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Abstract As robots become more prevalent in society, 
investigating the interactions between humans and robots 
is important to ensure that these robots adhere to the 
social norms and expectations of human users. In 
particular, it is important to explore exactly how the 
nonverbal behaviors of robots influence humans due to 
the dominant role nonverbal communication plays in 
social interactions. In this paper, we present a detailed 
survey on this topic focusing on four main nonverbal 
communication modes: kinesics, proxemics, haptics, and 
chronemics, as well as multimodal combinations of these 
modes. We uniquely investigate findings that span across 
these different nonverbal modes and how they influence 
humans in four separate ways: shifting cognitive framing, 
eliciting emotional responses, triggering specific 
behavioral responses, and improving task performance. A 
detailed discussion is presented to provide insights on 
nonverbal robot behaviors with respect to the 
aforementioned influence types and to discuss future 
research directions in this field.  
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1   Introduction 

As robots become increasingly ubiquitous in 
environments such as our homes, workplaces, hospitals, 
and schools, they need to have social intelligence that 
enables them to effectively interact with and assist 
humans. Research in the field of human-robot interaction 
(HRI) has explored the social and functional relationships 
between humans and robots at the intersection of 
engineering, computer science, psychology, linguistics, 
ethology, and other disciplines [1]. In particular, such 
research has covered a wide breadth of social HRI 
applications for which robots provide assistance with 
healthcare (including eldercare) [2–4], education and 
training [5, 6], entertainment [7, 8], search and rescue [9, 
10], and tour guiding in retail and museum settings [6, 
11]. 

Within these applications, a robot’s effective use of 
nonverbal communication can be crucial for engagement 
with humans as it allows for intuitive interaction between 
humans and robots [12]. In general, nonverbal 
communication is the unspoken dialogue that creates 
shared meaning in social interactions [13], which can 
have emotional or functional intent [14, 15]. It is a critical 
area of study that is estimated to encompass more than 
60% of all communicated meaning in human [16–19]. 
Nonverbal communication is commonly categorized into 
a handful of distinct, but socially interrelated modes – 
kinesics, proxemics, haptics, chronemics, vocalics, and 
presentation [20]. In this paper we will focus on 
investigating modes that directly incorporate robot 
movements, namely kinesics, proxemics, haptics, and 
chronemics.  

In contrast to vocal communication which is largely 
learned through more explicit experiences relevant to 
specific cultures, nonverbal communication through 
movement is a vital area of study as its origins largely 
arise through inherited behaviors (e.g. reflexes) or primal 
experiences common to all humans (e.g. the use of hands 
towards the mouth indicating eating) [21]. This means 
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that these nonvocal, nonverbal forms of communication 
are consistent across cultures and, because they are more 
instinctual and involuntary, are a more truthful 
representation of human thoughts and emotions [20]. 
More specifically, kinesics is a highly articulate mode 
that some consider to be as communicative as verbal 
communication [22]. Proxemics enables us to identify 
and associate social distances with comfort and other 
communicated intentions [23]. Haptics explores our 
earliest, most elemental, and intimate modes of 
communication [24]. Chronemics allows us to identify 
and understand the tempo of human communication [25]. 
Beyond these four modes, we will also consider 
multimodal nonverbal communication that integrates two 
or more of these modes into an interaction.  

There are a handful of survey papers that consider 
nonverbal communication during HRI. For example, 
McColl et al. [26] reviewed the recognition of human 
nonverbal communication for robot decision making in 
HRI scenarios. Other papers have only focused on one 
individual type of robot nonverbal communication within 
the aforementioned nonverbal communication types. 
Within kinesics this has included arm gestures [27], body 
movements [9], and gaze [28]; for proxemics this has 
included social distance [29], and social navigation [30]; 
and for haptics there has also been a handful of surveys 
[31–33]. While these survey papers typically provide a 
thorough technical analysis or classification of a specific 
robot nonverbal communication mode or type, they do 
not consider the interrelationships between multiple 
modes nor do they specifically investigate the manner in 
which these modes directly influence humans during 
interactions with these robots. 

In this paper, we present a unique research survey 
which investigates the interrelationships across multiple 
nonverbal communication modes in an attempt to bridge 
findings between them. Furthermore, we focus on how 
such robot nonverbal behaviors influence humans as an 
outcome. Namely, we distinctly categorize influence into 
the four types below and aim to provide a detailed 
understanding of how robot nonverbal behavior can 
influence a person’s: 
1. Cognitive Framing: A process observed in human 

psychology by which people develop a certain 
perspective or orientation on a topic [34]. We will 
identify how robot nonverbal behaviors influence a 
human’s framing of a robot(s) with respect to 
numerous cognitive frames such as empathy, 
engagement, likeability, dominance, perceived 
intelligence, and trust. 

2. Emotion Recognition and Response: The successful 
identification of a robot’s nonverbally displayed 
emotions and the potential for these to illicit a human 
emotional response due to phenomena such as 
emotion contagion: the automatic transfer of 
emotions between individuals [35]. We will survey 
research on human recognition of robot emotions via 

nonverbal behaviors and determine how these 
influence human emotional responses. 

3. Behavioral Response: A human’s nonverbal 
behaviors as a direct response to the presence or 
absence of robot nonverbal cues. We will discuss 
research that has directly observed human behavior 
in response to robot nonverbal behavior in scenarios 
considering entrainment, synchronization, and 
mimicry. 

4. Task Performance: A change in the outcome of a 
human task or collaborative human-robot task due to 
robot nonverbal behaviors. We will investigate the 
change in task performance influenced by a robot’s 
nonverbal behaviors with respect to metrics like 
reaction time, completion time, errors, accuracy, and 
memory. 

The following sections of this survey paper are 
organized as follows. Sections 2-6 discuss the existing 
literature on kinesic, proxemic, haptic, chronemic, and 
multimodal nonverbal robot communication modes, their 
importance and how these behaviors influence users 
during varying HRI scenarios. Section 7 provides a 
detailed discussion across the different communication 
modes with respect to how these modes affect a person’s 
cognitive framing, emotion recognition and response, 
behavioral response, and task performance. Lastly, in 
Section 7, future research directions are also discussed 
with respect to open research challenges.  

2   Kinesics 

In general, kinesics is defined as nonverbal 
communication through body movements, positioning, 
facial expressions, and gestures [19]. Kinesics is a highly 
articulated form of communication that contains 
informative capacity on par with verbal communication 
[22], and can communicate extensive contextual, social, 
and interpersonal information (situational awareness, 
social intent, emotional state, etc.)  [36]. Kinesics-based 
robotics research can be categorized into: 1) arm gestures, 
2) body and head movements, 3) eye gaze, and 4) facial 
expressions. This section will explore each of these 
modes and how they influence users in HRI applications. 

2.1   Arm Gestures  

Arm gestures are typically defined by significant 
movements of the limb in a way that generates an 
expression of feeling or rhetoric [37]. Gestures are 
important due to the detail and dexterity available to the 
arm and hand [38] allowing them to be used in 
communication that is deictic (pointing), iconic 
(representative of objects and actions), metaphoric 
(representative of abstract concepts), and beat 
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(punctuating other modes) [39]. Papers surveyed here 
will be presented under the defined influence types of 
cognitive framing, emotion recognition and response, 
behavioral response, and task performance.  

2.1.1   Cognitive Framing 

Robotic arm gestures have been shown to influence many 
different concepts such as sympathy, liveliness, 
engagement, likeability, anthropomorphism, future use 
intent, semantic matching, and animacy. 

In [40, 41], Salem et al. investigated the impact of 
congruency of robot gestures with speech using the 
humanoid ASIMO robot. The robot was controlled using 
a Wizard-of-Oz (WoZ) technique to implement verbal 
requests with three types of gestures for manipulating and 
transferring objects. The gestures were chosen as: 1) 
iconic to illustrate object properties, 2) deictic to indicate 
location, and 3) pantomimic to illustrate actions. 
Participants were presented with robot verbal requests 
alongside gestures that were either congruent or 
incongruent to the request. They found that the robot was 
evaluated as more sympathetic, lively, active, and 
engaged when it used gestures, regardless of gesture 
congruency. A subsequent experiment [42] by the same 
authors found that, in general, gestures contributed 
positively to perceived anthropomorphism of the robot, 
regardless of congruency and that incongruent gestures 
improved scores of likeability, human-likeness, and 
future use intent (desire to see the robot again) over 
congruent gestures. However, the incongruent gestures 
negatively contributed to the task completion of 
participants transferring objects based on the robot’s 
request compared to congruent gestures or no gestures at 
all. 

Aly and Tapus [43] investigated how different human 
personality traits would affect the perception of 
extroverted (more dynamic) versus introverted (more 
subdued) robot gestures. They placed participants in a 
room with a NAO robot who provided detailed 
information about a restaurant’s menu, service, and 
atmosphere while using the two different gesture 
behaviors. They found that the more dynamic robot 
gestures led to more engaging interactions and higher 
perceived semantic matching. In addition, when 
comparing participant personalities, extraverted 
participants preferred these dynamic gestures more than 
the introverted participants. 

Shen et al. [44] investigated the influence of gesture 
coordination on framing and perceptions of the 
KASPAR2 humanlike robot. They instructed participants 
to stand in front of the robot, and perform one of three 
gestures (circle, triangle, or infinity symbol) using a Wii 
remote. As the participant began to perform the gesture, 
the robot would also initiate the same gesture in one of 
two conditions: move at a constant speed or adapt its 
speed to move synchronously with the participant. Their 
findings show that in the adaptive condition, participants 

rated the robot higher on gesture recognition, 
performance, and social interaction. 

In [45], the effects of gesture style on perceptions of a 
robot’s warmth, competence, dominance, and affiliation 
were investigated. A NAO humanoid robot gave a 10-
minute lecture on robots to children and was programmed 
to display four different gesture conditions of either low 
or high warmth and low or high competence. The 
development of these gestures was guided by the 
Interpersonal Circumplex model [46] and the Stereotype 
Content Model [47]. Their results showed that the two 
high-competence conditions led to higher participant 
perceptions of competence, however, warmth was 
perceived as high during the high warmth-high 
competence condition and the low warmth-low 
competence condition. Affiliation was rated highest for 
the high warmth-high competence condition, followed by 
the low warmth-low competence condition, the high 
warmth-low competence condition, and finally the low 
warmth-high competence condition. Dominance was also 
perceived highest for the high warmth-high competence 
condition, followed by the high warmth-low competence 
condition, the low warmth-low competence condition, 
and finally the low warmth-high competence condition. 

2.1.2   Emotion Recognition and Response 

With respect to emotion recognition and response, 
different robot emotion-based arm gestures have been 
investigated including comparisons between varying arm 
types as well as how the recognition of these emotional 
gestures (or inability to) may affect the emotional state of 
users. 

Xu et al. [48] presented a 30 minute lecture to a crowd 
of people using a NAO robot gesturing along with its 
lecture under two different mood conditions: positive and 
negative. The lecture and types of gestures used in the 
two conditions were the same, however, the appearance 
of the gestures was changed to convey different valence 
and arousal levels associated with each of the two moods. 
In addition to recognition rates, they investigated how the 
robot’s valence influenced the affect of the audience. 
They found that recognition rates for valence were quite 
low, as most participants assumed the robot was never in 
a negative mood. However, participant self-reports of 
valence and arousal were seen to align with those of the 
robot, indicating that the robot’s mood condition directly 
influenced their own valence and arousal. These results 
indicate that mood/emotion contagion may be possible 
from a robot to people, regardless of whether they are 
able to directly recognize the robot’s emotional display. 

A similar study [49] investigated mood recognition 
and contagion of arm gestures during an imitation game 
with a NAO robot. Eight possible gestures were designed 
with the robot pointing its arms in different directions. 
The game was designed with either the gestures having 
positive or negative valance, and the imitation game 
sequence being easy or difficult. Participants were 
instructed to repeat the sequence of gestures 
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demonstrated by the robot. Results showed that for both 
easy and difficult gesture sequences, participants were 
able to recognize whether the gestures had positive or 
negative valence, and the reported affect of the 
participants themselves tended to align with gesture 
valence. Finally, participant game performance was 
consistently high for the easy condition, however, for the 
difficult condition, those observing gestures with negative 
valence outperformed those observing positive gestures. 

Another study [50] explored the effect of specific 
gesture parameters used by a robot in expressing emotion. 
Participants designed waving and pointing behaviors for 
the NAO humanlike robot to align with negative, neutral, 
and positive valence by modulating a variety of 
parameters such as motion speed, decay speed, 
amplitude, repetition, and arm/finger extension. Though 
participant sample was too small to uncover significant 
findings, parameters corresponding to the different 
valence levels were consistent across participants. The 
waving behavior was also more easily and consistently 
designed than pointing, and certain parameters (such as 
amplitude, motion speed, and decay speed) seemed to be 
behavior-invariant. 

English, Coates, and Howard [51] explored the 
concept of using robot gestures to teach children with 
Autism Spectrum Disorder (ASD) five of the six primary 
emotions (happiness, fear, sadness, anger, surprise). 
Using a NAO robot and a Mini Darwin humanoid robot, 
they programmed gestures for each of the emotions and 
conducted a pilot study to test the recognition of these 
emotions by adults without ASD to validate their 
development. Recognition rates were 100% for the Mini 
Darwin for all emotions except happiness (80%) and for 
the NAO robot were 96% for sadness, 78% for anger, 
62% for both fear and surprise, and 57% for happiness. 

2.1.3   Behavioral Response 

In [52], Lorenz et al. investigated the movement 
synchronization of arm gestures between a human and 
human-sized mobile robot with two, seven degree-of-
freedom (DoF) arms. The interaction scenario had the 
robot and a participant performing the repetitive task of 
moving a pen between two locations, where the two 
started either in-sync, a quarter-cycle off phase, or a half-
cycle off phase. They hoped to observe whether humans 
would synchronize their movements to robots in various 
conditions when using a robot that would not adapt its 
own movements to the human (requiring the human to 
fully adapt to the robot). The in-sync start condition 
produced only a small amount of synchronicity in the task 
(15%), and the half-cycle (11%) and quarter-cycle (10%) 
showed even lower movement synchronization. This is 
interesting to note, as a previous study in [53], however, 
with two humans had shown that the two synchronized 
their movements over time when their movements had 
started out of phase. 

In another study investigating entrainment, Ansermin 
et al. [54] performed a within-subjects experiment asking 

participants to repeat rhythmical arm movements. Each 
participant encountered three randomly ordered 
conditions: moving alone to obtain a baseline frequency, 
moving with a video of a NAO robot gesturing at a set 
frequency, and moving with a video of a NAO robot 
gesturing at a frequency which adapts to that of the 
participant. Even though participants were asked to move 
at their own frequency, all participants encountering the 
set frequency condition were influenced by the robot’s 
gesture frequency, highlighting the entrainment effect. 
Moreover, even in the adaptive robot condition, 
participants still showed bidirectional entrainment with 
75% of participants achieving synchronization at a 
frequency between the initial robot and participant 
frequencies. 

