

1

Abstract— In Urban Search and Rescue (USAR) missions,

mobile rescue robots need to search cluttered disaster

environments in order to find victims. However, these

environments can be very challenging due to the unknown

rough terrain that the robots must be able to navigate. In this

paper, we uniquely explore the first use of deep reinforcement

learning (DRL) to address the robot navigation problem in such

cluttered environments with unknown rough terrain. We have

developed and trained a DRL network that uses raw sensory

data from the robot’s onboard sensors to determine a series of

local navigation actions for a mobile robot to execute. The

performance of our approach was successfully tested in several

unique 3D simulated environments with varying sizes and levels

of traversability.

I. INTRODUCTION

Mobile rescue robots deployed in Urban Search and

Rescue (USAR) missions must navigate unknown rough

terrain in order to explore cluttered environments to search for

potential victims [1]. However, the traversability of the rough

terrain can vary greatly, consisting of different rubble piles

with various shapes and sizes. In order to be able to perform

semi-autonomously or fully autonomously, these robots need

to find navigation paths to safely navigate in these cluttered

environments with unknown terrain with no a priori map of

the environment.
Previous work in robot navigation of rough terrain has

mainly focused on known terrain [2]. A feasible path to a goal

location in the environment can be determined using such

techniques as graph search [3], rapidly exploring random trees

[4] and potential field methods [5], [6]. In cases when the

terrain is unknown, the robot can navigate to multiple local

target locations using a defined utility function [7]–[11]. By

navigating to these local locations, the robot can therefore

progress towards the final goal location. For a number of these

approaches, the robot also obtains a model of the environment,

e.g. [7]–[10]. The challenge with such approaches is that they
can require substantial expert input for parameter tuning [12].

This research was supported by the Natural Sciences and Engineering

Research Council of Canada (NSERC), and the Canada Research Chairs

(CRC) Program.

K. Zhang, F. Niroui and G. Nejat are with the Autonomous Systems and

Biomechatronics Laboratory (ASBLab) in the Department of Mechanical

and Industrial Engineering, University of Toronto, (email:

kc.zhang@mail.utoronto.ca), (email: farzad.niroui@mail.utoronto.ca),

(e-mail: nejat@mie.utoronto.ca). (The first two authors contributed equally

to this work.)

M. Ficocelli is with the Guidance, Navigation & Control group at

MacDonald, Dettwiler and Associates (MDA) Inc., Brampton, Canada

(e-mail: Maurizio.Ficocelli@mdacorporation.com)

In order to address this issue, learning techniques have

been proposed for robot navigation in rough terrain [12]–[18].

These techniques focus on learning to classify the

traversability of terrain from environment features. In

particular, learning is used to 1) classify the surrounding

terrain which is then represented as a costmap [13], [16]–[18]

or 2) to learn the overall cost function [12], [14], [15], in order

to plan optimal paths to goal locations.

Our own previous research has focused on utilizing

traditional learning methods (e.g. MAXQ hierarchical
reinforcement learning, support vector machines) and utility

function based approaches to address such tasks as

exploration, rough terrain navigation, and victim identification

[19]–[22].

However, to effectively train learning techniques, usually

a large number of labeled data is required, which can be time

consuming to obtain [23]. A handful of techniques [13], [18]

have automated the process of data collection and labeling by

having the robot directly interact with the environment in

order to assign a class to a set of online captured data.

In this research, we investigate the use of deep

reinforcement learning (DRL) to address the robot navigation
problem in environments with unknown rough terrain, in

particular in USAR scenarios. DRL can directly use raw

sensory data to determine robot navigation actions without the

need of pre-labeled data [24]. A handful of papers have

applied DRL approaches for robot navigation using onboard

sensory information in environments with known [25]–[27]

and unknown [28] flat terrain. However, DRL has yet to be

implemented for cluttered environments with unknown rough

terrain.

In USAR missions, we have areas of interest with high

likelihoods of victims being present. A rescue robot needs to
navigate to these regions, in order to search for victims. For

the robot navigation problem addressed in this paper, these

areas are defined as goal target locations for the robot.

