
  

1 

Abstract— In Urban Search and Rescue (USAR) missions, 

mobile rescue robots need to search cluttered disaster 

environments in order to find victims. However, these 

environments can be very challenging due to the unknown 

rough terrain that the robots must be able to navigate. In this 

paper, we uniquely explore the first use of deep reinforcement 

learning (DRL) to address the robot navigation problem in such 

cluttered environments with unknown rough terrain. We have 

developed and trained a DRL network that uses raw sensory 

data from the robot’s onboard sensors to determine a series of 

local navigation actions for a mobile robot to execute. The 

performance of our approach was successfully tested in several 

unique 3D simulated environments with varying sizes and levels 

of traversability.      

I. INTRODUCTION 

Mobile rescue robots deployed in Urban Search and 

Rescue (USAR) missions must navigate unknown rough 

terrain in order to explore cluttered environments to search for 

potential victims [1]. However, the traversability of the rough 

terrain can vary greatly, consisting of different rubble piles 

with various shapes and sizes. In order to be able to perform 

semi-autonomously or fully autonomously, these robots need 

to find navigation paths to safely navigate in these cluttered 

environments with unknown terrain with no a priori map of 

the environment.  
Previous work in robot navigation of rough terrain has 

mainly focused on known terrain [2]. A feasible path to a goal 

location in the environment can be determined using such 

techniques as graph search [3], rapidly exploring random trees 

[4] and potential field methods [5], [6]. In cases when the 

terrain is unknown, the robot can navigate to multiple local 

target locations using a defined utility function [7]–[11]. By 

navigating to these local locations, the robot can therefore 

progress towards the final goal location. For a number of these 

approaches, the robot also obtains a model of the environment, 

e.g. [7]–[10]. The challenge with such approaches is that they 
can require substantial expert input for parameter tuning [12].  
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In order to address this issue, learning techniques have 

been proposed for robot navigation in rough terrain [12]–[18]. 

These techniques focus on learning to classify the 

traversability of terrain from environment features. In 

particular, learning is used to 1) classify the surrounding 

terrain which is then represented as a costmap  [13], [16]–[18] 

or 2) to learn the overall cost function [12], [14], [15], in order 

to plan optimal paths to goal locations.  

Our own previous research has focused on utilizing 

traditional learning methods (e.g. MAXQ hierarchical 
reinforcement learning, support vector machines)  and utility 

function based approaches to address such tasks as 

exploration, rough terrain navigation, and victim identification 

[19]–[22]. 

However, to effectively train learning techniques, usually 

a large number of labeled data is required, which can be time 

consuming to obtain [23]. A handful of techniques [13], [18] 

have automated the process of data collection and labeling by 

having the robot directly interact with the environment in 

order to assign a class to a set of online captured data.     

In this research, we investigate the use of deep 

reinforcement learning (DRL) to address the robot navigation 
problem in environments with unknown rough terrain, in 

particular in USAR scenarios. DRL can directly use raw 

sensory data to determine robot navigation actions without the 

need of pre-labeled data [24]. A handful of papers have 

applied DRL approaches for robot navigation using onboard 

sensory information in environments with known [25]–[27] 

and unknown [28] flat terrain. However, DRL has yet to be 

implemented for cluttered environments with unknown rough 

terrain.  

In USAR missions, we have areas of interest with high 

likelihoods of victims being present. A rescue robot needs to 
navigate to these regions, in order to search for victims. For 

the robot navigation problem addressed in this paper, these 

areas are defined as goal target locations for the robot. 

Namely, we are addressing the local navigation problem, 

where the goal target locations can be given by a global 

exploration planner such as in [29], and the robot needs to 

locally navigate to these locations without previous 

knowledge of the unknown rough terrain. Such a scenario 

would be after a natural disaster such as an earthquake, when 

a building has collapsed and the terrain at this site is unknown 

a priori, however, a rescue robot needs to navigate the 

environment to help search for victims.  
In this paper we present the first use of DRL to address the 

mobile robot navigation problem in unknown rough terrain 

such as in USAR environments. The main contribution of this 

work is in the design of a DRL network which uses raw 
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sensory data from the robot’s onboard sensors to determine a 

series of primitive navigation actions for the robot to execute 

in order to traverse to a goal location in an environment with 

unknown rough terrain. 