Ende et al. [55] looked at recognition rates of a variety 
of different single arm gestures displayed by a human, 
humanoid robot (DLR mobile humanoid robot Justin), 
and industrial manipulator (DLR LWR III with a two-jaw 
gripper). They presented 20 different iconic gesture types 
and found that the gestures “stop”, “From here, to there”, 
and “This one” were the only three consistently identified 
by participants, regardless of arm type (identification 
rates of >85%). Generally, across the 20 gestures, the 
human arm and humanoid arm had comparable average 
recognition rates (69% and 66%, respectively), however, 
the gestures displayed by the industrial manipulator were 
more difficult to identify (55% average recognition rate). 

2.1.4   Task Performance 

Regarding task performance, robot arm gestures have 
been shown to be influential in both improving the 
response time in interactive tasks as well as improving 
memory around storytelling. 

Using a timed cooperation task, Riek et al. [56] 
investigated how people would interpret and respond to 
the three robot interactive arm gestures of beckoning, 
giving, and shaking hands displayed by the BERTI 
humanoid robot. The gestures were presented to 
participants either abruptly or smoothly and in a front-
facing or side-facing orientation. They found that people 
had both the fastest reaction times and task completion 
times with abrupt gestures (over smooth ones) in a front-
facing orientation. 

Dijk, Torta, and Cuijper [57] used robot arm gestures 
to attempt to improve storytelling recall during HRI. The 
NAO humanoid robot was used to tell a story to 
participants with or without the use of iconic gestures 
(those indicative of actions in the story). When 
participants were asked to recall specific aspects of the 
story, it was found that gestures increased retention rates 
by approximately 10% overall and by over 15% for 
gestures associated with specific verbs and actions. 

In [58], the communication effectiveness of different 
robotic arm and gripper poses are tested with participants 
in a collaborative human-robot assembly task. In an 
initial pilot study, participants were asked to generate 
appropriate arm gestures to instruct a human confederate 
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on steps in the assembly task and in a subsequent study, 
these gestures were implemented on a 7-DoF Barret 
Whole Arm Manipulator (WAM) with a three-fingered 
BarretHand. Three conditions were used: two from 
different human-inspired gestures learned from the pilot 
study and one with a closed-hand configuration to act as a 
baseline. Looking at task recognition rates across 
directional, orientation, and manipulation commands, at 
least one of the three robot gestures were well recognized 
(>60% rates) and recognition rates were typically higher 
with the two human-inspired gestures. However, three 
exceptions were found: 1) left and right directional 
gestures were confused with each other, possibly due to 
the angle of the arm relative to the assembly object, 2) the 
“swap” gesture – indicating an exchange of one part for 
another – was poorly recognized, possibly due to the 
complexity of the task, and 3) the “confirm” gesture – 
validating a successful assembly – was poorly 
recognized, likely due to the robot lacking a thumb and 
being unable to accurately replicate an appropriate human 
gesture. 

Quintero et al. [59] investigated the effectiveness of a 
robot manipulator communicating through pointing 
gestures in a pick-and-place task. A 7-DoF Barrett WAM 
demonstrated four different gestures: standby, object 
pointing, yes, and no to show participants a series of 
pick-and-place actions. When compared to a human arm 
performing the same gestures, the robot arm was more 
poorly understood (28% misinterpretations versus 10% 
for the human arm), however, was still understood better 
than chance. 

2.1.5   Summary of Arm Gestures 

Regarding cognitive framing, the use of robot arm 
gestures has been shown to improve participant 
evaluations on robot sympathy, liveliness, activity [40, 
41], perceived anthropomorphism [42]. engagement [43], 
performance, and social ability [44]. Designing gestures in 
order to show high levels of competence and warmth for a 
robot can lead to perceptions of high affiliation with 
participants, however, also be perceived as being highly 
dominant [45]. 

With respect to emotive arm gestures, studies have 
shown that gestures using different motion parameters can 
successfully communicate both primary emotions (happy, 
sad, fear, anger, surprise) [51] and valence [49, 50]. 
However, even when an individual cannot recognize the 
emotion of a robot, robot gestures can emotionally affect 
individuals through emotion contagion [48]. 

For behavioral responses, robot arm gestures have been 
shown to be as successful as human gestures with 
communicating different commands, although humanoid 
arms tend to be more recognizable than industrial 
manipulators [55]. Robot arm gestures can also influence 
human behavior via entrainment, where a person’s motion 
will adapt to match a robot’s motion [54] much like 
humans do with each other [53]. However, 
synchronization can fail if the frequency of the robot arm 

gestures does not adapt to the human gesture frequency 
[52]. 

Robot gestures can also have a significant effect on 
human-robot cooperative task performance. Appropriate 
gestures have been shown to effectively communicate 
steps in an assembly task [58] and a pick-and-place task 
[59] as well as reduce both reaction time and task 
completion times [56]. During a storytelling scenario, a 
robot’s use of coverbal gestures has also helped 
participants improve storytelling recall [57]. 

Generally, arm gestures can be an effective way for 
robots to influence people, potentially due to their larger 
movements and human tendency to prefer more dynamic, 
animated robot behaviors [43]. They are often combined 
with verbal utterances to enrich a statement [40–43, 48, 
57] and, as will be discussed in Section 6, can often be 
used in multimodal nonverbal interactions. 

2.2   Body and Head Movements 

Body movements present full-body behaviors that can be 
both static (e.g. postures and poses) and dynamic. Body 
posture/pose has been shown to reveal the structure, 
content, and interrelationships of human interactions [60]. 
Head movements are associated with specific 
communication functions such as the overt semantic 
meanings of nodding and shaking for indicating referents 
during narration [61]. This section investigates how robot 
body and head movements during HRI influence 
cognitive framing of a robot, emotion recognition, and 
task performance. 

2.2.1   Cognitive Framing 

Robot body and head movements have been shown to 
influence human perception of a variety of different 
concepts including social engagement, intrigue, appeal, 
warmth, friendliness, empathy, and enjoyment. 

Investigating a robot as a peripheral companion, 
Hoffman et al. [62] had the Kip1, a small lamp-like robot, 
display postures in response to a human-human 
conversation. As two people conversed, the robot varied 
its posture between neutral (during no conversation), 
calm (at the start of a conversation), curious (after 
ongoing conversation), and scared (during loud 
conversation). These postures were found to make Kip1 
be perceived as socially engaging with an intriguing, 
social-emotional appeal, but without distracting from the 
core human-human conversation. Compared to the 
neutral body language condition, when Kip1 displayed 
calm, curious, and scared postures, it was also identified 
to be more warm, friendly, social, and empathetic, 
indicating that people related to it not simply as an object, 
but potentially as an emotion-forming entity. 

In [63], the effects of humanlike body movements and 
robot-specific behaviors were investigated with the NAO 
humanlike robot during storytelling. Participants would 
be told a story by the NAO robot in one of three 
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conditions after which the robot would ask the participant 
to tell their own story. A control condition with audio 
only was compared to humanlike body movements 
(dancing, nodding to music, etc.) and robot-specific 
behaviors (LED coloring) to see how they would each 
influence perceptions of the robot on anthropomorphism, 
animacy, likeability, and intelligence. Both behavior 
conditions were rated higher on all metrics than the 
motionless control, the humanlike body movements were 
rated the highest, even above a forth condition that 
combined both humanlike and robot-specific behaviors. 
Though the researchers acknowledge the value of robot-
specific cues in some situations, their findings generally 
showed a human preference for humanlike behaviors. 

Choi et al. [64] used mimicry to investigate the 
influence of body movements on a person’s framing of 
similarity and closeness. The experiment was unique as it 
used a telepresence robot with a human operator 
displayed on the screen but with the experimenters 
controlling the robot’s movement while interacting with 
participants. The participant and the operator engaged in 
a “get-to-know-you” exercise while the robot was 
controlled under one of three conditions: mimicking the 
partner’s body movements and orientations, random 
movements, or stationary. The results of a post-trial 
survey showed that participants felt the highest similarity 
to the operator in the mimicry condition, followed by the 
random and then stationary conditions. Though measures 
of closeness showed no significant results across the 
whole population, a gender effect was seen whereby 
women felt highest closeness to operator in the static 
condition, followed by the random and then the mimicry 
conditions, while men reported the exact opposite; feeling 
highest closeness with the mimicry condition. 

To better understand the effects of robot head 
movements on enjoyment, Wang et al. [65] invited 
participants to play with the human-like robot Nico in an 
open-ended manner. Nico interacted with them using four 
head-tracking modes: no tracking (static head), smooth 
movement tracking, fast tracking, and participant 
avoidance (looking away). Results showed that 
participants rated the highest enjoyment levels for the 
avoidance and fast-tracking modes, particularly those 
participants who did not have any prior robot experience. 
This finding was different than their hypothesis of 
preference for smooth tracking based on typical human-
human behavior, indicating that human-human realism 
may not always be the expected behavior during HRI. 

2.2.2   Emotion Recognition and Response 

Head and body movements have been tested in several 
different emotion recognition scenarios where both 
specific emotions - sadness, joy, anger, fear, surprise, 
disgust, happiness, curiosity, disappointment, and 
embarrassment – as well as more general rankings of 
valence and arousal have been explored. 

McColl and Nejat [66] explored the recognition of 
emotive robot body movements and postures using the 

human-like robot Brian 2.0. The robot displayed different 
human body language defined by Wallbott [67] and de 
Meijer [68]. For their study, participants were asked to 
identify the emotions of sadness, joy, anger, interest, fear, 
surprise, boredom, and happiness displayed by both the 
robot and a human actor. Comparable recognition rates 
were obtained for the emotions of joy, surprise, and 
interest, while a higher recognition rate was obtained for 
the robot for the emotion of sadness. The latter could be 
potentially due to the robot’s greater downward 
movement of the head during this display (i.e. 
exaggerated movement). 

Embgen et al. [69] investigated emotion recognition of 
robot head movements by creating head movement 
sequences derived from the analysis of head movements 
typically displayed by humans and animals. Using Daryl, 
the human-like robot, they designed movements for the 
emotions of anger, disgust, fear, happiness, curiosity, 
disappointment, embarrassment, sadness, and surprise. 
The head movements were augmented with an LED-lit 
chest that could change color to indicate different 
emotional intent. They found that users were able to 
recognize all intended emotions better than chance, and at 
high rates for curiosity, happiness, and fear. However, 
they did not differentiate between the effects of head 
movements and the LED display. 

Saerbeck and Bartneck [70] investigated arousal and 
valence recognition when varying the acceleration and 
movement curvature of the head of an iCat cat-like robot. 
They chose these two movement parameters as they had 
been shown in [71] to be the most influential towards 
perceived animacy and emotional expression. iCat 
performed a simple task of moving its head between two 
different objects using varying combinations of low, 
medium, and high acceleration and curvature. 
Participants were then asked about their perceptions of 
the robot’s arousal and valence with respect to the 
movements. Their findings showed that acceleration was 
correlated with perceived arousal, however, valence was 
not correlated to either acceleration or movement 
curvature. Moreover, all participants were surprise 
following the experiments by the variety of emotions the 
robot was able to accurately convey. 

Beck et al. [72] used the NAO robot to investigate if it 
was possible for people to interpret robot emotions 
displayed through body poses and head positioning that 
lacked facial expressions. Though they found that head 
positions had the highest effect on the recognition rate, 
they also demonstrated that humans can identify emotions 
(angry, sad, fear, pride, happy, excited) through robot 
postures better than chance. The authors repeated these 
experiments with children [73, 74] to observe the 
differences between adult and child perceptions of the 
robot. Children were able to recognize emotional intent 
with better-than-chance recognition rates; however, it was 
seen that the children were somewhat less successful than 
adults at interpreting emotion displayed through body 
postures. In another study presented in [75] using a 
similar experimental setup, the same authors found that 
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adult participants were even able to recognize postures 
generated algorithmically by blending (interpolating 
positions) between two different emotional poses (i.e. 
70% sadness and 30% fear). 

2.2.3   Task Performance 

Moshkina [76] investigated the effects of robot postures 
on compliance speed and effectiveness in emergency 
situations, i.e., evacuation. They had a NAO robot display 
negative mood through keeping its head down and 
periodically looking side to side, as though to check for 
danger while also expressing fear periodically by 
crouching low with its head down, covered by its hand. 
Evacuation commands were issued to human participants 
with three conditions: control (no expressions), negative 
mood (only the mood pose described), or both (periodic 
inclusion of fear to negative mood). The results found a 
similar decrease in participant compliance time and 
increase in evacuation distance for the ‘negative mood’ 
and ‘both’ conditions compared to the control condition. 
Presumably, this result is because the display of the 
robot’s negative body postures was also found to cause 
increased levels of nervousness in the participants, 
indicating an effective emotion contagion. 

In [77], body movements were used as warning signals 
in human-robot tasks to indicate confidence levels of the 
robot to the human. In the experiment, a NAO robot asked 
participants to pick a brick from a cup full of Lego bricks, 
however, would periodically knock the cup off the table, 
and participants would have to clean up the bricks before 
proceeding. Two conditions were used with this 
experiment: a control that made mistakes without warning 
and one where the robot’s mistake was preempted by its 
body movements indicating uncertainty in the task. 
Unsurprisingly, the uncertainty condition led to 
participants taking more preventative actions such as 
making a barrier or deliberate movements to catch the 
cup. In addition to improving scores of robot 
trustworthiness, understandability, and reliability, the 
uncertainty condition also led to tasks with significantly 
fewer errors and faster completion time. 

2.2.4   Summary of Body and Head Movements 

The use of robot body and head movements can influence 
the cognitive framing of robots across a number of 
different social metrics such as social engagement, 
intrigue, and social appeal [62], anthropomorphism, 
animacy, likeability, intelligence [63], and enjoyment 
[65]. Even with telepresence robots, cognitive framing 
can be influenced on similarity and closeness with respect 
to the person operating the robot [64]. 
 
Moreover, emotional displays through head and body 
movements tend to be recognizable by humans better 
than chance for specific emotions [66, 69, 72, 73] as well 
as for more general scales of valence and arousal [70]. 
This recognition success can even be extended to displays 

of algorithmically blended emotions created by 
interpolating between two unique sets of nonverbal 
behaviors [75]. In some cases, the use of this modality 
can lead to emotion contagion [76], causing a human to 
be nervous after a robot’s display of fear and negative 
mood [77]. 