Namely, we are addressing the local navigation problem,

where the goal target locations can be given by a global

exploration planner such as in [29], and the robot needs to

locally navigate to these locations without previous

knowledge of the unknown rough terrain. Such a scenario

would be after a natural disaster such as an earthquake, when

a building has collapsed and the terrain at this site is unknown

a priori, however, a rescue robot needs to navigate the

environment to help search for victims.
In this paper we present the first use of DRL to address the

mobile robot navigation problem in unknown rough terrain

such as in USAR environments. The main contribution of this

work is in the design of a DRL network which uses raw

Robot Navigation of Environments with Unknown Rough Terrain

Using Deep Reinforcement Learning

Kaicheng Zhang, Student Member, IEEE, Farzad Niroui, Student Member, IEEE, Maurizio Ficocelli,

and Goldie Nejat, Member, IEEE

This is the author’s version of an article that has been published in SSRR 2018

sensory data from the robot’s onboard sensors to determine a

series of primitive navigation actions for the robot to execute

in order to traverse to a goal location in an environment with

unknown rough terrain.

II. ROBOT LEARNING IN ROUGH TERRAIN

Existing work on robot navigation in rough terrain can be

categorized into learning approaches that focus on classifying

the terrain [17], [18] as well as its traversability [12]–[16],

and learning approaches to determine robot navigation

actions [25], [26], [28].

A. Learning to Classify Terrain for Navigation

With respect to classifying terrain, in [17], a Support

Vector Machine (SVM) classifier was used to improve robot

navigation capabilities in forest environments. The classifier

was trained to identify 3D points from LiDAR data features

which represented the surface of the terrain. The 3D points

were hand labeled as either ground or non-ground and used

for training the classifier. Online learning was also utilized in

order to adapt the classifier to changes in the terrain due to
season and vegetation growth. This approach was validated

using different experimental data sets.

A terrain modeling approach was introduced in [18]

where noisy sensor data from stereo cameras and LiDAR

were used to estimate ground and vegetation height and

classify obstacles mainly in agricultural environments. Three

prior assumptions were made: ground height varied

smoothly, terrain in neighboring cells were likely to be in the

same class, and class members have similar height. The

assumptions were represented as a probabilistic generative

model which included two Markov random fields and a latent
variable. Training data was autonomously collected by

driving a tractor in a known environment to train the model.

With respect to learning the traversability of rough terrain

environments, in general, sensory information and prior

knowledge of the environment have been used to learn cost

functions [12], [14], [15] or compute cost maps [13], [16]

which are then used in planning navigation paths. For

example, in [13], learning from demonstration (LfD) was

used to learn a cost function from terrain data which were

labeled by a human expert for navigation. In particular, LfD

was used to learn the mapping from perceptual information to
planning costs. The data included prior overhead feature

maps of the outdoor environment and onboard sensory

information such as LiDAR data. The cost function was used

in conjunction with the Field D* planning algorithm to

navigate a robot to waypoints. This approach was compared

to manually engineered cost maps in outdoor field tests where

a robot navigated a series of courses. The learned cost

function achieved more reliable results and improved

performance than the engineered cost maps.

Similarly, in [14], LfD was used to learn non-linear cost

functions from geometric features of satellite maps of rough

terrain. The maps were labeled by tracking the paths walked
by several human experts, and then conformal geometric

algebra was used to describe the maps. The geometric

features were used as inputs into a neural network to learn the

non-linear cost function to be used by a navigation planner.

In [15], an approach was introduced where far-range data

from overhead images and height maps were used along with

near-range data from a robot’s onboard LiDAR to compute

traversal costs of the terrain. This was done by using an online

Bayesian learning approach to combine far-range and
near-range features. In experiments, a robot was able to use

the traversal costs along with the D* planner to navigate large

outdoor cluttered environments.

In [13], a robot used on-line learning to classify different

terrain patches of outdoor environments as traversable or

non-traversable. Geometric and appearance features from

stereo images were used as inputs. An autonomous data

collection system was used to gather labeled training data.

The collected features, which included height estimates and

surface texture, were clustered into traversable and

non-traversable terrain. A planner used the online terrain

classifier to compute cost maps in two different outdoor
environments. The results showed that the classifier approach

was able to outperform a traditional planner when the robot

had to navigate through tall traversable vegetation.

