle of the human
model, the hip, knee and ankle actuator torque and velocity
values of the exoskeleton, and the current goals. The goals at
each timestep are comprised of the desired joint angles for the
hip, knee, and ankle joints of the musculoskeletal model.
 For each timestep, an action, 𝑎" 	 = 	 µμ(𝑠"|𝜃;)	 + 𝒩" is
selected and executed based on the current actor policy, and a
reward and new state are obtained. State transitions are then
stored in the replay buffer. A target Q value is obtained from the
target networks, and the critic is then updated by minimizing the
loss between the critic network and target critic network,
summed over a batch of state transition samples from the replay
buffer. The actor policy is then updated based on the policy

gradient [32]. The parameter optimizer for the actor and critic
neural networks is based on the Adam optimizer [55], with a
learning rate of 0.001 being used for the actor and critic
networks.
 The target actor and critic networks are updated based on the
main actor and critic networks, but with a soft update so that they
slowly track the main networks to encourage learning stability
[32]:

𝜃<E 	 ← 	 𝜏𝜃< 	 +	 (1	 – 	 𝜏)𝜃<E (4) 	
𝜃;> 	 ← 	 𝜏𝜃; 	 +	 (1	 − 	 𝜏)𝜃;>, (5)

with 𝜏	 ≪ 1.
 As each timestep progresses, the desired joint angle goals are
updated to the next joint angle in the gait patterns. Eventually
the agent learns to reach all these joint angles in sequence in
order to maximize its reward and deploy the desired gait pattern.
 In our implementation of DDPG, the actor network is
comprised of the state observations as inputs, three hidden layers
with rectified linear unit (ReLU) activations, and an output layer
of actions with a sigmoid activation function. The critic network
takes actions and state observations as inputs, and is comprised
of three hidden layers with ReLU activations and an output layer
with a linear activation.

B. Reward Function
The reward function is comprised of the following

components: 1) a reward based on the offset between the current
and desired joint angles, and 2) a penalty for exceeding a
maximum or minimum joint angle. This reward function allows
the exoskeleton to follow a desired gait pattern by reducing the
overall error between its joint angles and the desired joint angles,
while providing additional penalties when an undesirable joint
angle is reached. In this framework, a desired hip, knee and
ankle joint angle is obtained from the desired gait pattern at each
timestep, with the desired gait pattern updated at the beginning
of each episode.

The total cumulative reward, 𝑅J , for all joints, for each
episode, E, over a number of steps, 𝑛, is defined as:

𝑅J = ∑ (𝑤M𝑟,N + 	 𝑤O𝑟,P	 +	 𝑤Q𝑟,R)
S
,0T 	 , (6)

where 𝑟, is the reward function for a particular joint, and ℎ, 𝑘, 𝑎
represent the hip, knee, and ankle joints, respectively. 𝑤 is the
weight for each joint.
 The reward for each timestep 𝑟, is defined as:

𝑟, = 𝑤Wℱ(𝑞,) +	 𝑤Z𝒢(𝑞,) , (7)

where	 ℱ and 𝒢 are the components of the reward function, and
𝑤W and 𝑤Z their weights. 	 ℱ represents a reward based on the
current joint angle offset, and 𝒢 represents a penalty for
exceeding a maximum or minimum defined joint angle.
 ℱ(𝑞,) is defined as a Gaussian function:

ℱ(𝑞,) =
B

]√_`
𝑒-

b
cd
efg
h i

c

 , (8)

where 𝜇 and 𝜎 are the mean and standard deviation
respectively, and d is defined as the absolute difference between
the current joint angle, 𝑞,, and the current desired joint angle,
𝑞lm:

𝑑 = o𝑞, − 𝑞lmo . (9)

Fig. 1. DRL architecture overview for exoskeleton control.