II. ROBOT LEARNING IN ROUGH TERRAIN 

Existing work on robot navigation in rough terrain can be 

categorized into learning approaches that focus on classifying 

the terrain [17], [18] as well as its traversability [12]–[16], 

and learning approaches to determine robot navigation 

actions [25], [26], [28].  

A. Learning to Classify Terrain for Navigation  

With respect to classifying terrain, in [17], a Support 

Vector Machine  (SVM) classifier was used to improve robot 

navigation capabilities in forest environments. The classifier 

was trained to identify 3D points from LiDAR data features 

which represented the surface of the terrain. The 3D points 

were hand labeled as either ground or non-ground and used 

for training the classifier. Online learning was also utilized in 

order to adapt the classifier to changes in the terrain due to 
season and vegetation growth. This approach was validated 

using different experimental data sets.   

A terrain modeling approach was introduced in [18] 

where noisy sensor data from stereo cameras and LiDAR 

were used to estimate ground and vegetation height and 

classify obstacles mainly in agricultural environments. Three 

prior assumptions were made: ground height varied 

smoothly, terrain in neighboring cells were likely to be in the 

same class, and class members have similar height. The 

assumptions were represented as a probabilistic generative 

model which included two Markov random fields and a latent 
variable. Training data was autonomously collected by 

driving a tractor in a known environment to train the model.  

With respect to learning the traversability of rough terrain 

environments, in general, sensory information and prior 

knowledge of the environment have been used to learn cost 

functions [12], [14], [15] or compute cost maps [13], [16] 

which are then used in planning navigation paths. For 

example, in [13], learning from demonstration (LfD) was 

used to learn a cost function from terrain data which were 

labeled by a human expert for navigation. In particular, LfD 

was used to learn the mapping from perceptual information to 
planning costs. The data included prior overhead feature 

maps of the outdoor environment and onboard sensory 

information such as LiDAR data. The cost function was used 

in conjunction with the Field D* planning algorithm to 

navigate a robot to waypoints. This approach was compared 

to manually engineered cost maps in outdoor field tests where 

a robot navigated a series of courses. The learned cost 

function achieved more reliable results and improved 

performance than the engineered cost maps.   

Similarly, in [14], LfD was used to learn non-linear cost 

functions from geometric features of satellite maps of rough 

terrain. The maps were labeled by tracking the paths walked 
by several human experts, and then conformal geometric 

algebra was used to describe the maps. The geometric 

features were used as inputs into a neural network to learn the 

non-linear cost function to be used by a navigation planner.  

In [15], an approach was introduced where far-range data 

from overhead images and height maps were used along with 

near-range data from a robot’s onboard LiDAR to compute 

traversal costs of the terrain. This was done by using an online 

Bayesian learning approach to combine far-range and 
near-range features. In experiments, a robot was able to use 

the traversal costs along with the D* planner to navigate large 

outdoor cluttered environments.  

In [13], a robot used on-line learning to classify different 

terrain patches of outdoor environments as traversable or 

non-traversable. Geometric and appearance features from 

stereo images were used as inputs. An autonomous data 

collection system was used to gather labeled training data. 

The collected features, which included height estimates and 

surface texture, were clustered into traversable and 

non-traversable terrain. A planner used the online terrain 

classifier to compute cost maps in two different outdoor 
environments. The results showed that the classifier approach 

was able to outperform a traditional planner when the robot 

had to navigate through tall traversable vegetation.  

In [16],  terrain traversability was determined by using a 

neural network with geometric features from stereo cameras 

as input. Four cost classes of low, intermediate, high, and 

lethal were used to represent the traversability. The training 

was done offline first and then in an online learning process a 

robot learned to infer geometric features from RGB images 

when stereo information was not available. By combining the 

classification from geometry features and color images, a cost 
map was created for path planning. A comparison with 

different network configurations and other classifiers showed 

that the neural network configurations were the most suitable 

classifiers due to their low error score and fast computation 

for a wide range of environments with obstacles and different 

lighting conditions. 

B. Learning to Navigate Terrain 

Learning techniques used in order for a robot to learn 

navigation actions have mainly used DRL to determine 

continuous or discrete navigation actions to travel using 

onboard sensory information in environment with known 

[25]–[27] or unknown [28] flat terrain.  