2.3   Eye Gaze 

Eye gaze in human to human interaction is a behavior 
often used to convey interpersonal intent, exert 
dominance, socially bond, and even manipulate another 
person’s physiology [78, 79]. A robot’s use of 
appropriate eye gaze has the potential to support or 
accomplish numerous objectives in social interactions 
with humans. The papers surveyed herein explore how 
robot gaze influences human task performance within 
several different activities. 

2.3.1   Task Performance 

The impact of eye gaze on human performance has been 
explored across a variety of task types such as simple 
teaching tasks, map drawing tasks, guessing games, and 
object handover tasks. Task performance itself was been 
considered with respect to completion time, reaction time, 
and error rates. 

Breazeal et al. [80] created an interaction between the 
furry Leonardo (Leo) robot and a user engaged in a 
simple task in order to investigate how robot gaze affects 
task performance. Participants were asked to each teach 
Leo the locations of three buttons, verify that Leo knew 
the locations, instruct Leo to turn the buttons on, and 
confirm task completion. This sequence was performed 
with both the presence and absence of Leo’s gaze 
watching the participant and buttons, while measuring 
task completion time and errors. In the eye-gaze present 
condition, time to complete the task was reduced by 43% 
on average and the number of errors were cut in half 
when compared to the absent condition. Questionnaire 
results showed that participants also perceived Leo as 
more understandable, and that they were able to build a 
clearer mental model of the robot when it used eye gaze.  

Skantze, Hjalmarsson, and Oertel [81] also 
investigated gaze and task performance for a map 
drawing task.  The Furhat robot head was used to guide 
participants in drawing a map. The robot head augmented 
its verbal instructions with three different gaze 
conditions: gaze absent (covered robot face), consistent 
gaze at the relevant map location, and random gaze 
behavior at the user and non-relevant map locations. 
Participants completed the task faster and identified the 
robot as more helpful in the consistent gaze condition 
versus the absent or random gazes. The random condition 
was found to confuse participants and as such, had the 
slowest task completion times. 

Stanton and Stevens [82] also explored how robot gaze 
influences humans in task completion, in particular 
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looking at decision-making scenarios. Participants played 
a visual identification “shell game” of increasing 
difficulty (where they must find a marker hidden beneath 
one of three moving shells) with a NAO robot acting as a 
helpful team member. Experimental conditions that were 
tested with the robot consisted of maintaining gaze at the 
game or looking at the participant during the answer 
period. They found that the robot’s gaze towards the 
participant had a positive effect on trust for the difficult 
game scenarios when the user required more help from 
the robot, but a negative impact on trust for easier 
scenarios. This, coupled with participants responding 
faster when the robot gazed at them, led the authors to 
postulate that robot gaze was introducing a sort of “social 
pressure” on the participants.  

Lastly, Moon et al. [83] conducted experiments to 
investigate the effects of gaze cues on human-to-robot 
object handover tasks. With a PR2 robot, they created 
three gaze conditions: no gaze (looking away), gaze at the 
shared handover location, and alternating gaze between 
handover and the participant’s face. They recorded 
influence on both handover time and participant 
preference of the three states. While both gaze conditions 
improved the handover time over the no gaze condition, 
gaze at the shared handover location led to the fastest 
time. However, participants reported that they preferred 
the alternating gaze condition the most as the robot made 
eye contact with them. Zheng et al. [84] extended this 
experiment further and, in addition to confirming the 
handover time improvements through the use of gaze, 
also found that the use of robot gaze influenced the 
participant’s gaze direction to be towards the handover 
location. This potentially explains the increased handover 
speed as the participant’s gaze was focused on the 
handover location and presumably, the task at hand.  

2.3.2   Summary of Eye Gaze 

The presence of task-appropriate robot gaze can lead to 
user performance improvements across several different 
tasks [80–84]. Robot gaze behaviors have been shown to 
contribute positively robot understandability and lead to 
reductions in task completion time and errors [80]. 
Another study showed coverbal gaze instruction to 
improve robot helpfulness and lead to reductions in task 
completion time [81]. Gaze has been shown to be an 
effective primer in handover tasks, influencing users to 
match the robot’s gaze [84] and reducing completion time 
[83]. In difficult tasks involving human uncertainty, robot 
gaze was found to have a positive influence on trust in the 
robot as a collaborator [82]. However, caution will need 
to be taken when designing robot gaze behaviors as they 
could have the potential to introduce negative influences 
such as social pressure [82]. 

2.4   Facial Expressions 

There is a well-explored theory that facial expressions 
evolved from ancestral reflexes and are therefore 
universally understood in human interactions [85]. 
Research has also shown high effectiveness of the face in 
communicating emotional intent [86] and affect [87] 
among people. This universality and efficacy of 
communication motivates the exploration of how robotic 
facial expressions influence humans. Herein, how robot 
facial expressions influence people will be investigated 
with respect to cognitive framing, emotion recognition 
and response, behavioral response, and task performance. 

2.4.1   Cognitive Framing 

Facial expression research has investigated ways in which 
a robot’s face can influence numerous concepts such as 
empathy, likeability, perceived intelligence, acceptance, 
perceived enjoyment, friendship, companionship, 
alliance, happiness, deception, and contextual fit. 

To explore how facial expressions influence the 
perception of a robot, Gonsior et al. [88] developed the 
EDDIE robot head to play a guessing game with 
participants, attempting to determine which fictional 
character the participants were pretending to be. The 
robot generated facial expressions that were a 
combination of anthropomorphic and zoomorphic facial 
features and were displayed under three conditions: 
neutral (no facial expressions); mirroring participant 
facial expressions; and socially motivated expressions 
developed in reaction to the participant’s facial 
expressions. Results showed that for both the mirroring 
and social motivation conditions, participants rated user 
acceptance, likeability, and perceived intelligence 
significantly higher than the neutral condition. In 
particular, perception of the robot on sub-concepts of 
empathy, subjective performance, and perceived 
enjoyment showed an almost 50% improvement in scores 
between the neutral and social motivation conditions. 
However, regarding perceived safety, the introduction of 
facial expressions actually lowered participant scores. 

Leite et al. [89] investigated human perception of 
facial expressions with the iCat robot watching and 
reacting to two participants playing a chess game. The 
robot was assigned to be aligned with one player while 
opposing the other. After each chess move, the robot 
would attempt to display empathy through verbal 
utterances and facial expressions in support of one player 
while showing opposition towards the other. These were 
either in the form of “rewards” or “punishment” and each 
varied along a scale of weaker, expected, stronger, and 
unexpected. Those who received supportive comments 
and facial expressions rated the robot higher on 
friendship, companionship, alliance, and self-validation 
(participant reassurance), while those receiving opposing 
behaviors scored each of these significantly lower, 
however, in interviews mentioned that they still valued 
the robot’s feedback. 
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Endrass et al. [90] explored the use of facial 
expressions in lying and deception by trying to show 
different types of happiness (those indicative of 
deception) with the Alice doll-like robot. Alice was 
programmed with seven different smile types including 
with or without squinting eyes, three intensities of 
asymmetric mouth, blended with anger, and blended with 
surprise. All but one (smile without squinting eyes) were 
hypothesized to be “deceptive” smiles, indicative of 
human lying and anticipated to have lower happiness 
scores. Participants were asked to watch videos of Alice’s 
different smiles and comment on Alice’s perceived 
happiness. Compared to the smile without squinting eyes, 
a reduction in happiness (hypothesized to be aligned with 
deceptive smiles) was perceived with smiles that involved 
changes of the mouth, however, not with smiles that only 
involved changes with the eyes. This finding indicated 
that, at least for determining the robot’s happiness levels, 
participants focused more on the mouth region than the 
eyes. 

Hegel et al. [91] used the anthropomorphic robot 
BARTHOC Jr, to investigate a robot’s ability to 
recognize human emotion and react appropriately to it. 
Participants were asked to read a short children’s story, 
and, at each section, the robot would use the participant’s 
vocal intonation to determine the emotional content of the 
situation. The robot would either respond with facial 
expressions (happy, fear, anger, disgust, surprise, sad) or 
use a simple nod to acknowledge the end of a section. 
Participants generally perceived the expressive robot as 
having both greater “emotional recognition” and 
“situational fit” with the story, particularly in sections of 
the story associated with sadness. 

2.4.2   Emotion Recognition and Response 

With regards to human recognition of robot emotions, 
several studies have been performed where participants 
were asked to identify facial expressions associated with 
the six primary emotions of happiness, sadness, anger, 
fear, disgust, and surprise.  

Berns and Hirth [92] investigated the recognizability 
of emotions via facial expressions using the expressive 
robot head, ROMAN. They created facial displays for the 
six primary emotions using a combination of arousal, 
valence, and stance. These robot expressions were 
presented to participants through pictures and a video, 
and they were asked to identify the intended emotion of 
the robot. The medium of presentation did not affect the 
identification rates and it was found that the participants 
were able to recognize anger, happiness, sadness, and 
surprise better than chance, however, were not able to do 
so with fear or disgust. 

Kobayashi et al. [93] developed a human-like robotic 
face, Face Robot Mk II, that used electrical shape 
memory alloy actuators to display a variety of facial 
expressions to be recognized. Through actuation of the 
lips, nose, cheeks, brow, and chin, they created 
expressions for the six primary emotions. They showed 

images and a video of the robot expressing these 
emotions to participants and asked them to identify each. 
Results were again similar for both image and video 
format, and showed 100% recognition for happiness and 
sadness, greater than 90% recognition for anger and 
disgust, and greater than 80% recognition for surprise and 
fear. 

Allison, Nejat, and Kao [94] tested emotion 
recognition with the human-like Brian robot, that 
generated facial expressions using a unique muscle-based 
facial actuation system.  Participants were shown the 
robot in-person and asked to identify the emotional intent 
behind its different facial expressions while it was 
displaying all six primary emotions. In preliminary 
experiments, they were able to show that a group of 
participants had a 100% recognition rate for the emotions 
of happy, sad, surprise, and fear, and 80% for angry and 
disgust. 

In [95], Cameron et al. studied the influence of life-
like affective facial expressions on children’s emotional 
behavior with the Zeno R50 humanoid robot.  They 
presented Zeno to children during a brief game-playing 
interaction and recorded their proximity to the robot, 
facial expressions, and speech. Two conditions of Zeno 
were presented to either interact with or without the use 
of contextually appropriate positive and negative facial 
expressions at different points in the game. Their findings 
showed that male participants showed a positive affective 
response and indicated greater liking towards the robot in 
the facially expressive condition. However, female 
participants showed no significant difference between the 
two conditions. 

2.4.3   Behavioral Response 

When investigating engagement, Gordon and Breazeal 
[96] used the toy-like robot DragonBot to test and 
optimize the facial expressions that would sustain human 
engagement. The experiment was conducted in a large, 
crowded festival environment, and the robot was tasked 
with the goal of keeping as many people as possible in its 
close field of view for as long as possible. They 
programmed nine different facial expressions (associated 
with concepts like ‘Yes’, ‘I Like It’, ‘Sad’, ‘Shy’, and 
‘Think’) for the robot to optimize, and after only two 
hours of interactions, the robot was able to identify that 
the ‘Sad’ expression was the best for keeping users 
engaged. On average, people would stay with the robot 
for 30 seconds following a ‘Sad’ expression, compared to 
less than 15 seconds for most others. The authors 
hypothesized that the robot’s “infant-like face with big 
sad eyes” in the ‘Sad’ expression was able to influence 
human behavior based on findings from prior research 
that showed human preference towards animals who 
exhibited more child-like facial expressions [97]. 

In Chevalier et al. [98] the Zeno small humanlike robot 
was designed to facilitate a game with children, where the 
two take turns mimicking each other’s facial expressions. 
A usability study with children was conducted. Even 
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though the study only had a small number of participants, 
it was observed that the children were engaged in 
interacting with Zeno and willing to play the imitation 
game, while frequently attempting to mimic the robot’s 
facial expressions. 

Another study [99] looked at imitation and mimicry 
with autistic children and Mina, a young-looking 
humanlike robot. Mina was developed to recognize and 
mimic facial expressions with a fuzzy finite state machine 
which classifies facial expressions into one of eight 
possible facial expressions. A pilot study introduced Mina 
to autistic children, ages 3 to 7 years old, and found that, 
when asked to interact in an imitation scenario, 78% of 
participants engaged with and mimicked the robot. 

2.4.4   Task Performance 

Reyes, Meza, and Pineda [100] explored the impact of 
negative robot facial expressions on collaborative task 
performance. Using the Golem-III human-like robot, a 
simple human-robot collaboration task was created, 
where the robot and a participant needed to place ten 
objects in a container. The robot was designed to fail for 
some of the tasks. The experiments consisted of the robot 
either displaying a neutral face, or happiness when 
succeeding, and sadness if there was a failure in the task. 
During the task, it was observed how robot displays of 
sadness during failures would affect performance 
recovery. They found the robot’s negative feedback 
during failures helped to regulate the task by 
communicating a request for human intervention, thus 
improving task continuity by getting the task back-on-
track in faster time. 

In [101], the BERT2 upper-torso humanoid robot was 
used to provide facial expression feedback around 
mistakes in a collaborative omelet cooking task. In this 
within-subjects study, participants were instructed to cook 
an omelet with all of three robot conditions: non-
communicative and most efficient, non-communicative 
but makes mistakes, or facially expressive and makes 
mistakes. Although the first condition had the fewest 
mistakes and the fastest task completion time, the 
expressive condition had the highest satisfaction ratings 
by the participants and rated the lowest on frustration and 
temporal demand. This suggests that in human-robot task 
collaboration, efficiency may not always be the most 
important consideration for users. 

Another study by Cohen et al. [102] investigated the 
use of positive facial expressions on a robot during a 
cooperative, human-robot task. Trials were conducted 
using individuals with schizophrenia as well as a control 
group without schizophrenia. Using the iCub childlike 
robot, participants performed a simple mirroring task of 
following the robot’s hand motion as closely as possible. 
As the participant achieved greater synchrony, the robot 
provided positive feedback through one of three 
conditions: vocal only, vocal with a mounted tablet 
displaying a “+” sign, or vocal with the robot displaying a 
smiling face. Findings showed that, compared to the vocal 

only and “+” conditions, the smiling face condition had a 
faciliatory effect on synchrony for the control group but 
not for the schizophrenic population. 

2.4.5   Summary of Facial Expressions 

Robot facial expressions can influence user cognitive 
framing on a number of concepts such as acceptance, 
likeability, perceived intelligence [88], friendship, 
companionship, alliance, self-validation [89], emotion 
recognition, and situational fit [91]. Different types of 
robot smiles can also be interpreted by people as a robot’s 
varying levels of happiness, and sometimes indicate a 
robot lying or being deceptive [90]. 

Emotions have been shown to be successfully 
recognized by participants when using robot facial 
expressions, particularly the six primary emotions of 
happy, sad, angry, fear, disgust, and surprise [92–94]. 
They can also be used to effectively communicate positive 
or negative valence [95]. 