In [16], terrain traversability was determined by using a

neural network with geometric features from stereo cameras

as input. Four cost classes of low, intermediate, high, and

lethal were used to represent the traversability. The training

was done offline first and then in an online learning process a

robot learned to infer geometric features from RGB images

when stereo information was not available. By combining the

classification from geometry features and color images, a cost
map was created for path planning. A comparison with

different network configurations and other classifiers showed

that the neural network configurations were the most suitable

classifiers due to their low error score and fast computation

for a wide range of environments with obstacles and different

lighting conditions.

B. Learning to Navigate Terrain

Learning techniques used in order for a robot to learn

navigation actions have mainly used DRL to determine

continuous or discrete navigation actions to travel using

onboard sensory information in environment with known

[25]–[27] or unknown [28] flat terrain.

In [25] a robot motion controller used a Deep Q-network

(DQN) with successor features to provide discrete robot

actions to a goal object location in a known environment.

These actions included standing still, turning 90o left or right,

or going straight for 1 m. The input to the controller was depth
images from a Kinect sensor. The controller was trained in

simulation within an environment with walls and obstacles.

The trained controller was transferred to a new environment

on a physical mobile robot, and additional training was

conducted. Experiment in the same environment showed that

the number of additional training is less than having to train a

new network from scratch, and the proposed model with

successor feature preserved the ability to navigate both the

simulated and real environments.

In [26], a motion controller using DRL with generalized

computation graphs was developed to provide continuous

steering angle predictions for a mobile robot. The inputs to the
system included grayscale images from an onboard camera, as

well as previous action estimations. Training and testing were

conducted in the same single path corridor for the robot to

learn to move at a fixed speed without collisions. The

proposed planner was compared with planners using Double

Q-learning and random policies. The results demonstrated
that on average, the robot was able to travel 7 times longer

distances and 15 times longer distances respectively, after 4

hours of real world training.

In [27], a robot localization and navigation module was

developed with a modified Asynchronous Advantage

Actor-Critic (A3C) approach. The objective was to localize a

robot in an environment for which a map is given and

determine the navigation actions such as move (forward,

backward, left, right) and rotate (left, right) to a given target

location. The inputs to the system included a 2D map of the

environment, RGB-D images, robot heading and the previous

estimated robot location. Both training and testing were
conducted in 3D simulated maze environments. Environments

used for testing were different from the ones used in the

training. Results showed navigation success rates of 91% -

100% depending on map sizes.

With respect to environments with unknown flat terrain, in

[28], a mapless motion planner was developed using the

asynchronous deep deterministic policy gradients method to

provide continuous linear and angular velocities for a mobile

robot to navigate to a target location. The input to the system

was sparse laser range data, the previous robot action, and the

relative position of the target location. The system was trained
in two simulated indoor environments with walls and

obstacles. Experiments were conducted on a mobile robot in

an office environment in both simulations and in a real setting.

The proposed planner was compared with the Move Base

motion planner, and the results showed that it was able to

navigate the robot to all target locations in unseen

environments, especially in narrow areas, whereas the Move

Base planner was not able to.

The aforementioned literature shows the feasibility of

using DRL to learn navigation policies using high dimensional

sensory inputs from the environment. However, to-date, DRL

has not yet been applied to robot navigation in cluttered
environments with unknown rough terrain. The traversability

of the rough terrain can be challenging due to the varying

shapes and sizes of both climbable terrain and non-climbable

terrain. Our research focuses on the first development and

investigation of a DRL network to address the robot

navigation problem in such difficult environments.

III. DEEP REINFORCEMENT LEARNING FOR ROBOT

NAVIGATION IN UNKNOWN ROUGH TERRAIN

Our proposed DRL architecture for a robot to learn how to

navigate an environment with unknown cluttered terrain is

presented in Fig. 1. The architecture uses an end to end

learning strategy, for which a robot learns to navigate rough

terrain by using elevation maps and high dimensional sensory

data from depth images as inputs into a DRL Navigation

module. This module uses deep reinforcement learning to

determine the navigation actions for the robot. Once a robot

navigation action has been chosen, the robot’s Low-Level
Controller executes each action.

In the below subsections we discuss in more detail the

main modules of our architecture.

A. Inputs

Inputs to the DRL Navigation module consist of depth

images, the Elevation Map, as well as the robot’s orientation

(𝛼, 𝛽, 𝛾), where the robot heading 𝛾 is relative to a goal target

location on the unknown terrain.