 To assist in the learning process, a penalty is added if the
defined maximum or minimum joint angles are exceeded
during exploration, 𝒢(𝑞,):

𝒢(𝑞,) = −𝑀(𝑦rst) −𝑀(𝑦ruv) , (10)

where,

𝑀(𝑦) = w0 𝑦 ≤ 0
𝑦 𝑦 > 0 , (11)

𝑦rst = 𝑞, − 𝑞rst , (12)

and,

𝑦ruv = 𝑞ruv − 𝑞, . (13)

Above, 𝑞rst and 𝑞ruv are the defined maximum and
minimum joint angles, respectively, the values of which are set
as 20 degrees beyond the maximum and minimum desired joint
angles. With the use of a ramp function 𝑀(𝑦), the penalty will
only be applied if the maximum or minimum joint angles are
exceeded.

IV. USER-EXOSKELETON SIMULATION ENVIRONMENT
 The simulation environment used for training the controller
incorporates both a 3D musculoskeletal human model and a 3D
exoskeleton model. OpenSim-RL [53] is used to provide the
reinforcement learning environment and agent. This RL
environment is based on OpenAI Gym [56], a popular platform
for performing deep reinforcement learning experiments and
benchmarking.

OpenSim-RL uses the OpenSim API platform to provide the
physical simulation of the musculoskeletal model. This
musculoskeletal model is derived from OpenSim’s Gait2392
model, which is anatomically accurate and scaled to the
proportions of a human with a height of 1.8 m and mass of 76.16
kg [57]. The OpenSim API platform has previously been used
to perform dynamic simulations of locomotion or muscle control
analyses [58]–[60]. The Simbody physics engine [61] is used to
provide the multibody dynamics for the motion and interaction
of the musculoskeletal bones, joints, muscles, and exoskeleton
linkages in the OpenSim-RL environment. The simulation
environment is presented in Fig. 2.

 We adapt a 3D hip-knee-ankle exoskeleton model from [60]
that contains a thigh, shank, and foot linkage, as well as a hip
attachment. This is added to the OpenSim environment and
secured to the musculoskeletal model, with torque actuators
added to each joint (as would be found on a hip-knee-ankle
exoskeleton). Each exoskeleton joint has a specified range of
motion, in order to simulate a range similar to real exoskeleton
joints [62]. The forces incorporated in the simulation
environment consist of ground reaction forces on the bottom of
the exoskeleton foot plates, acceleration due to gravity, and joint
limit constraints. The exoskeleton parameters incorporated are
summarized in Table I.
 A hip-knee-ankle joint torque pattern, also obtained from the
OpenSim Gait2392 model, is applied to the joints of the
musculoskeletal model in order to simulate a post-stroke
individual’s baseline gait pattern. The corresponding joint angle
pattern can be seen in Fig. 3. To obtain the desired gait pattern,
Fig. 3, an inverse kinematic simulation is performed from
motion tracking data provided by OpenSim [57] to generate a
joint angle pattern for the hip, knee, and ankle.

Fig. 2. Simulation environment in OpenSim-RL, composed of a
musculoskeletal model with a hip-knee-ankle exoskeleton.

TABLE I. EXOSKELETON PARAMETERS

Link Thigh Shank Foot
Length [m] 0.47 0.42 0.26
Mass [kg] 1.5 1.5 0.5
𝐼{{ [kg m2]* 0.015 0.059 0.337
𝐼|| [kg m2] 0.005 0.003 0.009
𝐼}} [kg m2] 0.014 0.057 0.338

Joint Limits Hip Knee Ankle
Maximum [º] 80 10 40
Minimum [º] -80 -100 -40

*The 𝐼{{, 𝐼||, and 𝐼}}, are the moment of inertia tensor’s diagonal values.

Fig. 3. Desired gait pattern and the user baseline gait pattern used in training.