Regarding behavioral responses, robot facial 
expressions can encourage engagement with and mimicry 
of a robot by normally-developing children [98] and those 
with autism [99]. Specific facial expressions, such as 
sadness, can increase user engagement with a robot [96], 
likely due to large-eyed, paedomorphic features [97]. 

In task-based scenarios, robot facial expressions have 
been shown to quickly communicate failure and the need 
for help, improving completion time [100]. In some cases, 
an expressive robot that provides facial expression 
feedback around failures is even preferred to a non-
expressive robot that operates flawlessly [101]. However, 
caution should be taken with using facial expressions in 
all situations as some have also been shown to lower 
perceived safety [88], potentially due to the more dynamic 
nature of the robot. 

3   Proxemics  

Proxemics pertains to the perception and use of space as 
it relates to communication, namely, the conscious or 
unconscious setting of distances between various objects, 
agents, and oneself [103]. Social distances or “personal 
space” in human interactions have been categorized by 
Hall [23] into four proxemic zones: public (greater than 
12 feet); social (4-12 feet); personal (1.5-4 feet); and 
intimate (0-1.5 feet). These zones are relevant for 
communicating specific meaning between two 
individuals in both social distance and social transit, 
which will be discussed in this section to determine how 
proxemic nonverbal communication affects human 
performance and cognitive framing of a robot. 
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3.1   Social Distance 

Social distance and orientation between people can 
contribute to comfort levels, affiliation, and intimacy 
[104], as well as more functional outcomes such as 
listening comprehension [105]. In the robotics 
community, the proxemic framework established by Hall 
[23] is typically used to investigate approach distance – 
the distance a human stops or requests for a robot to stop 
from each other. This section will investigate how this 
distance influences humans’ cognitive framing of robots 
and outcomes in task performance. 

3.1.1   Cognitive Framing 

Variables such as comfort level, competence, 
anthropomorphism, engagement, and likeability have all 
been explored as cognitive frames influenced by 
proxemic distance in HRI as will be discussed below. 

In [106], Walters et al. explored comfortable approach 
distances from both a robot approach perspective and a 
human approach perspective using the PeopleBot 
telepresence robot. They found that the majority of 
participants (60%) were comfortable approaching or 
being approached up to a social distance of 4-12 feet, 
which is compatible with human–human interaction 
distances, however, a large minority (40%) actually 
approached the robot up to a distance that would be 
synonymous with intimate or threatening behavior, i.e., < 
1.5 feet. They also found that human personality traits 
such as timidity and nervousness increased comfortable 
approach distance whereas traits like proactiveness 
decreased comfortable approach distance. In subsequent 
work presented in [107], Walters et al. performed long-
term studies with the PeopleBot robot to investigate 
changing proxemic effects over time using an 
Autonomous Proxemic System that measured human-
robot proxemics and controlled approach distance. As 
participants in a simulated household environment 
interacted with the robot over a five-week period and 
became more experienced with the robot, they decreased 
their social distance to the robot and became more 
comfortable with the robot. However, this change 
typically happened within the first two weeks, after which 
their approach remained relatively consistent at the 
aforementioned social distances for the remainder of the 
five weeks. 

To investigate perceived safety levels associated with 
distance and velocity, Shi et al. [108] used a Segway 
robotic platform to approach participants under different 
motion conditions. Participants stood still while the robot 
approached them at either a slow or fast velocity (2.0m/s 
or 4.5m/s) and to a distance of either 0.5m (intimate) or 
1m (personal). Participants were asked whether they felt 
safe, slightly unsafe, unsafe, or very unsafe. The distance 
itself did not affect the participants, however, for the fast 
velocity condition, participants’ average response was 
that they felt slightly unsafe and some participants even 
moved away from the robot’s path as it approached them. 

In [109, 110], Mead and Mataric explored the impact 
of robot task performance on frames of the robot’s 
competence, anthropomorphism, engagement, and 
likeability. Using either voice or pointing gestures, 
participants commanded the “Bandit” human-like robot 
to look at different objects in the room. The robot would 
then indicate whether it understood the command. For 
each scenario, the robot’s performance was artificially 
attenuated by introducing intentional errors correlated to 
the distance of the robot from the person. This distance 
was varied between trials to provide a distribution of 
errors determined by the minimum and maximum 
probability of robot recognition. The aggregate of these 
trials dictated a minimum and maximum performance 
level (which also resulted in an average performance 
level). Robot competence, anthropomorphism, and 
engagement were all found to be correlated to the 
minimum and average performance levels, however not 
correlated to the maximum performance level. Likeability 
was significantly correlated to all three levels (min, max, 
avg.). This suggests that, influence on human framing of 
robot competence, anthropomorphism, and engagement, 
should focus on average robot performance across many 
interactions as opposed to maximum performance across 
a few interactions. 

3.1.2   Task Performance 

The influence of social distance on task performance was 
investigated in [111] by Koay et al. for performing a 
basic object handover task with a seated participant. The 
Care-O-bot robot approached a participant and stopped to 
deliver an object at four distinct positions with respect to 
the participant: front or side close (0.5m - intimate), or 
front or side far (1m - social). Their findings showed 
participants preferred to be approached from the front 
versus the side, however, more significantly at a close 
distance versus far, largely due to a justification of 
practicality. In particular, the closer distance may have 
been preferred due to considerations of arm length or 
dexterity in object handoff from the robot. 

Kim and Mutlu [112] investigated the effect of social 
distance and role on task performance and participant 
enjoyment in two different tasks using the Wakamaru 
robot. In the first study, participants were to collaborate 
on a memory game with a robot taking a subordinate or 
superior role at either a close (46cm) or distant (120cm) 
proxemic distance. In the second study, participants 
played a game of chess either collaborating or competing 
with a robot again at either the close or distant proxemic 
distance. Task performance was reported as a more 
positive experience by participants when the robot was 
close in the supervisor and competitor roles, and when the 
robot was distant in the subordinate and collaborator roles.  

Papadopoulos et al. [113] investigated the effects of 
proxemic position on engagement and collaboration in a 
memory task. The upper-torso of a NAO robot was 
positioned at a table and provided support to participants 
in a memory game. The robot was programmed to have 
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either helpful or neutral speech behavior and was either 
placed in a frontal or lateral position relative to the 
participant. Their results showed that participants were 
more engaged and had higher preferences for the robot in 
the frontal versus lateral position, and the helpful versus 
neutral behavior.  

In [114], the effects of social distance were tested on 
the performance of a human’s willingness to donate 
money to the Mobile Dexterous Social (MDS) humanoid-
torso robot. The MDS robot attempted to solicit donations 
from participants at either a ‘close’ (2.5 feet) or ‘normal’ 
(5 feet) distance. Though distance alone was not found to 
have any significant influence on donation size, they did 
find that male participants gave more in the ‘close’ 
condition versus the ‘normal’ condition, while female 
participants gave more in the ‘normal’ condition 
compared to the ‘close’ condition. It is worth noting that 
the MDS robot presented itself as female for these trials. 

3.1.3   Summary of Social Distance 

In general, comfortable approach distances between 
humans and robots are similar to those seen in human-to-
human interactions [106, 111], though many individuals 
approached robots closer than a typical human to human 
approach, inside of the ‘intimate space’ [106]. Long-term 
studies [107] showed reductions in comfortable robot 
approach distance over time, however, a steady state was 
reached after only a few interactions. It is unclear if this 
effect was due to the participants becoming more 
comfortable with robots in general or to the specific 
robots they interacted with.  

With respect to both distance and velocity, velocity 
was shown to have a greater influence on perceived 
safety, with higher velocities making participants feel 
unsafe, whereas distance did not have an influence on 
safety [108].  

Robot task completion played an important role in 
determining appropriate approach distances and directions 
to ensure the robot could function correctly [111]. 
Furthermore, different tasks and social roles seem to 
dictate user preferences for a robot’s proxemic distancing. 
In game tasks, robots in supervisor and competitor roles 
should be closer to the user, while robots in subordinate or 
cooperator roles should have more distance [112]. Users 
also prefer robots in a frontal versus lateral position when 
collaborating on memory tasks. Finally, regarding 
donation solicitation, men were more willing to give more 
money when a robot asked at a ‘close’ distance whereas 
women were more willing to give to a robot at a ‘normal’ 
social distance [114]. 

3.2   Social Transit 

Transit behaviors such as passing and following are 
important to consider, to maximize safety and comfort 
when people are sharing environments with moving 
robots  [30]. This section investigates how different 

factors such as distance, speed, stopping, and path can 
influence a person’s cognitive framing of a robot as it is 
traveling near a person. 

3.2.1   Cognitive Framing 

The cognitive frames of comfort, politeness, trust, 
naturalness, and human-likeness are explored herein in 
different scenarios where robots are passing, 
approaching, and following people. 

Pacchierotti, Christensen, and Jensfelt [115] 
investigated a person’s comfort with respect to the 
PeopleBot passing him/her in a confined space such as a 
hallway. A person and robot were placed on a collision 
trajectory and then the lateral distance between the two 
was introduced in three conditions – 0.2m, 0.3m, and 
0.4m (all within an intimate zone) – as the robot changed 
its course and passed the person. Participants stated that 
they were uncomfortable with the robot entering their 
intimate space during passing and understandably were 
more uncomfortable for closer passing distances. 
However, when a second set of trials was conducted with 
the same participants, comfort levels for all distances 
increased, indicating a growing trust. Even though 
participants were uncomfortable with the robot entering 
their intimate space, when asked, they also felt it was 
unnecessary to take more significant avoidance actions 
than were used by the robot. 

In another exploration of comfort in proxemic 
interactions, Butler and Agah [116] ran experiments with 
a Nomadic Scout II small cylinder robot. Participants 
interacted with the robot in an approach scenario and a 
passing scenario. The approach scenario had three 
conditions of either slowing the robot’s velocity, 
increasing its velocity, or turning slightly. The passing 
scenario occurred when the robot came near the 
participant and it would choose to either stop and adjust 
course before continuing or make subtle adjustments to 
avoid the participant while moving. In the approach 
scenario, participants were least comfortable with the 
velocity increase but had similar responses to the slow 
and turn conditions. In the passing scenario, participants 
were more comfortable with the adjustment condition 
over the stopping condition. While not explored further in 
the paper, the stop behavior seemed to lower comfort 
levels, potentially due to the communication of 
something bad that warranted stopping. 

Tsui, Desai, and Yanco [117] explored robot passing 
behaviors with respect to  politeness and trust of the 
robot. They used different robots in the trials: a small 
mobile Kyosho Blizzard, a larger mobile ATRV-Jr, and a 
robotic powered wheelchair with a rider present. Four 
passing behaviors were considered: stopping, slowing 
down, maintaining velocity, or speeding up. Participants 
watched videos of the different robots and behaviors. 
With regards to robot type, participants trusted the 
wheelchair the most, however, the Blizzard robot was 
perceived as behaving the most appropriate. Regarding 
passing behaviors, participants stated that the most polite 
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and trustworthy behavior was the stopping, followed 
closely by the slowing down. The authors believed that 
this was due to the increased reaction times afforded by 
these behaviors in case of unexpected behavior. That 
said, when questioned about how they believed the robot 
should behave, participants responded that a robot should 
move in the same way as humans: constant speed for 
passing unless there is a reason to slow or stop. 

To investigate natural and human-like behavior of 
robots during following , Gockley et al. [118] used the 
Grace cylindrical mobile robot to follow participants 
using two different methods. In the direction-following 
method, the robot attempted to drive towards the current 
location of the person whom it was following, whereas, in 
the path-following method, the robot tried to follow the 
original path of the person as closely as possible. It was 
observed that all participants generally considered the 
direction following approach more natural and human-
like. 

3.2.2   Summary of Social Transit 

Social transit research has shown that users can be 
uncomfortable with robot passing behaviors that enter 
their intimate space [115], however, they became more 
comfortable with repeated interactions [115]. Higher 
velocities can understandably lead to higher levels of 
discomfort [116], however, unexpectedly, stopping 
during passing was found to have conflicting findings. 
One study found that a robot stop behavior during passing 
led to human perceptions of politeness and 
trustworthiness [117], although in the same study 
participants stated that they expected robots to navigate 
and pass them in the same manner as a person would 
(without stopping). In another study, stopping during 
passing actually lowered comfort levels, potentially 
because it signaled something was wrong [116].  

In scenarios where a robot is following a person, the 
more natural and human-like approach is for the robot to 
drive towards the person’s current location, rather than 
exactly follow their previous path [118].  

4   Haptics 

Haptics was long considered to be intrinsically tied to 
proxemics [119], however, it began to have its own 
importance as the “earliest and most elemental mode of 
communication” that deals with how touch communicates 
signals from the outside world to people through the skin 
[24]. In 1965, Austin coined the term Haptic 
Communication as the study of patterns of 
communication with respect to tactile interactions [120]. 
Haptic communication in HRI is still an emerging field, 
where safe robot tactile behaviors such as hand shaking, 
and gentle touching have been investigated, and 
specifically how these types of interactions influence 
people. Herein, we examine how robot touch plays a role 

in cognitive framing, emotional recognition, and task 
performance. 

4.1   Cognitive Framing 

The influence of robot touch has been investigated with 
respect to enjoyability, necessity, human or machine-
likeness, and dependability, as identified in the papers 
described below.  

To investigate the influence of robot touch in a care 
environment, Chen et al. [121] had participants lay in a 
simulated hospital bed where Cody, the mobile 
manipulator robot, would interact with them. Though 
their experimental procedure kept the robot motion and 
touch gesture consistent throughout all interactions, the 
robot would implement the touch either with or without a 
verbal warning, or an explanation of why the robot was 
touching the participant, namely, whether the touch was 
functional or affective. Participants found that the 
enjoyability and deemed necessity of the touch were both 
higher when accompanied with a functional explanation 
compared to an affective explanation, though for both 
explanations, participants responded that they would 
allow the robot to touch them again. Surprisingly, when 
comparing a warning versus no warning before the touch, 
participants were more favorable of touch without a 
verbal warning. This highlights the importance of how a 
behavior is contextually framed, in this case with respect 
to warning and explanation. 

Robot touch was also investigated by Cramer et al. in 
[122]. Videos of the humanoid Robosapien helping a user 
having computer problems were shown to participants. 
Four different interaction conditions were shown, where 
the robot talked through the problem with the user by 
varying both its touch (present or absent) and 
proactiveness (offer help or wait to be asked). The 
participants ranked the robot with respect to human-
likeness, machine-likeness, and dependability. The results 
showed that the proactive robot was identified as less 
machine-like when touch complemented its behaviors. 
The reactive robot, on the other hand, was identified as 
less dependable when its behavior also involved touch. 
Participants who had a positive attitude towards robots, 
also perceived the robot as more human-like when it 
touched the user. These experiments show that while 
touch can be effective in perceiving robots as more 
human-like, the overall robot behavior and general 
attitudes towards robots of the users need to also be 
considered. 