B. Elevation Map

An elevation map of the robot’s surrounding environment

is generated and updated as the robot navigates the
environment. In order to obtain this elevation map we use the

ROS OctoMap package [30]. Depth images as well as the

robot 3D pose, containing both position (𝑥, 𝑦, 𝑧) and

orientation (𝛼, 𝛽, 𝛾), are used to create a 3D occupancy grid.

This 3D occupancy grid is then converted into a 2D grid map

using the ROS grid_map library [31], where each grid cell

represents the elevation of a local square area.

C. DRL Navigation Module

The DRL Navigation module uses the Asynchronous

Advantage Actor-Critic (A3C) approach [32] to learn a policy

that determines the robot’s navigation actions using depth

information, the robot’s 3D orientation and the elevation

map. We use A3C as it can handle our high dimensional input

space and has a faster learning speed compared to other DRL

techniques such as DQN [32]. This is due to the approach
deploying several agents to learn in parallel using

multi-threads.

1) A3C

The A3C model uses the actor-critic method for

reinforcement learning by combining the policy and

state-value functions [32]. At each discrete time step 𝑡, the

robot in state 𝑠𝑡 executes a navigation action 𝑎𝑡 which

transitions the robot to state 𝑠𝑡
′ in order to maximize the

expected future reward. These navigation actions consist of

the robot moving forward, backward, or turning right or left.

Herein, the actor maintains the policy 𝜋(𝑎𝑡|𝑠𝑡 , 𝜃) which is

determined by a neural network with parameter 𝜃. The critic

estimates the value function 𝑉(𝑠𝑡; 𝜃𝑣) in order for the actor to

adjust its policy accordingly. 𝑉(𝑠𝑡; 𝜃𝑣
) is estimated by the

neural network with parameter 𝜃𝑣 . Both the actor and the

critic update their networks as new information is obtained by

Figure 1. Proposed architecture for rough terrain robot navigation

the robot. The policy and the value function are updated after

every 𝑡𝑚𝑎𝑥 steps or when a terminal state is reached.

Rewards are used to compute and accumulate the

gradients at every step. Stochastic gradient descent (SGD) is
used to update the policy as follows [32], [33]:

∆𝜃 = ∇θ log 𝜋 (𝑎𝑡|𝑠𝑡; 𝜃
)𝐴(𝑠𝑡 , 𝑎𝑡; 𝜃𝑣

)

+𝜁∇𝜃 𝐻(𝜋(𝑠𝑡; 𝜃
)),

(1)

where,

𝐴(𝑠𝑡 , 𝑎𝑡; 𝜃𝑣

) =∑ Γ𝑖𝑟𝑡+𝑖 + Γ
𝑛𝑉(𝑠𝑡+𝑛; 𝜃𝑣

)
𝑛−1

𝑖=0

−𝑉(𝑠𝑡; 𝜃𝑣
),

(2)

and 𝑛 represents the number of remaining steps until 𝑡𝑚𝑎𝑥, or

until a terminal state. 𝐻 is the entropy of the policy to

encourage the robot to explore different navigation actions,

and the hyperparameter 𝜁 controls the strength of the entropy

regularization term. 𝐴(𝑠𝑡 , 𝑎𝑡; 𝜃, 𝜃𝑣) is an estimation of the

advantage function, and Γ is the discount factor. SGD is also

used to update the value function [32], [33]:

∆𝜃𝑣 = 𝐴(𝑠𝑡 , 𝑎𝑡; 𝜃𝑣
)∇𝜃𝑣 𝑉(𝑠𝑡; 𝜃𝑣

) . (3)

Herein, 𝜃 and 𝜃𝑣 are optimized using the RMSprop approach

[34].

 As A3C deploys several agents acting independently in

their own environment, each agent provides updates to the

global policy and value function asynchronously.

2) Rewards

The reward 𝑟t is given based on the robot: 1) getting

closer to a target goal location, 2) reaching the target location

within a certain tolerance (since the terrain is unknown), or 3)

reaching an undesirable terminal state before reaching the

goal.