V. EXPERIMENTS
In order to validate our DRL method for exoskeleton control

of gait patterns, we first train the DDPG agent with the baseline
and desired gait patterns. We then test the trained policy for
controlling the exoskeleton joints.
A. Training

Training was conducted with the OpenSim-RL framework,
with a user baseline gait pattern and a desired gait pattern as
shown in Fig. 3. Training was implemented on an Intel Core i7-
8700 CPU for over 2,200 episodes, with 308 timesteps per
episode. After 1,300 episodes, the cumulative reward reached an
average of approximately 63, as seen in Fig. 4. The parameters
and weights for the reward function were defined as
s = 5, µ = 0, 𝑤W = 1, 𝑤Z= 0.002, and 𝑤M,𝑤O,𝑤Q= 1. The
hyperparameters for the training and networks are as follows:
g = 0.99, t = 0.001, and a learning rate of 0.001.

B. Testing
Testing was conducted in two stages: 1) Stage 1, with the

baseline and desired gait pattern used in training, and 2) Stage
2, with adjusted baseline and desired gait patterns from the
training. Stage 2 testing was used to investigate robustness to
slight changes in the gait patterns. Namely, the baseline joint
torque and desired joint angle values for each joint were adjusted
by a scale factor.
 For both stages, the exoskeleton performed 10 full gait
cycles of the learned joint torque pattern, with the resulting hip,
knee, and ankle joint angles of the musculoskeletal model
averaged over the cycles.
C. Results

The results of the tests in Stage 1 are presented in Fig. 5. The
descriptive statistics for the error are also presented in Table II.
It can be seen that the trained exoskeleton was able to follow the
desired gait pattern closely throughout the gait cycle. The mean
absolute error ranged from 1.06 degrees for the ankle to 2.63
degrees for the knee. The knee joint exhibited the largest error
as it also has the largest range of motion of the three joints. The
Stage 2 results for the scaled desired joint angle adjustments are
presented in Fig. 6, with the descriptive statistics in Table III.
Scaling factors of 0.5 and 0.8 applied to the desired joint angles
were used to demonstrate deviations in the desired gait pattern
that would be applicable during different stages of gait
rehabilitation. It can be seen that the adjusted desired gait
patterns were followed closely even though they were not used

in training, with the mean absolute error ranging between 0.73
degrees for the ankle to 1.72 degrees for the knee. As the range
of motion of the desired gait pattern in the Stage 2 tests were
lower, the errors are also lower across all joints. In general, the
error ranges from our results are comparable to existing model-
based adaptive and RL-based joint control methods, which have
ranged from 1 degree to 5 degrees, i.e., [35], [28].

Fig. 5. Desired and the exoskeleton trained joint angle patterns for the hip,
knee, and ankle joints.

TABLE II. STAGE 1 GAIT PATTERN ERROR

Exoskeleton
joint

Mean absolute
error (degrees)

Standard deviation
(degrees)

Hip 1.82 1.01
Knee 2.63 1.72
Ankle 1.06 1.05

Fig. 6. Desired and exoskeleton gait patterns with the desired gait pattern
scaled by a factor of 0.5 and 0.8.

Fig 4. Cumulative reward per episode during training, averaged per 50 episodes.

The results validate the effectiveness of our DRL method to

learn and follow a desired gait pattern while accounting for a
user baseline gait pattern as well as the ability to handle small
deviations from the trained desired pattern.

VI. CONCLUSIONS
In this paper, a novel method for end-to-end DRL for

exoskeleton control was developed. Our approach allows for
user personalization of gait training using Deep Deterministic
Policy Gradient (DDPG). Control torque values are learned for
the exoskeleton hip, knee and ankle joints directly from
observed joint information, without the need of a predefined or
learned dynamics model. The DDPG agent was trained and
tested in a 3D simulated physics environment. Experimental
results showed that the learned torque control allowed the
exoskeleton to closely follow the trained desired gait pattern as
well as small deviations from it. The ability of our controller to
personalize to users can help increase motor learning and
function during post-stroke gait rehabilitation, leading to greater
improvements in recovery. Our future work consists of
evaluating the controller for use with additional desired gait
patterns unseen in training.