Fukuda et al. [123] explored the effect of touch in an 
ultimatum game to see how a robot touching a person 
would influence their feelings about the robot. Using a 
Robovie-mR2 upper-torso humanoid robot, participants 
were offered unfair proposals with one of two potential 
conditions: a touch condition, where the robot touched 
the participant’s arm, or a no touch condition. Measuring 
Medial Frontal Negativity (MFN) through EEG, results 
showed that the no touch condition led to higher MFN 
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amplitudes, suggesting that a robot’s touch may inhibit 
the negativity and sense of unfairness experienced by 
participants towards a robot acting unfairly. 

The enjoyment and happiness of individuals receiving 
a head massage was explored by Walker and Bartneck in 
[124]. Observing participant facial expressions and 
issuing participant surveys on enjoyment, a within-
subjects experiment exposed participants to three 
conditions: participants massaging their own head (self), 
participants receiving a massage from another person 
(human), and participants receiving a massage from a 
NAO humanoid robot (robot). The mean rating of 
pleasure (out of 5) on a Likert survey was highest for the 
human condition (4.1), over the self (3.7) and robot (3.5) 
conditions. However, a video analysis counting 
participant facial expressions showed that expressions of 
happiness were highest for the robot condition (average 
3.5 per participant) over the human (2.3) and self (1.1) 
conditions.  

Willemse, Toet, and van Erp [125] investigated 
whether robot-initiated social touch could induce people 
physiologically, perceptually, and behaviorally. 
Participants were invited to watch a scary movie with a 
robot that spoke soothing words to them in the control 
condition and, in the touch condition, the words were 
accompanied by a touch on the shoulder. Though they 
measured and hypothesized participant changes in 
physiological (heartrate, galvanic skin response, 
respiration), perceptual (attitude towards robot, social 
relationship, robot appearance), and behavioral 
(willingness to donate), no significant differences were 
seen between the touch and control conditions.  

4.2   Emotional Recognition and Response 

Yohanan and MacLean [126] developed a robotic, pet-
like “Haptic Creature” with the ability to create haptic 
affective expressions when being held by a user. While 
touching the robot, it could simulate haptic effects of 
breathing movement, purring vibration, warmth, and 
varying ear stiffness. Wearing earmuffs to block out any 
sounds from the robot, participants had the robot placed 
in their laps whereupon it would present one of nine 
haptic behaviors aligning to the nine “key expressions” 
(e.g. excited, distressed, relaxed, and depressed) defined 
along the arousal and valence dimensions of the 
circumplex model [127]. Participants had to determine 
both the robot’s intended key expression (provided to 
them in a list) as well as indicate the arousal and valence 
levels of the robot. Results showed that they were able to 
correctly recognize between 17-52% of the nine possible 
expressions, having greater success with “distressed” and 
“pleased.” Participants were also successful at identifying 
the arousal levels of the key expressions. However, 
participant categorization of valence into negative, 
neutral, or positive was generally unsuccessful. In a 
similar study presented in [128], the authors tested 
breathing more explicitly and found that the robot’s 

breathing motion was noticed by participants, however, 
the affective intent (arousal and valence) of the breathing 
was not generally understood. 

The calming effects of the aforementioned “Haptic 
Creature” were investigated in [129]. Participants held the 
robot in their laps and were instructed to stoke the robot 
while the robot was either inactive or providing simulated 
breathing through vibratory haptic feedback. The results 
showed that heart and respiration rates – metrics for 
calmness – significantly decreased for the participants 
with the breathing robot compared to the non-breathing 
robot.  

Another study [130] investigated the recognizability of 
emotional arousal by varying the breathing speed of a 
robot using vibration. A small, stuffed toy bear robot was 
used with vibration motors and a small air bladder which 
simulated the effects of breathing over six different speeds 
from none (0 per minute) to very fast (56-60 per minute). 
Participants were asked about the robot’s conveyance of 
the emotions “lively” and “pleasant”, and it was found 
that higher speeds of breathing corelated to a higher 
“lively” rating, however, “pleasant” did not correlate to 
breathing speed. A later study [131] with the same robot 
investigated how participants perceived the “pleasantness” 
and “stimulation” of a photo while holding the breathing 
robot. They found that while different conditions of robot 
breathing did not influence “pleasantness”, they were 
more stimulated by the photographs when the robot was 
breathing versus not breathing. They were also more 
stimulated by a fast-breathing robot when viewing “high 
arousal – pleasure” photos and more stimulated by a slow-
breathing robot when viewing “low arousal – pleasure” 
photos. 

Further investigation on haptic breathing feedback was 
presented in [132] where the premise that irregular 
breathing correlates with low valence (negative emotions) 
was investigated. Using the small, fur-covered, animal-
like FlexiBit robot, breathing conditions were generated 
of different variability and complexity. Experiments with 
10 participants showed correlation was discovered 
between irregular breathing patterns and low participant 
ratings of the robot’s valence. However, qualitative 
discussions with participants uncovered rich narratives 
beyond the above finding about the breathing and valence 
of the robot, indicating a complex relationship between 
haptic breathing and participant perceptions of robot 
affect. 

4.3   Task Performance 

Nakagawa et al. [133] investigated the effect of touch by 
a robot on human motivation. In particular, the human-
like Robovie-mR2 was used to encourage participants to 
complete a monotonous task of dragging digital shapes to 
different regions of a screen. The robot interacted with 
the participants through one of three different touch 
conditions: no touch, passive touch (robot requests to be 
touched), and active touch (unsolicited robot touch of the 
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participant). The active touch scenario nearly doubled 
both the number of actions taken by the participants and 
their working time compared to the passive scenario. The 
researchers acknowledged the ethical issues that might 
arise around robot touch potentially being used for “bad” 
purposes in persuasive scenarios that may change human 
behaviors. 

The above experiment was repeated in [134] with the 
same robot and same conditions, however, expanded upon 
the data collected. In addition to seeing a repeat in the 
nearly doubling of the number of actions taken and 
working time for the active touch scenario compared to 
the passive and no touch scenarios, information was also 
collected about accuracy and timing of tasks. Between the 
three conditions, no significant difference in task accuracy 
or task completion time was observed. This suggests that 
while touch may be an effective motivator to work harder 
and longer, it does not necessarily improve the quality or 
efficiency of task performance. 

In [114], the effects of robot touch were investigated 
with respect to a person’s willingness to donate money to 
the MDS robot. The MDS robot attempted to encourage 
participants to donate to charity at a museum setting using 
either the presence or absence of offering a handshake 
during the interaction and by varying its voice between 
male and female. Results showed that participants donated 
more in the no-handshake condition when the robot was 
of the opposite sex to the participant, and that they 
donated more in the handshake condition for same sex 
human-robot pairings. 

4.4   Summary of Haptic Communication 

Haptic communication from even simple touch actions 
from a robot to a human have been shown to help 
improve cognitive framing of robots with respect to 
enjoyability [121], positive attitude towards robots, 
human-likeness [122], pleasantness, and stimulation [130, 
131]. In situations where a robot treated a person unfairly, 
touch was shown to inhibit feelings of negativity towards 
the robot [123]. A robot was also shown to be suitable for 
giving a user a head massage, and actually led to the 
highest levels of user happiness [124]. 

Preliminary work has been done to investigate the 
recognition of emotions through a robot’s touch [126, 
128], though success rates as high as other communication 
modes have not been achieved. That said, a robot’s 
irregular breathing patterns have been shown to 
successfully communicate negative valence to users 
through haptic interaction [132]. Regardless of an 
individual’s ability to recognize a robot’s haptic emotion, 
a robot’s simulated haptic breathing has led to increased 
calmness in users when holding the robot [129]. 

Though the examples above highlight preliminary 
findings on haptic communication, further investigation is 
needed to explore the nuances and intricacies of 
communication using robotic touch and its influence on 
people during HRI [32, 135]. 

5   Chronemics  

The study of chronemics is defined as studying the 
“nonverbal communication code system concerned with 
human time-experiencing” [136]. This important research 
field uncovers the tempo of human interaction and the 
pace at which we expect communication to occur [25]. 
Within nonverbal HRI, chronemics has been referenced 
as a crucial factor in communication [137, 138], however, 
its study, and specifically how a robot’s nonverbal timing 
influences humans, has been limited. Granted, some 
aspects of chronemics such as biological time or cultural 
time are currently not relevant to robotics, however to-
date, only the study of hesitation in robot action and how 
it influences people’s cognitive framing of robots has 
been explored. 

5.1   Cognitive Framing 

Moon et al. [139, 140]  investigated how robot hesitation 
gestures should be used in collaborative tasks to ensure 
transparency to a user with limited robotic experience. 
Hesitation gestures are used by people to convey 
uncertainty [141] and the researchers hoped to explore 
this phenomenon in HRI.  They designed a study that 
created human-like hesitation gestures for a CRS A460 
industrial robot arm and conducted experiments with 
human-human and human-robot resource conflict 
scenarios over grabbing an object. Videos of these two 
scenarios were shown to participants. The participants 
acknowledged that the intent of the robot gestures could 
be recognized equivalently to the human gestures, even 
when only hesitations using the wrist (and not full arm) 
were used, as well as for more complex movements 
involving the entire arm.  

In [142], the same authors made updates to the robot 
motion controller to include an Acceleration-based 
Hesitation Profile (AHP) that more accurately modeled 
the motion profile of hesitation gestures performed by 
humans. This condition was tested alongside the original, 
immediate-stop hesitation profile and a “blind response” 
that ignored the resource conflict and continued reaching 
for the resource. Participants again watched videos and 
participated in physical experiments with the robot. 
Though participants were able to distinguish between the 
AHP and immediate-stop motion profiles and 
acceleration rates, there was little evidence to indicate 
that the different profile types contributed to a dissimilar 
cognitive framing of the robot or task completion time. 
However, both hesitation profiles when compared to the 
“blind” condition showed similarly significant 
improvements with respect to safety, animacy, likeability, 
and anthropomorphism, as well as a substantial reduction 
(roughly 50%) in perception of the robot’s dominance. 
Regarding task completion time, the “blind” condition 
was faster than both hesitation profiles by approximately 
30%, though the number of mistakes in overall task 
performance increased by four times. 
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5.2   Summary of Chronemics 

The few studies to-date that have investigated chronemic 
communication with robots have focused mainly on robot 
hesitation gestures. They have found that the intent of 
these gestures to convey uncertainty is highly 
recognizable in resource-conflict scenarios [139, 140] and 
that the use of hesitation gestures, regardless of specific 
motion profile, has the potential to improve  robot safety, 
animacy, likeability, and anthropomorphism, and lower 
the perception of dominance [142]. In task performance, 
hesitation gestures can increase completion time, 
however, they can also greatly reduce activity errors 
[142]. 

6   Multimodal Nonverbal Communication 

Sections 2-5 have each investigated one nonverbal 
communication mode and how it has influenced users 
during HRI scenarios. In some papers, these modes were 
combined with verbal communication as well. In this 
section we investigate the use of robot multimodal 
nonverbal communication using some combination of the 
above modes. Multimodal communication is used in 
everyday human life to transmit more information and 
provide redundancy, to transmit such information over 
different distances (i.e. facial expressions for close 
distances and arm gestures for further distances), and 
even to change the meaning of one mode of 
communication by augmenting it with a second mode 
[143]. We investigate multimodal nonverbal 
communication with respect to all four influence types: 
human cognitive framing of robots, emotional recognition 
and response, human behavioral response, and overall 
task performance during HRI.  

6.1   Cognitive Framing 

This subsection investigates how a robot’s use of 
multimodal nonverbal behaviors influence human 
comfort levels in social interactions involving touch 
(handshakes), arm gestures and facial expressions, head 
movements and proxemic distance, and gaze and 
proxemic distance. Furthermore, the effects of a 
combination of vocalics and kinesics on persuasiveness 
and perceived intelligence of a robot are also discussed. 

Si and McDaniel [144] investigated the impact of a 
variety of different robot arm gesture and facial 
expression conditions with respect to a person’s comfort 
level in social interactions. They used a Baxter robot with 
an animated face placed on top of a powered wheelchair. 
The facial expressions and arm gestures of the robot were 
designed to either be non-existent, arbitrary, or 
meaningful to the robot’s speech. Participants answered 
several questions posed by the robot before the robot 
asked them to approach it and shake its hand (introducing 

a haptic element). Hesitation to approach the robot when 
asked was measured as an indicator of comfort level and 
participants also reported their level of comfort during the 
interaction. While both facial expressions and gestures 
had some impact on improving human comfort, arm 
gestures played a significantly more important role. In 
addition, reported comfort levels were similar between 
the arbitrary and meaningful gesture conditions, however, 
when measuring hesitation, comfort levels were higher in 
trials involving meaningful behaviors compared to 
arbitrary. 

Demographic factors have also been studied with 
respect to their relationship to robot proxemic distance 
and head movements. For example, Takayama and 
Pantofaru [145] investigated minimum comfortable 
distance with the PR2 robot in approach scenarios. Their 
experiments featured two scenarios: 1) a participant 
approached the robot until reaching a comfortable 
distance for him/her, and 2) a participant was approached 
by the robot and stepped aside when he/she felt 
uncomfortable. A variety of different factors including 
pet ownership, previous robot experience, gender, and 
agreeability were considered. They found that the 
minimum comfortable distance was smaller for those who 
owned pets (on average 0.39m versus 0.52m) and those 
with previous robot experience (on average 0.25m versus 
0.34m). In both scenarios described above, they also 
experimented with robot head orientations during the 
approach, having conditions where the robot’s head was 
looking directly at the person or facing away. They found 
that when the head was directly facing a participant, the 
comfortable distance was closer for men, but larger for 
women compared to the facing away condition.  

 Mumm and Mutlu [146] also investigated the impacts 
of intentionally varying a robot’s likeable behavior, and 
its gaze behavior on a human’s physical and 
psychological distancing. Using the Wakamaru upper-
torso humanoid robot, participants played a short game 
which involved approaching the robot and answering a 
series of personal questions. The robot’s speech was 
presented as either likeable (polite, empathetic) or 
unlikeable (rude, selfish), and its gaze condition was 
either mutual (maintain eye contact) or averted (avoiding 
the participant). Participants in the unlikeable condition 
had an increase in physical distance when the robot was 
gazing at them, while participants in the likeable 
condition showed no change in distance due to gaze 
presence. Participants in the unlikeable compared to the 
likeable condition also had a greater “psychological 
distance” which the authors measured by the level of 
personal disclosure to the questions posed by the robot. 