The reward 𝑟t is given after every executed navigation

action and is represented as follows:

 𝑟𝑡 =

{

 𝜇

𝑑min
 − 𝑑𝑡
Δ𝑡

, 𝑑𝑡 < 𝑑𝑚𝑖𝑛

0.5 + 𝑟𝑣 , 𝑑𝑡 ≤ 𝑑𝑔
−0.5, 𝑠𝑡𝑢

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 , (4)

where 𝑑𝑚𝑖𝑛 represents the closest distance the robot has
navigated to with respect to the goal target location, up to step

𝑡 − 1. 𝑑𝑡 is the distance from the robot to the goal target

location at step 𝑡. Δ𝑡 is the time duration from the previous

time step 𝑡 − 1 to the current time step 𝑡 . 𝜇 is a discount

factor that can be used in order to choose the impact of this

reward relative to the rewards provided for the terminal

states. 𝑑𝑔 represents the distance to the goal location and 𝑟𝑣 is

a dynamic variable that represents the distance from the
robot’s starting location to the goal location over the total

time the robot took to reach the goal. 𝑠𝑡𝑢 represents an

undesirable terminal state which includes repeatedly colliding

with the same obstacle, the robot flipping over, the robot

being stuck (i.e., attempting to climb a steep hill), or

exceeding 𝑛𝑚 number of steps. 𝑛𝑚 is the maximum number

of steps allowed for an episode, similar to the concept of

time-out.

3) A3C Network Design

As previously mentioned, the neural network uses a depth

image, an elevation map and the robot 3D orientation as

inputs to determine a navigation action. The proposed

network can be seen in Fig. 2. There are three input branches,

one for each input type. The elevation map and the 3D

orientation branches are merged together by connecting to a

shared convolutional layer (CL). The output of this CL

merges with the output of the depth image branch.

Depth image branch: depth images are downsampled from

480×640 to an 84×84 single channel array. Each element in

the array represents a specific distance measurement. There

are 4 CLs in this branch, the first two have 32 filters and the

remaining have 64 filters. Filter sizes decrease gradually from

5×5 to 3×3, Fig. 3a. The output of the last layer is reshaped to

a vector and concatenated head-to-tail with the reshaped

output vector of the CL which merges the other two branches.

Figure 2. The proposed A3C network architecture. The three rectangular bounding boxes from the top to bottom

represent the Depth image branch, Elevation map branch, and Robot orientation branch, respectively.

Elevation map branch: The elevation map is inputted as a

single channel 84×84 array. The first 2 CLs of this branch

have 32 filters and the remaining use 64 filters. Each filter

produces an activation map as the result of convolutions.

Filter sizes decrease gradually from 7×7 to 4×4 to account for

the decrease of activation map size, Fig. 3b.

Robot orientation branch: the 3D orientation (𝛼, 𝛽, 𝛾) of the

robot are input as a vector with 3 elements and processed

through a fully connected layer (FCL). The output of this

layer is reshaped to a volume of 9×9×64 to match the output

shape of the elevation map branch. Using element-wise

addition, the two volumes are merged and used as an input to

an additional CL layer. The combination of 𝛼 and 𝛽

orientations with the elevation maps helps to infer 3D terrain

conditions that the robot is traversing. This facilitates the

learning of a policy that helps the robot to avoid steep slopes

that can potentially roll or flip the robot over. Additionally,

the robot heading 𝛾 allows the network to learn that when the

robot’s motion aligns with the direction of the goal target

location, it usually approaches the goal quicker and gets

higher rewards.
In this network, Rectified Linear Units (ReLU) [35] are

applied on the output of all CLs. Once the branches are

combined, the merged tensor is fed into a Long Short-Term

Memory (LSTM) layer. This recurrent layer can improve

DRL training by better capturing underlying states of a

partially observed environment [36].

After the LSTM layer, the network separates into two

output branches, actor and critic. The actor output branch has

one FCL that outputs a 4-dimensional vector, each dimension

representing one navigation action. The value of each

dimension shows how likely a certain action is optimal (i.e.,

𝑝1to 𝑝4). The Softmax [35] function is applied to normalize

the values. The action with the highest likelihood of being

optimal is chosen as 𝑎𝑡 . The critic branch also uses an FCL. It

outputs a single value that represents the estimation of the

value function 𝑉(𝑠𝑡; 𝜃𝑣
), which is used to improve future

policies.