ACKNOWLEDGMENTS
The authors would like to thank Kara Patterson, Julie Vaughan-
Graham and Dina Brooks from the Department of Physical
Therapy at the University of Toronto for their input in defining
rehabilitation goals and outcomes.

REFERENCES
[1] B. S. Rupal, S. Rafique, A. Singla, E. Singla, M. Isaksson, and G. S. Virk,

“Lower-limb exoskeletons: Research trends and regulatory guidelines in
medical and non-medical applications,” Int. J. Adv. Robot. Syst., vol. 14,
no. 6, pp. 1–27, Nov. 2017.

[2] B. Hobbs and P. Artemiadis, “A Review of Robot-Assisted Lower-Limb
Stroke Therapy: Unexplored Paths and Future Directions in Gait
Rehabilitation,” Front. Neurorobot., vol. 14, no. April, 2020.

[3] K. Lo, M. Stephenson, and C. Lockwood, “Effectiveness of robotic
assisted rehabilitation for mobility and functional ability in adult stroke
patients: a systematic review protocol,” JBI database of systematic
reviews and implementation reports, vol. 15, no. 12. pp. 3049–3091, Dec-
2017.

[4] D. R. Louie and J. J. Eng, “Powered robotic exoskeletons in post-stroke
rehabilitation of gait: A scoping review,” Journal of NeuroEngineering
and Rehabilitation, vol. 13, no. 1. BioMed Central, p. 53, 08-Dec-2016.

[5] S. Federici, F. Meloni, M. Bracalenti, and M. L. De Filippis, “The
effectiveness of powered, active lower limb exoskeletons in
neurorehabilitation: A systematic review,” NeuroRehabilitation, vol. 37,

no. 3, pp. 321–340, 2015.

[6] B. Chen et al., “Recent developments and challenges of lower extremity
exoskeletons,” Journal of Orthopaedic Translation, vol. 5. 2016.

[7] R. Mendoza-Crespo, D. Torricelli, J. C. Huegel, J. L. Gordillo, J. L. Pons,
and R. Soto, “An Adaptable Human-Like Gait Pattern Generator Derived
From a Lower Limb Exoskeleton,” Front. Robot. AI, vol. 6, p. 36, May
2019.

[8] J. Hong, C. Chun, S.-J. Kim, and F. C. Park, “Gaussian Process Trajectory
Learning and Synthesis of Individualized Gait Motions,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 27, no. 6, pp. 1236–1245, Jun. 2019.

[9] G. Lv, H. Zhu, and R. D. Gregg, “On the design and control of highly
backdrivable lower-limb exoskeletons: A discussion of past and ongoing
work,” IEEE Control Syst., vol. 38, no. 6, pp. 88–113, Dec. 2018.

[10] G. Wu, C. Wang, X. Wu, Z. Wang, Y. Ma, and T. Zhang, “Gait Phase
Prediction for Lower Limb Exoskeleton Robots,” in 2016 IEEE
International Conference on Information and Automation, 2016, pp. 19–
24.

[11] T. P. Luu, K. H. Low, X. Qu, H. B. Lim, and K. H. Hoon, “An individual-
specific gait pattern prediction model based on generalized regression
neural networks,” Gait Posture, vol. 39, no. 1, pp. 443–448, Jan. 2014.

[12] F. Horst, S. Lapuschkin, W. Samek, K.-R. Müller, and W. I. Schöllhorn,
“Explaining the unique nature of individual gait patterns with deep
learning,” Sci. Rep., vol. 9, no. 1, p. 2391, Dec. 2019.

[13] H. B. Lim, Trieu Phat Luu, K. H. Hoon, and K. H. Low, “Natural gait
parameters prediction for gait rehabilitation via artificial neural network,”
in 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2010, pp. 5398–5403.

[14] M. R. Tucker et al., “Control strategies for active lower extremity
prosthetics and orthotics: A review,” Journal of NeuroEngineering and
Rehabilitation, vol. 12, no. 1. 2015.