In [25] a robot motion controller used a Deep Q-network 

(DQN) with successor features to provide discrete robot 

actions to a goal object location in a known environment. 

These actions included standing still, turning 90o left or right, 

or going straight for 1 m. The input to the controller was depth 
images from a Kinect sensor. The controller was trained in 

simulation within an environment with walls and obstacles. 

The trained controller was transferred to a new environment 

on a physical mobile robot, and additional training was 

conducted. Experiment in the same environment showed that 

the number of additional training is less than having to train a 

new network from scratch, and the proposed model with 

successor feature preserved the ability to navigate both the 

simulated and real environments.  

In [26], a motion controller using DRL with generalized 

computation graphs was developed to provide continuous 

steering angle predictions for a mobile robot. The inputs to the 
system included grayscale images from an onboard camera, as 



  

well as previous action estimations. Training and testing were 

conducted in the same single path corridor for the robot to 

learn to move at a fixed speed without collisions. The 

proposed planner was compared with planners using Double 

Q-learning and random policies. The results demonstrated 
that on average, the robot was able to travel 7 times longer 

distances and 15 times longer distances respectively, after 4 

hours of real world training. 

In [27], a robot localization and navigation module was 

developed with a modified Asynchronous Advantage 

Actor-Critic (A3C) approach. The objective was to localize a 

robot in an environment for which a map is given and 

determine the navigation actions such as move (forward, 

backward, left, right) and rotate (left, right) to a given target 

location. The inputs to the system included a 2D map of the 

environment, RGB-D images, robot heading and the previous 

estimated robot location. Both training and testing were 
conducted in 3D simulated maze environments. Environments 

used for testing were different from the ones used in the 

training.  Results showed navigation success rates of 91% - 

100% depending on map sizes. 

With respect to environments with unknown flat terrain, in 

[28], a mapless motion planner was developed using the 

asynchronous deep deterministic policy gradients method to 

provide continuous linear and angular velocities for a mobile 

robot to navigate to a target location. The input to the system 

was sparse laser range data, the previous robot action, and the 

relative position of the target location. The system was trained 
in two simulated indoor environments with walls and 

obstacles. Experiments were conducted on a mobile robot in 

an office environment in both simulations and in a real setting. 

The proposed planner was compared with the Move Base 

motion planner, and the results showed that it was able to 

navigate the robot to all target locations in unseen 

environments, especially in narrow areas, whereas the Move 

Base planner was not able to.  

The aforementioned literature shows the feasibility of 

using DRL to learn navigation policies using high dimensional 

sensory inputs from the environment. However, to-date, DRL 

has not yet been applied to robot navigation in cluttered 
environments with unknown rough terrain. The traversability 

of the rough terrain can be challenging due to the varying 

shapes and sizes of both climbable terrain and non-climbable 

terrain. Our research focuses on the first development and 

investigation of a DRL network to address the robot 

navigation problem in such difficult environments. 

III. DEEP REINFORCEMENT LEARNING FOR ROBOT 

NAVIGATION IN UNKNOWN ROUGH TERRAIN  

Our proposed DRL architecture for a robot to learn how to 

navigate an environment with unknown cluttered terrain is 

presented in Fig. 1. The architecture uses an end to end 

learning strategy, for which a robot learns to navigate rough 

terrain by using elevation maps and high dimensional sensory 

data from depth images as inputs into a DRL Navigation 

module. This module uses deep reinforcement learning to 

determine the navigation actions for the robot. Once a robot 

navigation action has been chosen, the robot’s Low-Level 
Controller executes each action.   

In the below subsections we discuss in more detail the 

main modules of our architecture.  

A. Inputs 

Inputs to the DRL Navigation module consist of depth 

images, the Elevation Map, as well as the robot’s orientation 

(𝛼, 𝛽, 𝛾), where the robot heading 𝛾 is relative to a goal target 

location on the unknown terrain.  

B. Elevation Map 

An elevation map of the robot’s surrounding environment 

is generated and updated as the robot navigates the 
environment. In order to obtain this elevation map we use the 

ROS OctoMap package [30]. Depth images as well as the 

robot 3D pose, containing both position (𝑥, 𝑦, 𝑧)  and 

orientation (𝛼, 𝛽, 𝛾), are used to create a 3D occupancy grid. 

This 3D occupancy grid is then converted into a 2D grid map 

using the ROS grid_map library [31], where each grid cell 

represents the elevation of a local square area.  