4) Training

In order to train the A3C network for the DRL Navigation

module, we created a 3D Simulator in Gazebo in the Robot

Operating System (ROS). A 3D physics model for the Jaguar

4x4 wheeled mobile platform was created including weight,

center of mass, speed and ground resistance to match the

physical robot. The robot was equipped with both 3D

odometry and a front-facing depth sensor.

We used 2,000 randomly generated unique

100 𝑚2 environments with percentage of traversability

varying from 70-90%. These environments included

traversable terrain that was non-flat, which included hills and

valleys and irregular-shaped rubble piles, as shown in Fig. 4.
The robot’s starting location and goal target location within

each environment were randomly selected for every episode

on the traversable portion of the environment.

For our training, nine agent threads were simultaneously

used on an AMD Ryzen Threadripper 1950x CPU. Each

agent having its own unique environment. The values of the

parameters used in training are as follows:𝜁 = 0.01; Γ =
0.99; 𝜇 = 0.05; 𝑑𝑔 = 0.5; 𝑛𝑚= 600; and 𝑡𝑚𝑎𝑥 = 60. The

learning rate was set to 0.0001[32].

Figure 3. Hidden layer configurations of the CNNs for: (a) the depth image branch, and (b) the elevation map branch and the layer after merging with

the robot orientation branch. CONV represents a convolutional layer with filter size F, stride S, and padding P.

(a) (b)

Figure 4. An example of the robot training environment.

Figure 5. Cumulative Reward Per Episode Averaged Per 500 Episodes.

Figure 6. Number of Steps Per Episode Averaged Per 500 Episodes.

Fig. 5 and Fig. 6 present the training results for the

cumulative rewards per episode and the number of steps per

episode, both averaged across 500 episodes. As can be seen in

Fig. 5, the network started to converge at 22,000 episodes for

an average cumulative reward of 0.5. The number of steps per
episode also decreased to an average of 208 steps.

IV. EXPERIMENTS

We conducted experiments in new environments to

validate the performance of our proposed DRL network for

robot navigation in environments with unknown rough

terrain. These environments varied in size from 100 𝑚2 to

400 𝑚2 and with percent traversability ranging from 80-90%.

Namely, within our simulator, 600 environments, each with a

unique terrain distribution, were generated. The starting

location and goal target location for the mobile robot were

randomly selected, however, these locations were constrained

to the traversable portion of each environment similar to

training.

A. Results

The robot was able to navigate to target goal locations in

the majority of the environments. For the training stage we

only used environment sizes of 100𝑚2, whereas in testing we

included the large environment size of 400𝑚2 as well. The

experimental results can be found in Table I. We obtained

high success rates regardless of the size of the environment,

showing that our approach is robust to new environments

with different terrain distribution and sizes than used in
training. As expected, the success rates were higher for the

environments with less non-climbable obstacles, i.e., 85-90%

traversability. The average computation time for the DRL

Navigation module to select an action was 0.074 s.

Robot navigation paths in example environments with

unknown rough terrain are shown in Fig. 7 and Fig. 8. In Fig.

7, it can be seen that the robot learns to traverse different

terrain (i.e., a hill and an irregular-shaped rubble pile) while

avoiding large non-traversable obstacles. Fig. 8 shows how

the robot is able to traverse narrow pathways between large

non-traversable objects.
From the experiments, we observed if the robot traversed

too close to deep valleys with large descending slopes, it

could slip down into the valley and not be able to get out (e.g.

being stuck). This led to an undesirable termination state.

V. CONCLUSION

In this paper, we investigate the use of DRL for robot

navigation in environments with unknown rough terrain such
as the ones found in USAR. Namely, we developed a network

based on the A3C architecture which uses depth images,

elevation maps, and 3D orientation as inputs to determine

optimal robot navigation actions. The network was trained in

unique simulated 3D environments which varied in terms of

level of traversability. Experiments in new environments

ranging in size and traversability were conducted. The results

showed that the DRL approach can successfully navigate a

robot in an environment towards a target goal location when

the rough terrain is unknown. Future work will include

implementing and testing the navigation approach on a
physical robot in similar environments.

REFERENCES

[1] Y. Liu and G. Nejat, “Robotic Urban Search and Rescue: A Survey

from the Control Perspective,” J. Intell. Robot. Syst., vol. 72, no. 2,

pp. 147–165, Nov. 2013.