[15] T. Yan, M. Cempini, M. Oddo, and N. Vitiello, “Review of assistive
strategies in powered lower-limb orthoses and exoskeletons,” Rob. Auton.
Syst., vol. 64, pp. 120–136, 2015.

[16] B. Brahmi, M. Saad, C. O. Luna, P. S. Archambault, and M. H. Rahman,
“Passive and active rehabilitation control of human upper-limb
exoskeleton robot with dynamic uncertainties,” Robotica, vol. 36, no. 11,
pp. 1757–1779, Nov. 2018.

[17] Y. Long, Z. J. Du, W. D. Wang, and W. Dong, “Robust Sliding Mode
Control Based on GA Optimization and CMAC Compensation for Lower
Limb Exoskeleton,” Appl. Bionics Biomech., vol. 2016, 2016.

[18] F. Sado, H. J. Yap, R. Ariffin, R. A. R. Ghazilla, and N. Ahmad,
“Exoskeleton robot control for synchronous walking assistance in
repetitive manual handling works based on dual unscented Kalman filter,”
PLoS One, vol. 13, no. 7, 2018.

[19] D. Sanz-Merodio, M. Cestari, J. C. Arevalo, X. A. Carrillo, and E. Garcia,
“Generation and control of adaptive gaits in lower-limb exoskeletons for
motion assistance,” Adv. Robot., vol. 28, no. 5, pp. 329–338, Mar. 2014.

[20] S. K. Banala, S. K. Agrawal, S. H. Kim, and J. P. Scholz, “Novel gait
adaptation and neuromotor training results using an active leg
exoskeleton,” IEEE/ASME Trans. Mechatronics, vol. 15, no. 2, pp. 216–
225, 2010.

[21] X. Wang, X. Li, J. Wang, X. Fang, and X. Zhu, “Data-driven model-free
adaptive sliding mode control for the multi degree-of-freedom robotic
exoskeleton,” Inf. Sci. (Ny)., vol. 327, pp. 246–257, Jan. 2016.

[22] J. Hwangbo et al., “Learning agile and dynamic motor skills for legged
robots,” Sci. Robot., vol. 4, no. 26, 2019.

[23] A. Rajeswaran et al., “Learning Complex Dexterous Manipulation with
Deep Reinforcement Learning and Demonstrations,” ArXiv1709.10087,
2018.

[24] Z. Qu et al., “Research on Fuzzy Adaptive Impedance Control of Lower
Extremity Exoskeleton,” in Proc. of 2019 IEEE International Conference

TABLE III. STAGE 2 GAIT PATTERN ERROR

 Exoskeleton
joint

Mean
absolute error

(degrees)

Standard
deviation
(degrees)

Scaled
desired gait
pattern (0.8)

Hip 1.58 0.98
Knee 1.72 1.3
Ankle 0.92 0.77

Scaled
desired gait
pattern (0.5)

Hip 1.5 0.92
Knee 1.08 0.85
Ankle 0.73 0.51

on Mechatronics and Automation, 2019, pp. 939–944.

[25] Y. Yuan, Z. Li, T. Zhao, and D. Gan, “DMP-based Motion Generation for
a Walking Exoskeleton Robot Using Reinforcement Learning,” IEEE
Trans. Ind. Electron., vol. PP, no. c, 2019.

[26] R. Huang, H. Cheng, J. Qiu, and J. Zhang, “Learning Physical Human-
Robot Interaction With Coupled Cooperative Primitives for a Lower
Exoskeleton,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 4, pp. 1–9, 2019.

[27] V. Pong, S. Gu, M. Dalal, and S. Levine, “Temporal difference models:
Model-free deep RL for model-based control,” 6th Int. Conf. Learn.
Represent. ICLR 2018 - Conf. Track Proc., pp. 1–14, 2018.

[28] G. Bingjing, H. Jianhai, L. Xiangpan, and Y. Lin, “Human–robot
interactive control based on reinforcement learning for gait rehabilitation
training robot,” Int. J. Adv. Robot. Syst., vol. 16, no. 2, Mar. 2019.