C. DRL Navigation Module 

The DRL Navigation module uses the Asynchronous 

Advantage Actor-Critic (A3C) approach [32] to learn a policy 

that determines the robot’s navigation actions using depth 

information, the robot’s 3D orientation and the elevation 

map. We use A3C as it can handle our high dimensional input 

space and has a faster learning speed compared to other DRL 

techniques such as DQN [32]. This is due to the approach 
deploying several agents to learn in parallel using 

multi-threads.   

1) A3C  

The A3C model uses the actor-critic method for 

reinforcement learning by combining the policy and 

state-value functions [32]. At each discrete time step 𝑡, the 

robot in state 𝑠𝑡  executes a navigation action 𝑎𝑡  which 

transitions the robot to state 𝑠𝑡
′  in order to maximize the 

expected future reward. These navigation actions consist of 

the robot moving forward, backward, or turning right or left. 

Herein, the actor maintains the policy 𝜋(𝑎𝑡|𝑠𝑡 , 𝜃) which is 

determined by a neural network with parameter 𝜃. The critic 

estimates the value function  𝑉(𝑠𝑡; 𝜃𝑣) in order for the actor to 

adjust its policy accordingly. 𝑉(𝑠𝑡; 𝜃𝑣 
 ) is estimated by the 

neural network with parameter 𝜃𝑣 . Both the actor and the 

critic update their networks as new information is obtained by 

Figure 1. Proposed architecture for rough terrain robot navigation 



  

the robot.  The policy and the value function are updated after 

every 𝑡𝑚𝑎𝑥 steps or when a terminal state is reached.  

Rewards are used to compute and accumulate the 

gradients at every step. Stochastic gradient descent (SGD) is 
used to update the policy as follows [32], [33]:  

∆𝜃 = ∇θ log 𝜋 (𝑎𝑡|𝑠𝑡; 𝜃
 )𝐴(𝑠𝑡 , 𝑎𝑡; 𝜃𝑣

 ) 

+𝜁∇𝜃 𝐻(𝜋(𝑠𝑡; 𝜃
 )), 

(1) 

 

where, 

      
𝐴(𝑠𝑡 , 𝑎𝑡; 𝜃𝑣

 ) =∑ Γ𝑖𝑟𝑡+𝑖 + Γ
𝑛𝑉(𝑠𝑡+𝑛; 𝜃𝑣

 )
𝑛−1

𝑖=0
 

−𝑉(𝑠𝑡; 𝜃𝑣
 ),   

(2) 

and 𝑛 represents the number of remaining steps until 𝑡𝑚𝑎𝑥, or 

until a terminal state. 𝐻  is the entropy of the policy to 

encourage the robot to explore different navigation actions, 

and the hyperparameter 𝜁 controls the strength of the entropy 

regularization term. 𝐴(𝑠𝑡 , 𝑎𝑡; 𝜃, 𝜃𝑣) is an estimation of the 

advantage function, and Γ is the discount factor. SGD is also 

used to update the value function [32], [33]:  

∆𝜃𝑣 = 𝐴(𝑠𝑡 , 𝑎𝑡; 𝜃𝑣
 )∇𝜃𝑣 𝑉(𝑠𝑡; 𝜃𝑣

 ) . (3) 
 

Herein, 𝜃 and 𝜃𝑣 are optimized using the RMSprop approach 

[34].  

 As A3C deploys several agents acting independently in 

their own environment, each agent provides updates to the 

global policy and value function asynchronously. 

2) Rewards  

The reward 𝑟t  is given based on the robot: 1) getting 

closer to a target goal location, 2) reaching the target location 

within a certain tolerance (since the terrain is unknown), or 3) 

reaching an undesirable terminal state before reaching the 

goal. 