[2] M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for

collision-free navigation of mobile robots in complex cluttered

environments: a survey,” Robotica, vol. 33, no. 3, pp. 463–497, Mar.

2015.

TABLE I. SUCCESS RATE FOR ROBOT REACHING GOAL TARGET

LOCATIONS

Environment Size Traversability

90% 85% 80%

100 𝑚2 84.1% 81.7% 71.3%

400 𝑚2 85% 83.1% 76.7%

Figure 7. Topological view (left) and side view (right) of the robot traversing

a hill and an irregular-shaped rubble pile. The robot navigation path is shown

on the topological view. S represents the starting point and E is the end goal

target location.

Figure 8. Topological view (left) and side view (right) of the robot

navigating narrow pathways. The robot navigation path is shown on the

topological view. S represents the starting point and E is the end goal target

location.

S

S

S

S

E

E

E

E

[3] A. Stentz, “Optimal and efficient path planning for partially-known

environments,” in Proceedings of IEEE International Conference on

Robotics and Automation, pp. 3310–3317 vol.4, 1994

[4] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient

approach to single-query path planning,” in Proceedings of IEEE

International Conference on Robotics and Automation, vol. 2, pp.

995–1001, 2000.

[5] O. Khatib, “Real-time obstacle avoidance for manipulators and

mobile robots,” in Proceedings of IEEE International Conference on

Robotics and Automation, vol. 2, pp. 500–505, 1985.

[6] J. Barraquand, B. Langlois, and J. C. Latombe, “Numerical potential

field techniques for robot path planning,” IEEE Trans. Syst. Man

Cybern., vol. 22, no. 2, pp. 224–241, Mar. 1992.

[7] M. Wang and J. N. K. Liu, “Fuzzy logic-based real-time robot

navigation in unknown environment with dead ends,” Robot. Auton.

Syst., vol. 56, no. 7, pp. 625–643, Jul. 2008.

[8] F. Niroui, B. Sprenger, and G. Nejat, “Robot exploration in unknown

cluttered environments when dealing with uncertainty,” in

Proceedings of IEEE International Symposium on Robotics and

Intelligent Sensors (IRIS), pp. 224–229, 2017.

[9] A. V. Savkin and C. Wang, “Seeking a path through the crowd:

Robot navigation in unknown dynamic environments with moving

obstacles based on an integrated environment representation,” Robot.

Auton. Syst., vol. 62, no. 10, pp. 1568–1580, Oct. 2014.

[10] A. Chilian and H. Hirschmüller, “Stereo camera based navigation of

mobile robots on rough terrain,” in Proceedings of IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp.

4571–4576, 2009.

[11] S. Lacroix and R. Chatila, “Motion and perception strategies for

outdoor mobile robot navigation in unknown environments,” in

Experimental Robotics IV, Springer, Berlin, Heidelberg, pp. 538–

547, 1997.

[12] D. Silver, J. A. Bagnell, and A. Stentz, “Learning from

Demonstration for Autonomous Navigation in Complex

Unstructured Terrain,” Int J Rob Res, vol. 29, no. 12, pp. 1565–1592,

Oct. 2010.

[13] D. Kim, J. Sun, S. M. Oh, J. M. Rehg, and A. F. Bobick,

“Traversability classification using unsupervised on-line visual

learning for outdoor robot navigation,” in Proceedings of IEEE

International Conference on Robotics and Automation (ICRA), pp.

518–525, 2006.

[14] R. Valencia-Murillo, N. Arana-Daniel, C. Lopez-Franco, and A.

Alanis, “Rough Terrain Perception Through Geometric Entities for

Robot Navigation,” in Proceedings of International Conference on

Advances in Computer Science and Engineering, 2013.

[15] B. Sofman, E. Lin, J. A. Bagnell, J. Cole, N. Vandapel, and A. Stentz,

“Improving robot navigation through self‐supervised online

learning,” J. Field Robot., vol. 23, no. 11‐12, pp. 1059–1075, Nov.

2006.

[16] M. Happold, M. Ollis, and N. Johnson, “Enhancing Supervised

Terrain Classification with Predictive Unsupervised Learning,” in

Robotics: Science and Systems, 2006.