[29] Y. Zhang, S. Li, K. J. Nolan, and D. Zanotto, “Adaptive Assist-as-needed
Control Based on Actor-Critic Reinforcement Learning,” in IEEE
International Conference on Intelligent Robots and Systems, 2019, pp.
4066–4071.

[30] M. Hamaya, T. Matsubara, T. Noda, T. Teramae, and J. Morimoto,
“Learning assistive strategies from a few user-robot interactions: Model-
based reinforcement learning approach,” Proc. - IEEE Int. Conf. Robot.
Autom., pp. 3346–3351, 2016.

[31] S. G. Khan, M. Tufail, S. H. Shah, and I. Ullah, “Reinforcement learning
based compliance control of a robotic walk assist device,” Adv. Robot.,
pp. 1–12, Nov. 2019.

[32] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in 4th International Conference on Learning Representations,
ICLR 2016 - Conference Track Proceedings, 2016.

[33] S. Maggioni, N. Reinert, L. Lünenburger, and A. Melendez-Calderon,
“An Adaptive and Hybrid End-Point/Joint Impedance Controller for
Lower Limb Exoskeletons,” Front. Robot. AI, vol. 5, p. 104, Oct. 2018.

[34] L. Wang, E. H. F. Van Asseldonk, and H. Van Der Kooij, “Model
predictive control-based gait pattern generation for wearable
exoskeletons,” IEEE Int. Conf. Rehabil. Robot., pp. 1–6, 2011.

[35] D. Lo Castro, C. H. Zhong, F. Braghin, and W. H. Liao, “Lower Limb
Exoskeleton Control via Linear Quadratic Regulator and Disturbance
Observer,” in 2018 IEEE International Conference on Robotics and
Biomimetics, ROBIO 2018, 2018, pp. 1743–1748.

[36] O. Harib et al., “Feedback Control of an Exoskeleton for Paraplegics:
Toward Robustly Stable Hands-free Dynamic Walking,”
ArXiv1802.08322, Feb. 2018.

[37] S. Lee, M. Park, K. Lee, and J. Lee, “Scalable muscle-actuated human
simulation and control,” ACM Trans. Graph., vol. 38, no. 4, 2019.

[38] X. Bin Peng, G. Berseth, K. Yin, and M. Van De Panne, “DeepLoco:
Dynamic locomotion skills using hierarchical deep reinforcement
learning,” ACM Trans. Graph., vol. 36, no. 4, 2017.

[39] A. S. Anand, G. Zhao, H. Roth, and A. Seyfarth, “A deep reinforcement
learning based approach towards generating human walking behavior
with a neuromuscular model,” 2019 IEEE-RAS 19th Int. Conf. Humanoid
Robot., pp. 537–543, 2020.

[40] C. R. Gil, H. Calvo, and H. Sossa, “Learning an efficient gait cycle of a
biped robot based on reinforcement learning and artificial neural
networks,” Appl. Sci., vol. 9, no. 3, Feb. 2019.

[41] J. García and D. Shafie, “Teaching a humanoid robot to walk faster
through Safe Reinforcement Learning,” Eng. Appl. Artif. Intell., vol. 88,
Feb. 2020.

[42] C. Liu, A. Lonsberry, M. Nandor, M. Audu, A. Lonsberry, and R. Quinn,
“Implementation of Deep Deterministic Policy Gradients for Controlling
Dynamic Bipedal Walking,” Biomimetics, vol. 4, no. 1, p. 28, 2019.

[43] V. C. V Kumar, S. Ha, G. Sawicki, and C. K. Liu, “Learning a Control
Policy for Fall Prevention on an Assistive Walking Device,”

ArXiv1909.10488, 2019.

[44] D. Di Febbo et al., “Reinforcement Learning Control of Functional
Electrical Stimulation of the upper limb  : a feasibility study,” in Annual
Conference of the International Functional Electrical Stimulation
Society, 2018, pp. 111–114.