The reward 𝑟t  is given after every executed navigation 

action and is represented as follows: 

      𝑟𝑡 =

{
 
 

 
  𝜇

𝑑min
 − 𝑑𝑡
Δ𝑡

, 𝑑𝑡 < 𝑑𝑚𝑖𝑛  

0.5 + 𝑟𝑣 , 𝑑𝑡 ≤ 𝑑𝑔   
−0.5, 𝑠𝑡𝑢

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

  , (4) 

where 𝑑𝑚𝑖𝑛  represents the closest distance the robot has 
navigated to with respect to the goal target location, up to step 

𝑡 − 1.  𝑑𝑡  is the distance from the robot to the goal target 

location at step 𝑡. Δ𝑡 is the time duration from the previous 

time step 𝑡 − 1 to the current time step 𝑡 . 𝜇  is a discount 

factor that can be used in order to choose the impact of this 

reward relative to the rewards provided for the terminal 

states. 𝑑𝑔 represents the distance to the goal location and 𝑟𝑣 is 

a dynamic variable that represents the distance from the 
robot’s starting location to the goal location over the total 

time the robot took to reach the goal. 𝑠𝑡𝑢 represents an 

undesirable terminal state which includes repeatedly colliding 

with the same obstacle, the robot flipping over, the robot 

being stuck (i.e., attempting to climb a steep hill), or 

exceeding 𝑛𝑚  number of steps. 𝑛𝑚 is the maximum number 

of steps allowed for an episode, similar to the concept of 

time-out.   

3) A3C Network Design 

As previously mentioned, the neural network uses a depth 

image, an elevation map and the robot 3D orientation as 

inputs to determine a navigation action. The proposed 

network can be seen in Fig. 2. There are three input branches, 

one for each input type. The elevation map and the 3D 

orientation branches are merged together by connecting to a 

shared convolutional layer (CL). The output of this CL 

merges with the output of the depth image branch.  

Depth image branch: depth images are downsampled from 

480×640 to an 84×84 single channel array. Each element in 

the array represents a specific distance measurement. There 

are 4 CLs in this branch, the first two have 32 filters and the 

remaining have 64 filters. Filter sizes decrease gradually from 

5×5 to 3×3, Fig. 3a. The output of the last layer is reshaped to 

a vector and concatenated head-to-tail with the reshaped 

output vector of the CL which merges the other two branches.  

Figure 2. The proposed A3C network architecture. The three rectangular bounding boxes from the top to bottom 

represent the Depth image branch, Elevation map branch, and Robot orientation branch, respectively. 



  

Elevation map branch: The elevation map is inputted as a 

single channel 84×84 array. The first 2 CLs of this branch 

have 32 filters and the remaining use 64 filters. Each filter 

produces an activation map as the result of convolutions. 

Filter sizes decrease gradually from 7×7 to 4×4 to account for 

the decrease of activation map size, Fig. 3b.  

Robot orientation branch: the 3D orientation (𝛼, 𝛽, 𝛾) of the 

robot are input as a vector with 3 elements and processed 

through a fully connected layer (FCL). The output of this 

layer is reshaped to a volume of 9×9×64 to match the output 

shape of the elevation map branch. Using element-wise 

addition, the two volumes are merged and used as an input to 

an additional CL layer. The combination of 𝛼  and 𝛽 

orientations with the elevation maps helps to infer 3D terrain 

conditions that the robot is traversing. This facilitates the 

learning of a policy that helps the robot to avoid steep slopes 

that can potentially roll or flip the robot over. Additionally, 

the robot heading 𝛾 allows the network to learn that when the 

robot’s motion aligns with the direction of the goal target 

location, it usually approaches the goal quicker and gets 

higher rewards. 
In this network, Rectified Linear Units (ReLU) [35] are 

applied on the output of all CLs. Once the branches are 

combined, the merged tensor is fed into a Long Short-Term 

Memory (LSTM) layer. This recurrent layer can improve 

DRL training by better capturing underlying states of a 

partially observed environment [36].  

After the LSTM layer, the network separates into two 

output branches, actor and critic. The actor output branch has 

one FCL that outputs a 4-dimensional vector, each dimension 

representing one navigation action. The value of each 

dimension shows how likely a certain action is optimal (i.e., 

𝑝1to 𝑝4). The Softmax [35] function is applied to normalize 

the values. The action with the highest likelihood of being 

optimal is chosen as 𝑎𝑡 . The critic branch also uses an FCL. It 

outputs a single value that represents the estimation of the 

value function 𝑉(𝑠𝑡; 𝜃𝑣
 ), which is used to improve future 

policies. 

4) Training 

In order to train the A3C network for the DRL Navigation 

module, we created a 3D Simulator in Gazebo in the Robot 

Operating System (ROS). A 3D physics model for the Jaguar 

4x4 wheeled mobile platform was created including weight, 

center of mass, speed and ground resistance to match the 

physical robot. The robot was equipped with both 3D 

odometry and a front-facing depth sensor.  