[17] S. Zhou, J. Xi, M. W. McDaniel, T. Nishihata, P. Salesses, and K.

Iagnemma, “Self-supervised learning to visually detect terrain

surfaces for autonomous robots operating in forested terrain,” J.

Field Robot., vol. 29, no. 2, pp. 277–297, Mar. 2012.

[18] C. Wellington, A. Courville, and A. Stentz, “A Generative Model of

Terrain for Autonomous Navigation in Vegetation,” Int. J. Robot.

Res., vol. 25, no. 12, pp. 1287–1304, Dec. 2006.

[19] B. Doroodgar, Y. Liu, and G. Nejat, “A Learning-Based

Semi-Autonomous Controller for Robotic Exploration of Unknown

Disaster Scenes While Searching for Victims,” IEEE Trans. Cybern.,

vol. 44, no. 12, pp. 2719–2732, Dec. 2014.

[20] Y. Liu, G. Nejat, and B. Doroodgar, “Learning based

semi-autonomous control for robots in urban search and rescue,” in

Proceedings of IEEE International Symposium on Safety, Security,

and Rescue Robotics (SSRR), pp. 1–6, 2012.

[21] B. Doroodgar and G. Nejat, “A hierarchical reinforcement learning

based control architecture for semi-autonomous rescue robots in

cluttered environments,” in Proceedings of IEEE International

Conference on Automation Science and Engineering, pp. 948–953,

2010.

[22] W.-Y. G. Louie and G. Nejat, “A victim identification methodology

for rescue robots operating in cluttered USAR environments,” Adv.

Robot., vol. 27, no. 5, pp. 373–384, Apr. 2013.

[23] V. Mnih et al., “Playing Atari with Deep Reinforcement Learning,”

ArXiv13125602 Cs, Dec. 2013.

[24] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,

“A Brief Survey of Deep Reinforcement Learning,” IEEE Signal

Process. Mag., vol. 34, no. 6, pp. 26–38, Nov. 2017.

[25] J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard, “Deep

Reinforcement Learning with Successor Features for Navigation

across Similar Environments,” ArXiv161205533 Cs, Dec. 2016.

[26] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine,

“Self-supervised Deep Reinforcement Learning with Generalized

Computation Graphs for Robot Navigation,” ArXiv170910489 Cs,

Sep. 2017.

[27] G. Brunner, O. Richter, Y. Wang, and R. Wattenhofer, “Teaching a

Machine to Read Maps with Deep Reinforcement Learning,”

ArXiv171107479 Cs Stat, Nov. 2017.

[28] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement

learning: Continuous control of mobile robots for mapless

navigation,” in Proceedings of IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pp. 31–36, 2017.

[29] J. Vilela, Y. Liu, and G. Nejat, “Semi-autonomous exploration with

robot teams in urban search and rescue,” in Proceedings of IEEE

International Symposium on Safety, Security, and Rescue Robotics

(SSRR), pp. 1–6, 2013.

[30] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W.

Burgard, “OctoMap: an efficient probabilistic 3D mapping

framework based on octrees,” Auton. Robots, vol. 34, no. 3, pp. 189–

206, Apr. 2013.

[31] P. Fankhauser and M. Hutter, Robot Operating System (ROS) – The

Complete Reference, chapter 5, vol. 1. Springer, 2016.

[32] V. Mnih et al., “Asynchronous Methods for Deep Reinforcement

Learning,” in Proceedings of International Conference on Machine

Learning (PMLR), Feb. 2016.

[33] A. Gruslys, W. Dabney, M. G. Azar, B. Piot, M. Bellemare, and R.

Munos, “The Reactor: A fast and sample-efficient Actor-Critic agent

for Reinforcement Learning,” in Proceedings of International

Conference on Learning Representations, Feb. 2018.

[34] G. Hinton, “rmsprop: Divide the gradient by a running average of its

recent magnitude,” presented at the COURSERA: Neural Networks

for Machine Learning, 2012.

[35] C. M. Bishop, Pattern recognition and machine learning. New York:

Springer, 2006.

[36] M. Hausknecht and P. Stone, “Deep Recurrent Q-Learning for

Partially Observable MDPs,” ArXiv150706527 Cs, Jul. 2015.