In an attempt to design more persuasive robots, [147] 
created an HRI scenario involving a Desert Survival 
Problem [148] where participants must rank the 
importance of a set of items that increase their chance of 
survival in an imagined crash-landing scenario in the 
middle of the desert. In this experiment, participants 
created an initial ranking of the items and a Wakamaru 
upper-torso humanoid robot attempted to persuade them 
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to change their rankings using speech and four different 
nonverbal conditions: 1) no nonverbal cues (static and 
flat voice), 2) vocalic cues only, 3) body cues only, and 
4) body and vocalic cues. The body cues included a 
combination of proxemics (robot entering the 
participant’s personal space), gaze (dynamic eye gaze 
between the person and the item list), and arm gestures 
(iconic and deictic gestures congruent with speech). They 
measured both the success of changing participant item 
rankings and their impressions of the robot having 
persuasiveness, intelligence, and providing satisfaction. 
Compared to the no cues condition, the use of nonverbal 
cues led to higher levels of persuasion in changing items 
as observed through changing items. The use of body 
cues changed an average of 2.5 items and the vocalics 
condition an average of 1.5 items versus only 1 item 
change for the no cues condition. Male participants but 
not female participants evaluated intelligence 
significantly higher when the robot used body cues, while 
female participants and not male participants evaluated 
satisfaction significantly higher when the robot used 
vocalic cues. However, no significant findings were 
found on reported levels of persuasion, which is different 
than the physical actions that the participants took in 
changing their item rankings. 

6.2   Emotional Recognition and Response 

Research in emotional recognition and response of 
multimodal nonverbal communication has focused on 
how well multimodal behaviors can be recognized when 
used to display different emotions (e.g., anger, happiness, 
surprise, disgust, sadness, fear, and perplexity) or how 
well multimodal behaviors can be used with emotional 
statements (e.g. “I love you” or “I am feeling awkward”). 

Zecca et al. [149] used robot body postures and facial 
expressions for displaying the emotions of anger, 
happiness, surprise, disgust, sadness, fear, and perplexity 
on the KOBIAN humanoid robot. Participants watched 
videos of KOBIAN displaying these emotions either 
through each mode individually or using a combination 
of the two modes. they were then asked to identify each 
emotion. Body posture had a low average recognition rate 
of 33.8% with only sadness and perplexity having a rate 
over 50%. Robot facial expressions were marginally 
more successful with an average recognition rate of 
44.6%, with happiness, surprise, and disgust having a rate 
of more than 50%. However, together, the combined 
body postures and facial expressions had a 70% average 
recognition rate with only happiness being recognized 
less than 50%. 

Li and Chignell [150] investigated the interpretation of 
emotional intent with the teddy bear robot, 
RobotPHONE, capable of only simple head movements 
and arm gestures. They asked an initial set of participants 
to generate a variety of head and arm movements 
associated with emotional statements such as “I am 
happy”, “I love you”, or “I am feeling awkward,” by 

manipulating the head and arms of the robot. These 
movements were then presented back by the robot to a 
separate set of participants who were asked to identify 
them. Participants were able to recognize emotional 
intent better than chance through the simple head and arm 
movements of RobotPHONE. A second study described 
in the paper had two sets of participants (puppeteers and 
amateurs) develop head and arm gestures on 
RobotPHONE for the six primary emotions (e.g., anger, 
disgust, fear, happiness, sadness, and surprise).When 
presented to another set of participants, average 
recognition rates were higher for the puppeteer’s 
behaviors compared to the amateur’s, particularly for 
disgust and fear, showing the value of expertise in 
developing these types of behaviors. 

In [151], Erden developed emotional postures on the 
NAO robot for the three emotions of anger, sadness, and 
happiness. Namely, a qualitative description and 
encoding of human emotional behaviors guided the 
development of 32 postures involving arm, head, and 
body movements. These were narrowed to the top five for 
each emotion by a group of 25 participants. Then 40 
participants attempted to identify each emotional posture 
using Ekman’s six primary emotions[152]. The success 
rates were 45% for anger, 63% for sadness, and 73% for 
happiness. 

A study by Gacsi et al [153] investigated the 
attribution of emotions to a robot displaying multimodal 
behaviors. A PeopleBot telepresence robot was used for 
the study and was affixed with two arms on either side: 
one was a five DoF robotic arm, the other, non-moveable. 
Five behavior sets – joy, fear, neutral, sadness, and anger 
– involving movement, turning, and arm gestures were 
developed for the robot based on dog behaviors. 
Participants were shown videos of both the robot and a 
dog displaying behaviors associated with the different 
emotional conditions and asked to guess the emotions. 
Correct answers were obtained for both robot and dog 
behaviors significantly better than chance, and the robot 
was even recognized more successfully than the dog for 
the emotion of anger (75% robot, 58% dog). 

6.3   Behavioral Response 

The research below explores how robot multimodal 
nonverbal behaviors influence the behaviors of people, 
with respect to imitation with either facial and head 
movements or with gaze and gestures. 

Riek, Paul, and Robinson [154] conducted an 
experiment to observe the influence of facial expression 
imitation and head movements on a participant’s 
behaviors. They used the WowWee Alive Chimpanzee 
Robot with 18 DoFs in its head/face. They presented 
participants with a set of verbal questions and, as they 
responded, the robot mimicked them in one of three 
ways: blinking only, nodding gestures only, or full 
head/face mimicry. They counted the number of head, 
body, hand, and sound behaviors participants made 
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during the interaction and asked them about their 
satisfaction with the robot. Results found that the blinking 
only condition elicited the largest number of participant 
responses (104), compared to the nodding condition (76), 
or full mimic condition (58), though the difference 
between blinking and nodding conditions was solely due 
to an increase in hand gestures by the participant. 
Reported satisfaction rates were also highest for the 
blinking only condition. A potential explanation for the 
success of the blinking-only condition is that some 
participants reported that many of the robot head and face 
movements in the full mimicry condition felt “machine-
like” and “unclear.” 

Iio et al. [155] explored the concept of entrainment: a 
person’s tendency to imitate the behavior of the robot 
with whom they are interacting. Participants were asked 
to select an object from several objects in front of them 
and the WoZ controlled Robovie-R v2 humanoid robot 
was used to confirm their selection. The robot spoke and 
either used gaze only, gestural pointing only, or gaze and 
pointing together to confirm. They found that entrainment 
was the highest in the gazing and pointing condition (81 
participant behaviors), slightly less with the gaze only 
condition (69 behaviors), and lowest with the pointing 
only condition (52 behaviors). Questionnaire results 
showed that naturalness and ease of instruction and 
understanding was highest for the gaze and pointing 
condition, potentially explaining the reason for increased 
entrainment. 

A large-scale study [156] was conducted to investigate 
how different nonverbal cues impact the social 
engagement of participants when listening to a robot 
telling a story. The MDS robot was programmed to tell 
stories to a large public crowd under conditions with 
increasingly animated multimodal cues: audio alone, 
adding lip motions, adding facial expressions, and adding 
arm gestures. Participants were determined to be fully 
engaged if they were present and facing the robot during 
the entire story. The engagement levels of participants 
increased with the addition of lip movement sand arm 
gestures However, engagement was approximately the 
same when facial expressions were used compared to 
audio alone.  

6.4   Task Performance 

This subsection explores how multimodal robot behaviors 
influence human performance in tasks concerning either 
completion time or memory retention. 

Boucher et al. [157] investigated  the effects of head 
movements and eye gaze on cooperative task completion, 
using the iCub child-like robot. The robot asked 
participants to search for a specific object on a table in 
front of them while the robot used either the presence or 
absence of head movements (towards object or none) and 
eye gaze (eyes covered or towards object) in guiding the 
search task. When compared to the null condition (no 
head movements or eye use), it was found that both head 

movements and eye gaze as well as head-only 
movements improved participant task completion time by 
similar amounts. They both also improved reaction time 
to the point of helping a participant anticipate upcoming 
tasks before a verbal command was completed. Eye-only 
movements had similar reaction and task completion 
times to the null condition. 

To investigate gesturing and gaze effects on 
information recall and task completion, Admoni et al. 
[158] created a collaborative task where participants 
followed directions issued by a NAO robot under 
different conditions. The robot issued a set of block 
assembly instructions that the participant had to carry out 
under a variety of conditions. The difficulty of the task 
was varied with either a low or high memorization load 
and the presence or absence of an interruption during the 
task. The robot also varied its behavior in conditions 
where nonverbal behaviors of gazing and pointing at 
blocks while providing instructions were present or 
absent. Participants completed multiple assemblies before 
answering a questionnaire on robot anthropomorphism, 
animacy, likeability, and intelligence. When the task was 
easy, the presence of nonverbal behaviors had little 
influence over both recall and completion time, however, 
when difficulty increased due to either additional steps or 
interruption, the nonverbal behaviors led to higher recall 
accuracy and lower completion times. That said, none of 
the questionnaire metrics were influenced significantly 
between the different nonverbal behavior conditions. 

Kennedy, Baxter, and Belpaeme [159] attempted to 
explore the impact of nonverbal immediacy on learning. 
Nonverbal immediacy is defined as the enhancing of 
closeness to and interaction with another [160]. A 
storytelling scenario between a human and NAO robot 
was investigated with the robot using a combination of 
arm gestures, gaze, and body orientation. These were 
varied between high (animated) and low (absent or 
subdued) nonverbal immediacy. Findings showed that 
both children and adults could distinguish between the 
robot’s high and low immediacy conditions. While higher 
nonverbal immediacy (more animated behaviors) 
improved story retention with children, it made no 
difference for adults, possibly due to the low complexity 
of the task. 

In [161], Lohse et al. investigate the perceived 
workload and task performance of participants when 
interacting with a NAO robot for an information recall 
task. Participants were guided through either an easy or a 
difficult direction-giving task by the robot who gave 
instructions either with or without the use of arm and 
head gestures. Their results showed that participants 
recalled more directions in both the easy and difficult 
tasks when the robot used gestures over no gestures. In 
addition, participants reported significantly lower mental 
workload in the gestures condition for both task 
difficulties. 

McCallum and McOwan [162] explored the effects of 
nonverbal communication on long-term engagement 
when playing music with Mortimer, an upper-torso 
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humanoid drumming robot. Participants spent six weeks 
playing music with Mortimer for between 20 to 45 
minutes per week in one of two conditions: with or 
without the robot’s use of facial expressions and head 
poses. Results showed that those subjected to nonverbal 
behaviors spent more time voluntarily with Mortimer, 
and actually increased the time they spent with the robot 
with passing weeks. In addition, these participants 
interrupted the robot less during social interactions and 
played music with the robot uninterrupted for longer 
periods. The authors believed that the use of nonverbal 
behaviors in Mortimer provided musical guidance that led 
to more engaged, uninterrupted task performance. 

6.5   Summary of Multimodal Nonverbal 
Communication 

Multimodal nonverbal behaviors have shown to be 
effective influencers of people’s cognitive frames. The 
use of robot arm gestures and facial expressions were 
shown to improve comfort levels in HRI [144]. However, 
the combination of gaze and proxemic distance appeared 
to be more complex; comfort levels tended to increase 
with gaze presence for men, pet owners [145], and those 
presented with “likeable” robots [146], but decreased for 
women [145] and individuals presented with “unlikeable” 
robots [146]. In attempting to make a more persuasive 
robot, the use of arm, gaze, and proxemic cues greatly 
increased persuasion effectiveness for participants even 
though their subjective ratings of persuasion were 
unaffected [147].  

In general, multimodal displays of nonverbal 
communication have shown to have higher emotional 
recognition rates than unimodal nonverbal communication 
[149, 150]. One study showed that multiple configurations 
of arm, head, and body postures can all be recognized as 
human emotions effectively [151]. Another even showed 
that emotions expressed through multimodal behaviors 
designed from dog movements can be recognized better 
than chance and sometimes even better than the dog 
[153]. 

Regarding task performance, the use of multimodal 
behaviors led to improvements in reaction time and 
completion time for basic cooperative searching tasks 
[157], as well as memory retention, at least for children 
[159]. Adult memory performance was less influenced by 
multimodal nonverbal behaviors in simple tasks [158, 
159], however, in more difficult tasks, the use of these 
behaviors increased both recall accuracy and completion 
time [158]. Information recall was shown to be higher in 
direction-giving tasks when a robot provided guidance 
using arm and head gestures for both easy and difficult 
tasks [161]. In a long-term study with musicians, 
participants voluntarily spent more time playing music 
and played longer uninterrupted when playing music with 
a robot drummer who employed facial expressions and 
head poses over the control condition [162]. 

Finally, some interesting discrepancies were found 
with respect to a robot’s influence on human behavior. 
While experiments on collaboration showed both higher 
levels of entrainment (behavioral imitation) and more 
natural interactions with a multimodal gaze/gesture 
condition [155], conversation-based experiments found 
that the highest satisfaction rates and highest number of 
participant gestures were obtained with the lowest level of 
nonverbal behaviors (blinking only) compared to more 
animated robot conditions [154]. A storytelling 
experiment found levels of user engagement were higher 
when a robot used facial expressions and arm gestures 
compared to a control condition with voice only [156]. 

7   Discussion 

This survey has resulted in several main findings 
emerging with respect to how robot nonverbal 
communication influences people during social 
interactions. Research across multiple nonverbal 
modalities has contributed results that can be aligned to 
the human influence types identified and investigated 
with respect to shared aims. In this discussion, we will 
present insights and future research directions associated 
with each of the aforementioned influence types 
explored, focusing on key findings, and identifying open 
challenges that need to be addressed in order to expand 
the research area and its impact on social HRI. 

7.1   Cognitive Framing  

Decades of comprehensive research has resulted in a 
thorough understanding of how different nonverbal 
behaviors influence the cognitive framing of individuals 
in human-human interactions [141]. In general, the 
inclusion of robot nonverbal behaviors that align with 
human behaviors has shown to have a similar impact on 
the cognitive framing of robots as it does in human-
human interactions. The use of arm gestures, for example, 
led to improvements in likeability [40, 41], perceived 
anthropomorphism [42], social engagement [43], and 
perceived ability and performance [44]. Appropriate use 
of eye gaze resulted in increased understandability [80], 
helpfulness [81], and trust [82]. Facial expressions led to 
increased belief in a robot’s empathy [88], friendliness 
[89], and understanding of situational context [91]. 
Adherence to social distancing norms improved 
perceptions regarding robot competence [110], and the 
appropriate use of touch helped with appearing less 
machine-like [122] and can even inhibit feelings of 
negativity towards a robot [123]. In multimodal 
combinations, the use of gestures with facial expressions 
improved comfort levels [144], gestures and gaze helped 
to increase persuasive effectiveness [147] and make 
interactions seem more natural [155]. 
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Even though typically, nonverbal behaviors were 
modeled after humans, some studies found that this 
approach did not always generate improved cognitive 
framing around robots. In particular, in a few studies, 
non-humanlike behaviors such as gestures incongruent to 
speech [42] or “caricatured”, abrupt, and exaggerated 
head movements [65] were found to be more effective at 
improving likeability and human-likeness. In psychology 
research, the pratfall effect is a long-studied phenomenon 
in human-human interactions whereby the mistakes of 
another individual can help to humanize them by making 
them more relatable [163]. Examples of this effect have 
also been seen with robots. The presence of errors in a 
robot’s verbal questions and instructions to a human were 
found to make the robot more likeable [164]. In another 
study [165], cognitive imperfections such as judgmental 
mistakes, wrong assumptions, or overexcitement, helped 
to make a robot more relatable and improve long-term 
interactions [165]. Yet another study in [166] found that a 
robot’s task efficiency was of secondary importance 
compared to its expressiveness in improving human 
preference, and that the exhibition of human-like errors 
may make people reluctant to ‘hurt a robot’s feelings.’ 
These studies point to a hypothesis that supports findings 
in [42, 65]; that ‘non-humanlike’, erroneous behaviors 
actually can be humanizing and relatable, thus improving 
our cognitive framing of robots. 