We used 2,000 randomly generated unique 

100 𝑚2 environments with percentage of traversability 

varying from 70-90%. These environments included 

traversable terrain that was non-flat, which included hills and 

valleys and irregular-shaped rubble piles, as shown in Fig. 4. 
The robot’s starting location and goal target location within 

each environment were randomly selected for every episode 

on the traversable portion of the environment.  

For our training, nine agent threads were simultaneously 

used on an AMD Ryzen Threadripper 1950x CPU. Each 

agent having its own unique environment. The values of the 

parameters used in training are as follows:𝜁 = 0.01; Γ =
0.99; 𝜇 = 0.05; 𝑑𝑔 = 0.5;  𝑛𝑚= 600; and 𝑡𝑚𝑎𝑥 = 60. The 

learning rate was set to 0.0001[32]. 

Figure 3. Hidden layer configurations of the CNNs for: (a) the depth image branch, and (b) the elevation map branch and the layer after merging with 

the robot orientation branch. CONV represents a convolutional layer with filter size F, stride S, and padding P. 

(a) (b) 

 
Figure 4. An example of the robot training environment. 

 

 
Figure 5. Cumulative Reward Per Episode Averaged Per 500 Episodes. 

 

 
Figure 6. Number of Steps Per Episode Averaged Per 500 Episodes. 



  

Fig. 5 and Fig. 6 present the training results for the 

cumulative rewards per episode and the number of steps per 

episode, both averaged across 500 episodes. As can be seen in 

Fig. 5, the network started to converge at 22,000 episodes for 

an average cumulative reward of 0.5. The number of steps per 
episode also decreased to an average of 208 steps.  

 

IV. EXPERIMENTS 

We conducted experiments in new environments to 

validate the performance of our proposed DRL network for 

robot navigation in environments with unknown rough 

terrain. These environments varied in size from 100 𝑚2 to 

400 𝑚2 and with percent traversability ranging from 80-90%. 

Namely, within our simulator, 600 environments, each with a 

unique terrain distribution, were generated. The starting 

location and goal target location for the mobile robot were 

randomly selected, however, these locations were constrained 

to the traversable portion of each environment similar to 

training. 

A. Results 

The robot was able to navigate to target goal locations in 

the majority of the environments. For the training stage we 

only used environment sizes of 100𝑚2, whereas in testing we 

included the large environment size of 400𝑚2 as well. The 

experimental results can be found in Table I. We obtained 

high success rates regardless of the size of the environment, 

showing that our approach is robust to new environments 

with different terrain distribution and sizes than used in 
training. As expected, the success rates were higher for the 

environments with less non-climbable obstacles, i.e., 85-90% 

traversability. The average computation time for the DRL 

Navigation module to select an action was 0.074 s. 

Robot navigation paths in example environments with 

unknown rough terrain are shown in Fig. 7 and Fig. 8. In Fig. 

7, it can be seen that the robot learns to traverse different 

terrain (i.e., a hill and an irregular-shaped rubble pile) while 

avoiding large non-traversable obstacles. Fig. 8 shows how 

the robot is able to traverse narrow pathways between large 

non-traversable objects.  
From the experiments, we observed if the robot traversed 

too close to deep valleys with large descending slopes, it 

could slip down into the valley and not be able to get out (e.g. 

being stuck). This led to an undesirable termination state. 

 

V.  CONCLUSION 

In this paper, we investigate the use of DRL for robot 

navigation in environments with unknown rough terrain such 
as the ones found in USAR. Namely, we developed a network 

based on the A3C architecture which uses depth images, 

elevation maps, and 3D orientation as inputs to determine 

optimal robot navigation actions. The network was trained in 

unique simulated 3D environments which varied in terms of 

level of traversability. Experiments in new environments 

ranging in size and traversability were conducted. The results 

showed that the DRL approach can successfully navigate a 

robot in an environment towards a target goal location when 

the rough terrain is unknown. Future work will include 

implementing and testing the navigation approach on a 
physical robot in similar environments.   
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TABLE I.  SUCCESS RATE FOR ROBOT REACHING GOAL TARGET 

LOCATIONS 

Environment Size Traversability 

90% 85% 80% 
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