[45] M. Lyu, W. H. Chen, X. Ding, and J. Wang, “Knee exoskeleton enhanced
with artificial intelligence to provide assistance-as-needed,” Rev. Sci.
Instrum., vol. 90, no. 9, 2019.

[46] X. Zhang, H. Wang, Y. Tian, L. Peyrodie, and X. Wang, “Model-free
based neural network control with time-delay estimation for lower
extremity exoskeleton,” Neurocomputing, vol. 272, pp. 178–188, Jan.
2018.

[47] P. Yang, J. Sun, J. Wang, G. Zhang, and Y. Zhang, “Model-free based
back-stepping sliding mode control for wearable exoskeletons,” in 25th
IEEE International Conference on Automation and Computing, 2019.

[48] Z. Li, J. Liu, Z. Huang, Y. Peng, H. Pu, and L. Ding, “Adaptive Impedance
Control of Human-Robot Cooperation Using Reinforcement Learning,”
IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 8013–8022, 2017.

[49] H. van Hasselt, “Reinforcement learning in continuous state and action
spaces,” in Adaptation, Learning, and Optimization, vol. 12, 2012, pp.
207–251.

[50] D. Di Febbo et al., “Does Reinforcement Learning outperform PID in the
control of FES-induced elbow flex-extension?,” 2018 IEEE Int. Symp.
Med. Meas. Appl. Proc., pp. 1–6, 2018.

[51] A. Singh, L. Yang, C. Finn, and S. Levine, “End-To-End Robotic
Reinforcement Learning without Reward Engineering,”
ArXiv1904.07854, 2019.

[52] M. Plappert, “keras-rl,” GitHub, 2016. [Online]. Available:
https://github.com/keras-rl/keras-rl. [Accessed: 24-Apr-2020].

[53] Ł. Kidziński et al., “Learning to Run Challenge: Synthesizing
Physiologically Accurate Motion Using Deep Reinforcement Learning,”
in Escalera S., Weimer M. (eds) The NIPS ’17 Competition: Building
Intelligent Systems. The Springer Series on Challenges in Machine
Learning, Springer, Cham, 2018, pp. 101–120.

[54] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian
motion,” Phys. Rev., vol. 36, no. 5, pp. 823–841, Sep. 1930.

[55] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic
optimization,” in 3rd International Conference on Learning
Representations, ICLR 2015 - Conference Track Proceedings, 2015.

[56] G. Brockman et al., “OpenAI Gym,” ArXiv1606.01540, 2016.

[57] D. Thelen, A. Seth, F. C. Anderson, and S. L. Delp, “OpenSim Models
Gait 2392 and 2354 Documentation,” SimTK. [Online]. Available:
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Gait+2392
+and+2354 +Models. [Accessed: 09-May-2020].

[58] E. P. Grabke, K. Masani, and J. Andrysek, “Lower Limb Assistive Device
Design Optimization Using Musculoskeletal Modeling: A Review,” J.
Med. Device., vol. 13, no. 4, 2019.

[59] M. Khamar, M. Edrisi, and M. Zahiri, “Human-exoskeleton control
simulation, kinetic and kinematic modeling and parameters extraction,”
MethodsX, vol. 6, pp. 1838–1846, 2019.

[60] D. Coll Pujals, “Simulation of the assistance of an exoskeleton on lower
limbs joints using Opensim,” Polytechnic University of Catalonia, 2017.

[61] M. A. Sherman, A. Seth, and S. L. Delp, “Simbody: Multibody dynamics
for biomedical research,” Procedia IUTAM, vol. 2, pp. 241–261, 2011.

[62] L. Rose, M. C. F. Bazzocchi, C. de Souza, J. Vaughan-Graham, K.
Patterson, and G. Nejat, “A Framework for Mapping and Controlling
Exoskeleton Gait Patterns in both Simulation and Real -World,” in Proc.
of the 2020 Design of Medical Devices Conf., 2020.