There were some situations where robot nonverbal 
behaviors induced negative cognitive framing, 
particularly with the use of gaze. For example, in social 
distancing scenarios, the use of a robot’s gaze during 
approach was seen to reduce comfort levels for women 
[145], but not for men. In similar scenarios, reductions in 
comfort due to the use of direct gaze at a person were 
observed for individuals who were initially presented 
with unlikeable (rude, selfish) robot behaviors [146]. 
While interacting during a simple game, the use of gaze 
even added a sort of “social pressure” to rush participants 
through the game [82]. Given the extensive research on 
human-human interactions connecting direct gaze with 
intimidation and dominance, e.g. [167–169], these 
findings are understandable, yet still highlight an 
important takeaway message: robot gaze behavior has the 
same potential to induce dominance similar to human 
gaze behavior. 

Open Challenges 

Challenge 1: Outside of simple metrics such as 
anthropomorphism, likeability, intelligence, and 
friendliness, it is not yet clear how different nonverbal 
behaviors or combinations of these behaviors during 
interactions can directly influence human cognitive 
framing of robots. Cognitive frames play a critical role in 
rapid, high-level, heuristic-based decision making in 
everyday life [170, 171], including in social interactions 
(often referred to as ‘first impressions’ [172]). As such, a 
better understanding of how robot nonverbal behaviors 
influence our cognitive frames should have a significant 

influence on how we judge and make decisions while 
interacting with robots. To date, most research in this area 
has focused on understanding the influence of nonverbal 
behaviors on specific frames, however, future research 
should focus on how influencing these frames can impact 
human decision making. 

Challenge 2: How humans adapt to robot behaviors 
over time is still also an open challenge. Given the 
relative inexperience of the general population with social 
robots, the length of time of interaction is important to 
explore in order to investigate how people’s cognitive 
frames of robots could evolve over repeated interactions. 
Studies investigating interactions over the course of 
multiple weeks have shown that perceptions of robots 
change with time and the frequency of interactions [107, 
115, 162, 173, 174]. Over weeks of interactions playing 
chess with a robot, which used facial expressions to react 
to the game, participant framing of social presence 
improved with time [174]. Playing music with an 
expressive drumming robot resulted in participants 
voluntarily spending more time and engaging in longer 
uninterrupted play over a series of weeks [162]. In a 
simulated household environment, participant comfort 
levels increased over weeks as participants had multiple 
experiences with a robot in social approach scenarios 
[107]. In proxemic passing trials, participant comfort 
levels also increased with experience as the robot passed 
by a participant multiple times at intimate distances 
[115]. Though past research has shown examples of a 
“novelty effect” with robots – people behaving differently 
in early encounters due to the newness of the system 
[175] – there may also be an adaptation or trust effect 
developing with time and multiple interactions.  Further 
investigation is required to better understand the causes 
of these longitudinal changes as well as how different 
modes, the combination of modes, and overall robot 
nonverbal behaviors influence human framing over time. 

7.2   Emotion Recognition and Response 

The concept of emotion contagion during social HRI was 
evident across a few different behavior types including 
arm gestures [48, 49, 176], body and head movements 
[76], facial expressions [89], and touch [121, 129]. This is 
an important finding since emotion contagion is 
considered a “basic building block of human 
interaction… allowing people to understand and share 
the feelings of others” [177]. Human emotion contagion 
has been shown to have positive impacts on service 
satisfaction [178, 179], which will be a critical 
consideration for social robots performing tasks in service 
environments such as healthcare, education, 
entertainment, and retail. 

Open Challenges 

Challenge 1: It is still not fully clear how robot emotional 
displays influence human emotional response. A number 
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of papers reviewed herein focused on the recognition of 
robot nonverbal emotions by users through gestures [51], 
body movements [66, 69, 70, 72], facial expressions [92–
94], haptics [126, 130, 132], and multimodal 
combinations [149–151, 153], however, only a handful 
investigated how the recognition of these emotions 
directly influenced  a person’s emotional response [48, 
49, 76, 89, 121]. Though emotion contagion is a known 
phenomenon in human-human interactions [180], our 
understanding of this phenomenon in human-robot 
interactions is rudimentary. Further understanding of this 
influence will be useful for designing social robots that 
appropriately affect human emotions as intended in order 
for these robots to have a positive impact during 
service/assistive HRI as mentioned above. 

Challenge 2: How an individual’s awareness impacts 
their interpretation of and response to an emotion being 
communicated by a robot is still an open question. Using 
similar experimental setups, the researchers in [49, 176] 
were able to demonstrate the contagion effect both when 
participants were able to identify the intended valence 
displayed by the robot as well as when they were unable 
to identify the intended valence [48]. However, if there 
were any differences in the human emotional response 
due to such awareness, they were not explored. Past 
research has shown that while human emotional 
processing occurs largely autonomously, our awareness 
of the emotion being projected by another person can still 
influence how the emotion is interpreted [181] and 
therefore, potentially how we respond to it. Assuming a 
similar effect may occur with robots, more research into 
awareness around emotion contagion during HRI is 
needed. 

7.3   Behavioral Response 

Of the four influence types investigated in this paper, 
behavioral influences appear to have the most conflicted 
findings. In cases involving simple interaction scenarios, 
humans were seen to mimic robot behaviors such as arms 
gestures during object handover [84] and pointing at 
objects [155]. However, an equal number of examples 
were seen where users did not behave similarly to robots. 
Movement synchronization, a common phenomenon 
during human to human interaction [53], was observed 
when using an adaptive humanoid NAO robot [54], 
however, was not observed when using a robot arm [52], 
likely due to the robot arm showing no adaptation 
towards the human’s movement. In a conversational 
interaction with a robot monkey head [154], nonverbal 
behaviors of users (arm gestures, body movements, facial 
expressions) were most plentiful when a robot was in its 
least nonverbally active condition. However, participants 
also mentioned that they found the robot to be overly 
machine-like during the interaction. One of the positive 
examples of mimicry involving object pointing [155] 
even found that while a human’s mimicry was high for a 
robot’s gaze and pointing condition, this level dropped by 

more than half when the robot only pointed and there was 
no gaze used. The authors postulated that this happened 
since the pointing-only condition was not how a human 
would show attention towards an object and the 
interaction did not feel natural. While further 
investigation is required, there seems to be a connection 
between a person’s perception of a robot (in particular, 
with respect to naturalness and human/machine-likeness) 
and their behavioral response to the robot during 
interaction. 

Open Challenges 

Challenge 1: The relationship between a person’s 
behavioral responses to a robot’s nonverbal behaviors and 
how the robot is perceived during an interaction has not 
been explicitly investigated. Nonverbal behavioral 
responses (such as gestural mimicry mentioned above) 
are ubiquitous in human to human interactions [182] and 
influence the outcome of liking, rapport, affiliation, and 
empathy between two individuals [183]. However, as 
previously mentioned, human behavioral responses to 
robots appear to be correlated to our perception of robots 
on metrics of naturalness, machine-likeness, and possibly 
others. A better understanding of this correlation would 
allow us to design robot behaviors that illicit natural 
human behavioral responses and, in theory, also influence 
the liking, rapport, affiliation, and empathy levels 
between a human and a robot. 

7.4   Task Performance 

Across numerous task types, a robot’s nonverbal 
behaviors were shown to have significant influences on 
improving human performance. A number of the papers 
surveyed found a decrease in human task performance 
time with the use of robot eye gaze [80, 81, 83, 157], 
gestures [56, 158], or facial expressions [100]. These 
behaviors were primarily effective for functional reasons 
– practical and directly specific to the task - such as 
visually indicating objects or locations where participants 
were required to look or manipulate.  

There were also a handful of papers that observed 
influences on task performance due to psychosocial 
reasons; those relating to the mental and emotional states 
of a person and the interrelation of these states with social 
factors [184]. For example, a robot’s gaze at a participant 
during a gaming task was believed to cause a sort of 
social pressure that lowered trust and rushed participants 
to respond [82]. Sad facial expressions on a robot were 
seen to increase the engagement time for people 
interacting with an expressive robot [96]. A more 
nonverbally expressive musical robot led to longer jam 
sessions with people, likely due to the rhythmic 
connections formed [162]. Robot touch was used to 
encourage human productivity by doubling working time 
and the number of tasks completed [133]. Touch in the 
form of a robot handshake also caused people to donate 
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more money, so long as the robot had the same gender as 
the participant [114]. Fear and negative mood displayed 
through robot body movements encouraged participants 
to comply with evacuation requests faster [76].  

Open Challenges 

Challenge 1: Regarding functional influences on human 
task performance by robot nonverbal behavior, there is 
still limited understanding of influence across different 
behavior types as well as the implications of these 
behaviors on various performance metrics. The main 
focus has been on the influence of gaze [80, 81, 83, 157], 
gestures [56, 158], facial expressions [100], body 
movements [76], and touch [133] on task time. The 
influence of proxemics, chronemics, and multimodal 
nonverbal behaviors has yet to be explored with respect 
to human task performance. While memory retention [57, 
158, 159, 161] and error reduction [77, 80, 142] have 
been researched as performance metrics, as previously 
mentioned, task time [56, 80, 81, 83, 100, 157, 158] has 
received the majority of the focus. Other metrics, such as 
mental workload and situation awareness, have been 
identified as potentially important to human task 
performance in HRI [185]. Mental workload has been 
investigated with respect to robot speed in an industrial 
environment [186], and with respect to interface design 
with telepresence robots [187]. Situation awareness has 
been explored in urban search and rescue [188, 189], and 
general telerobotic use [190, 191]. However, neither 
metric has been studied with respect to robot nonverbal 
communication, particularly in social settings. These 
metrics will become increasingly important to understand 
with respect to nonverbal communication as human-robot 
collaboration continues to proliferate in more social 
environments such as healthcare, home service, and 
entertainment [192]. 

Challenge 2: It is important to investigate how robot 
nonverbal behaviors can have psychosocial influences on 
human task performance. Human-human research has 
shown that people can use nonverbal behaviors to 
psychosocially influence the actions of others through 
dominance [193] and persuasion [194]. This can 
ultimately lead to improved task performance or task 
compliance. Though the HRI papers surveyed herein 
showed performance influences on metrics such as 
evacuation compliance [76], donation solicitation [114] 
response time [82, 157], engagement time [96, 162], and 
working time [133], the psychosocial justification of 
these influences are largely speculative. By having a 
better understanding of the reasons for these forms of 
influence (dominance, persuasion, reciprocity, etc.) we 
can aim to design robots with nonverbal behaviors that 
can positively influence human performance through 
psychosocial means. 

7.5   Comparison of Study Parameters Used 

It is valuable to compare specific study parameters used 
when considering findings and conclusions across papers 
that include a variety of methodologies and materials. As 
such, we have created Table 1 which summarizes some of 
the key aspects of the studies reviewed including behavior 
modality, influence type, number of participants in the 
study, study year, and details about the robotic platform 
used (e.g. type, size DoF).  

Though the statistical significance of findings for 
papers throughout this survey has been reported, for 
studies with low-participant numbers, it is important to 
consider the findings as exploratory. While they do 
provide some insight into human-robot interaction and 
nonverbal influence, they need to be further investigated 
and validated. 

With respect to robot functionality, as previously 
identified, people tend to prefer more dynamic, animated 
robot behaviors [43]. This is important to note as it can 
give robots with a higher number of DoFs an advantage 
when influencing people for their ability to be more 
animated in their motion.  

Arguably of greater importance is the consideration of 
the robot type and size used in experiments. Numerous 
studies have shown that robot embodiment [117, 195, 
196], appearance [197, 198], level of anthropomorphism 
[199–201], and presence [202, 203], can all have an 
impact on the perception and influence of a robot in social 
settings. We did not focus on robot presentation in this 
survey paper as our objective was to investigate the use of 
movement-based nonverbal communication during social 
HRI. However, with that said, when comparing findings 
across multiple robot platforms, the type and size of robot 
used should be considered. While the majority of studies 
presented herein used humanoid platforms, some findings 
may be influenced by subtle nuances of a robot’s design. 

As an example of this, [117] showed that regardless of 
the robot used between a Kyosho Blizzard, a mobile 
ATRV-Jr, and a robotic wheelchair, participants found 
passing behaviors where the robot stopped for the human 
the most polite and trustworthy, however, indicated that 
they were most comfortable with the wheelchair. Another 
study on social passing [116] with a Nomadic Scout II 
robot found that a stopping behavior actually lowered 
participant comfort levels. The discrepancy in these 
findings may be due to differing methodologies or they 
could be due to differences in the robot presentations. 

Though influence due to robot presentation was not 
explicitly considered in this survey, it is an important and 
thoroughly researched topic [195–208] that warrants a 
survey paper of its own. 

 



 
Table 1   Summary of surveyed papers, including author(s), modality, influence type, number of subjects, year, and robot details 

Ref. Author(s) Sec. Modality Influence Robot Name Robot Type Height 
(cm) 

Robot 
DoF Subjects Year 

40 Salem et al., 2011 2.1 Arm Gestures Framing ASIMO Humanoid with 2 arms, 2 legs, 
head 130 34 40 2011 

41 Salem et al., 2013 2.1 Arm Gestures Framing ASIMO Humanoid with 2 arms, 2 legs, 
head 130 34 62 2013 

42 Salem et al., 2012 2.1 Arm Gestures Framing ASIMO Humanoid with 2 arms, 2 legs, 
head 130 34 60 2012 

43 Aly & Tapus, 2016 2.1 Arm Gestures Framing NAO Humanoid with 2 arms, 2 legs, 
head 57 25 21 2016 

44 Shen et al., 2015 2.1 Arm Gestures Framing KASPAR2 Humanoid with 2 arms, 2 legs, 
head N.R. 18 23 2015 

45 Peter, Broekens, & 
Neerincx, 2017 2.1 Arm Gestures Framing NAO Humanoid with 2 arms, 2 legs, 

head 57 25 101 2017 

48 Xu et al., 2014 2.1 Arm Gestures Emotion NAO Humanoid with 2 arms, 2 legs, 
head 57 25 34 2014 

49 Xu et al., 2015 2.1 Arm Gestures Emotion NAO Humanoid with 2 arms, 2 legs, 
head 57 25 36 2015 

50 Xu et al., 2013 2.1 Arm Gestures Emotion NAO Humanoid with 2 arms, 2 legs, 
head 57 25 24 2013 

51 English, Coates, & 
Howard, 2017 2.1 Arm Gestures Emotion NAO, Mini Darwin Humanoid with 2 arms, 2 legs, 

head 57 25 137 2017 

52 Lorenz, Mortl, & 
Hirche, 2013 2.1 Arm Gestures Behavior N.R. Upper-torso Humanoid N.R. 7 8 2013 

53 Lorenz, Mortl, & 
Hirche, 2012 2.1 Arm Gestures Behavior N.R. Upper-torso Humanoid N.R. 7 20 2012 

54 Ansermin et al., 2017 2.1 Arm Gestures Behavior NAO Humanoid with 2 arms, 2 legs, 
head 57 25 9 2017 

55 Ende et al., 2011 2.1 Arm Gestures Behavior DLR Humanoid, 
DLR LWR SAM 

Upper-torso humanoid with 2 
arms, industrial arm N.R. 7 

(1 arm) 400 2011 

56 Riek et al., 2010 2.1 Arm Gestures Task BERT1 Upper-torso Humanoid with 2 
arms, head N.R. 36 16 2010 

57 Dijk, Torta, & 
Cuijpers, 2013 2.1 Arm Gestures Task NAO Humanoid with 2 arms, 2 legs, 

head 57 25 12 2013 

58 Sheikholeslami, Moon, 
& Croft, 2017 2.1 Arm Gestures Task Barrett WAM Industrial Arm N.R. 7 4 2017 

59 Quintero et al., 2015 2.1 Arm Gestures Task Barrett WAM Industrial Arm N.R. 7 8 2015 
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Ref. Author(s) Sec. Modality Influence Robot Name Robot Type Height 
(cm) 

Robot 
DoF Subjects 

 

Year 

62 Hoffman et al., 2015 2.2 Body & Head Movements Framing Kip1 Lamp-like, articulated head 30 3 30 2015 

63 
Rosenthal-von der 
Putten, Kramer, & 
Herrmann, 2018 

2.2 Body & Head Movements Framing NAO Humanoid with 2 arms, 2 legs, 
head 57 25 80 2018 

64 Choi et al., 2017 2.2 Body & Head Movements Framing N.R. Telepresence with screen, wheel 
base N.R. 2 36 2017 

65 Wang et al., 2006 2.2 Body & Head Movements Framing Nico Upper-torso Humanoid N.R. 14 39 2006 

66 McColl & Nejat, 2014 2.2 Body & Head Movements Emotion Brian 2.0 Upper-torso Humanoid N.R. 13 50 2014 

69 Embgen et al., 2012 2.2 Body & Head Movements Emotion Daryl Upper-torso Humanoid N.R. 10 29 2012 

70 Saerbeck & Bartneck, 
2010 2.2 Body & Head Movements Emotion iCat Toy Cat with articulated head 40 13 18 2010 

72 Beck et al., 2010 2.2 Body & Head Movements Emotion NAO Humanoid with 2 arms, 2 legs, 
head 57 25 26 2010 

73 Beck et al., 2011 2.2 Body & Head Movements Emotion NAO Humanoid with 2 arms, 2 legs, 
head 57 25 24 2011 

74 Beck et al., 2013 2.2 Body & Head Movements Emotion NAO Humanoid with 2 arms, 2 legs, 
head 57 25 24 2013 

75 Beck et al., 2010 2.2 Body & Head Movements Emotion NAO Humanoid with 2 arms, 2 legs, 
head 57 25 23 2010 

76 Moshkina, 2012 2.2 Body & Head Movements Task NAO Humanoid with 2 arms, 2 legs, 
head 57 25 48 2012 

77 Van Den Brule et al., 
2016 2.2 Body & Head Movements Task NAO Humanoid with 2 arms, 2 legs, 

head 57 25 56 2016 

80 Breazeal et al., 2005 2.3 Eye Gaze Task Leonardo Zoomorphic with 2 arms, 2 legs, 
head N.R. 65 21 2005 

81 Skantze, Hjalmarsson, 
& Oertel, 2013 2.3 Eye Gaze Task Furhat Head with projected face N.R. 3 24 2013 

82 Stanton & Stevens, 
2014 2.3 Eye Gaze Task NAO Humanoid with 2 arms, 2 legs, 

head 57 25 59 2014 

83 Moon et al., 2014 2.3 Eye Gaze Task PR2 Wheeled base with 2 arms, head 133 22 102 2014 

84 Zheng et al., 2014 2.3 Eye Gaze Task PR2 Wheeled base with 2 arms, head 133 22 102 2014 
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Ref. Author(s) Sec. Modality Influence Robot Name Robot Type Height 
(cm) 

Robot 
DoF Subjects 

 

Year 

88 Gonsior et al., 2011 2.4 Facial Expression Framing EDDIE Articulated head N.R. 23 55 2011 

89 Leite et al., 2013 2.4 Facial Expression Framing iCat Toy Cat with articulated head 40 13 40 2013 

90 Endrass et al., 2014 2.4 Facial Expression Framing Alice Humanoid with 2 arms, 2 legs, 
head N.R. 22 96 2014 

91 Hegel et al., 2006 2.4 Facial Expression Framing BARTHOC Jr. Upper-torso humanoid with 2 
arms, head 65 10 28 2006 

92 Berns & Hirth, 2006 2.4 Facial Expression Emotion ROMAN Articulated head N.R. 10 32 2006 

93 Kobayashi et al., 2003 2.4 Facial Expression Emotion Face Robot Mk II Articulated head N.R. 24 20 2003 

94 Allison, Nejat, & Kao, 
2009 2.4 Facial Expression Emotion Brian Upper-torso humanoid with 2 

arms, head N.R. 20 10 2009 

95 Cameron et al., 2018 2.4 Facial Expression Emotion Zeno R50 Humanoid with 2 arms, 2 legs, 
head N.R. N.R. 59 2018 

96 Gordon & Breazeal, 
2014 2.4 Facial Expression Behavior Dragonbot Toy with screen face and passive 

limbs N.R. N.R. N.R. 2014 

98 Chevalier et al., 2017 2.4 Facial Expression Behavior Zeno R50 Humanoid with 2 arms, 2 legs, 
head N.R. N.R. 15 2017 

99 Pour et al., 2018 2.4 Facial Expression Behavior Alice Humanoid with 2 arms, 2 legs, 
head N.R. 22 14 2018 

100 Reyes, Meza, & 
Pineda, 2016 2.4 Facial Expression Task Golem-III Wheeled humanoid with 2 arms, 

head N.R. 8 15 2016 

101 Hamancher et al., 2016 2.4 Facial Expression Task BERT2 Upper-torso humanoid with 2 
arms, head N.R. 14 23 2016 

102 Cohen et al., 2017 2.4 Facial Expression Task iCub Humanoid with 2 arms, 2 legs, 
head 120 53 44 2017 
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Ref. Author(s) Sec. Modality Influence Robot Name Robot Type Height 
(cm) 

Robot 
DoF Subjects 

 

Year 

106 Walters et al., 2005 3.1 Social Distance Framing Peoplebot Telepresence with screen, 
wheeled base 110 2 28 2005 

107 Walters et al., 2011 3.1 Social Distance Framing Peoplebot Telepresence with screen, 
wheeled base 110 2 7 2011 

108 Shi et al., 2008 3.1 Social Distance Framing Segway RMP 200 Wheeled base 152 2 5 2008 

109 Mead & Mataric, 2015 3.1 Social Distance Framing Bandit Wheeled humanoid with 2 arms, 
head 130 19 160 2015 

110 Mead & Mataric, 2016 3.1 Social Distance Framing PR2 Wheeled base with 2 arms, head 133 22 40 2016 

111 Koay et al., 2014 3.1 Social Distance Task Care-O-bot 3 Wheeled base with 1 arm 145 9 19 2014 

112 Kim & Mutlu, 2014 3.1 Social Distance Task Wakamaru Wheeled humanoid with 2 arms, 
head 100 13 32 2014 

113 Papadopoulos et al., 
2016 3.1 Social Distance Task NAO Humanoid with 2 arms, 2 legs, 

head 57 14 80 2016 

114 Siegel, 2009 3.1 Social Distance Task MDS Wheeled humanoid with 2 arms, 
head 122 38 340 2009 

115 
Pacchierotti, 
Christensen, & 
Jensfelt, 2006 

3.2 Social Transit Framing Peoplebot Telepresence with screen, 
wheeled base 110 2 10 2006 

116 Butler & Agah, 2001 3.2 Social Transit Framing Nomadic Scout II Wheeled base 170 2 40 2001 

117 Tsui, Desai, & Yanco, 
2010 3.2 Social Transit Framing 

Kyosh Blizzard, 
iRobot ATRV-Jr, 
Custom 
Wheelchair 

Wheeled base N.R. 2 224 2010 

118 Gockley, Forlizzi, & 
Simmons, 2007 3.2 Social Transit Framing Grace RW1 B21 

Base Wheeled base N.R. 2 10 2007 
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Ref.  Author(s) Sec. Modality Influence Robot Name Robot Type Height 
(cm) 

Robot 
DoF Subjects 

 

Year 

121 Chen et al., 2011 4 Haptics Framing Cody Wheeled base with 2 arms, head N.R. 17 63 2011 

122 Cramer et al., 2009 4 Haptics Framing Robosapien Humanoid with 2 arms, 2 legs, 
head N.R. N.R. 119 2009 

123 Fukuda et al., 2012 4 Haptics Framing robovie-mR2 Upper-torso humanoid with 2 
arms, head 42 11 15 2012 

124 Walker & Bartneck, 
2013 4 Haptics Framing NAO Humanoid with 2 arms, 2 legs, 

head 57 25 18 2013 

125 Willemse, Toet, & van 
Erp, 2017 4 Haptics Framing NAO Humanoid with 2 arms, 2 legs, 

head 57 25 39 2017 

126 Yohanan & MacLean, 
2012 4 Haptics Emotion Haptic Creature Stuffed Toy 33 1 30 2012 

128 Yohanan & MacLean, 
2011 4 Haptics Emotion Haptic Creature Stuffed Toy 33 1 32 2011 

129 Sefidgar et al., 2016 4 Haptics Emotion Haptic Creature Stuffed Toy 33 1 38 2016 

130 Yoshida & Yonezawa, 
2016 4 Haptics Emotion BREAR Stuffed Toy 25 5 26 2016 

131 Yoshida & Yonezawa, 
2017 4 Haptics Emotion NA Stuffed Toy 55 1 47 2017 

132 Bucci et al., 2018 4 Haptics Emotion FlexiBit Stuffed Toy N.R. 1 10 2018 

133 Nakagawa et al., 2011 4 Haptics Task robovie-mR2 Upper-torso humanoid with 2 
arms, head 42 11 30 2011 

134 Shiomi et al., 2017 4 Haptics Task robovie-mR2 Upper-torso humanoid with 2 
arms, head 42 11 33 2017 

114 Siegel, 2009 4 Haptics Task MDS Wheeled humanoid with 2 arms, 
head 122 38 340 2009 

139 Moon et al., 2010 5 Chronemics Framing CRS A460 Industrial Arm N.R. 6 30 2010 

140 Moon et al., 2011 5 Chronemics Framing CRS A460 Industrial Arm N.R. 6 86 2011 

142 Moon et al., 2013 5 Chronemics Framing CRS A460 Industrial Arm N.R. 6 33 2013 
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Ref. Author(s) Sec. Modality Influence Robot Name Robot Type Height 
(cm) 

Robot 
DoF Subjects Year 

144 Si & McDaniel, 2016 6 Face, Arms Framing Baxter Upper-torso humanoid with 2 
arms, head 91 15 43 2016 

145 Takayama & 
Pantofaru, 2009 6 Distance, Gaze Framing PR2 Wheeled base with 2 arms, head 133 22 30 2009 

146 Mumm & Mutlu, 2011 6 Distance, Gaze Framing Wakamaru Wheeled humanoid with 2 arms, 
head 100 13 60 2011 

147 Chidambaram, Chiang, 
& Mutlu, 2012 6 Distance, Gaze, Arms Framing Wakamaru Wheeled humanoid with 2 arms, 

head 100 13 32 2012 

149 Zecca et al., 2009 6 Face, Body Emotion KOBIAN Humanoid with 2 arms, 2 legs, 
head 140 48 33 2009 

150 Li & Chignell, 2011 6 Head, Arms Emotion RobotPHONE Stuffed Toy N.R. 6 12 2011 

151 Erden, 2013 6 Head, Arms, Body Emotion NAO Humanoid with 2 arms, 2 legs, 
head 57 25 40 2013 

153 Gacsi et al., 2016 6 Body, Arm Emotion PeopleBot Telepresence with screen, 
wheeled base 110 2 81 2016 

154 Riek, Paul, & 
Robinson, 2010 6 Face, Head Behavior WowWee 

Chimpanzee Articulated animal head N.R. 18 12 2010 

155 Iio et al., 2011 6 Gaze, Arms Behavior robovie-mR2 Upper-torso humanoid with 2 
arms, head 42 13 18 2011 

156 Moshkina, Trickett, & 
Trafton, 2014 6 Face, Arms Behavior MDS Wheeled humanoid with 2 arms, 

head 122 38 2165 2014 

157 Boucher et al., 2012 6 Head, Gaze Task iCub Humanoid with 2 arms, 2 legs, 
head 120 53 5 2012 

158 Admoni et al., 2016 6 Arms, Gaze Task NAO Humanoid with 2 arms, 2 legs, 
head 57 25 46 2016 

159 Kennedy, Baxter, & 
Belpaeme, 2017 6 Arms, Gaze, Body Task NAO Humanoid with 2 arms, 2 legs, 

head 57 25 117 2017 

161 Lohse et al., 2014 6 Head, Arm Task NAO Humanoid with 2 arms, 2 legs, 
head 57 25 32 2014 

162 McCallum & 
McOwan, 2015 6 Face, Head Task Mortimer Upper-torso humanoid with 2 

arms, head N.R. 5 10 2015 

Note: “N.R.” stands for “not reported”, indicating that such details were not reported in the original paper by the authors.
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