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Abstract—Adaptive learning is critical to helping robots 
personalize their interactions with people, particularly when 
considering skills needed by socially assistive robots, such as 
persuasion. In this paper, we propose a novel, hybrid hierarchical 
learning architecture for use in social human-robot interaction 
(HRI) to adapt robot persuasive behaviors to both the static (e.g. 
need for cognition) and dynamic (e.g. affect) considerations of a 
user. A learning hierarchy is introduced that uses a contextual 
bandit approach in the top level to optimize for a static cognition 
bias and Q-Learning in the lower level to optimize selection of a 
robot persuasive strategy to deploy that aligns with a user’s affect. 
We compare the performance of our system with a non-
hierarchical learning method in simulated experiments for the 
task of persuading people to do daily exercises. The results show 
that our hybrid hierarchical architecture outperforms a non-
hierarchical benchmark in learning speed and robustness to both 
longitudinal user change and noisy observations. Our architecture 
is the first to: 1) persuasively adapt to different users during social 
HRI considering both static and dynamic user change, and 2) use 
user state decomposition in persuasive HRI. 

 
Index Terms—Social HRI, Human-Centered Robotics, 

Reinforcement Learning, Robot Persuasion, Hybrid Architectures  
 

I. INTRODUCTION 

S assistive robots continue to be deployed into care 
environments such as hospitals and assisted living 

facilities [1], they encounter new challenges requiring new 
skills. While the care tasks robots need to complete often have 
physical aspects to them, many are social in context. These 
tasks can require the use of social skills such as motivation [2] 
and persuasion [3]. Persuasion can be utilized by assistive 
robots to motivate exercise and physiotherapy [4], promote 
medication adherence [5], and much more. 

The challenge with using persuasion for these types of social 
tasks is that a socially assistive robot is often required to learn 
and adapt to individual users, their preferences, and their 
abilities. This necessitates the incorporation of adaptive 
systems for such robots. In particular, Adaptive Persuasive 
Systems (APS) can be used, which are systems that acquire user 

information, develop or update user models, and adapt their 
persuasive approaches to personalize to an individual [6]. APS 
have been shown to be more effective in persuasive tasks than 
non-adaptive systems [7]. To date, they have been utilized in 
social media [8], emails [9], and text messaging [10].  

Limited research has been conducted on the use of APS by 
social robots. In general, robots leverage adaptive systems 
during human-robot interaction (HRI) that are either [11]: 1) 
reactive, that adapt to immediate feedback with no user model; 
2) static, that adapt based on unchanging user information; or 
3) dynamic, that maintain user models and adapt to changing 
user information. To the authors’ knowledge, only two robotic 
systems have been designed using static APS [12], [13]. The 
use of dynamic APS and the combination of static-dynamic 
adaptation have not yet been explored for persuasive robots. 
Dynamic adaptation has been identified as a design principle 
critical to the success of persuasive systems [14]. It allows for 
the continuous APS evolution based on changing user factors 
such as emotions, preferences, and skills [11]. In particular, 
affective state has been shown to have a substantial effect on 
how people process persuasive attempts [15].  

In this paper, we present a novel hybrid hierarchical learning 
architecture that incorporates both static and dynamic user 
adaptation to determine effective persuasive behaviors for a 
socially assistive robot. We use a hierarchical system to 
implicitly learn individual users’ 1) static cognition bias, which 
determines their tendency to be persuaded more by certain 
approaches [16], and 2) dynamic affective preferences, which 
influence how people process persuasive attempts [15]. Our 
proposed architecture incorporates two unique levels: 1) top 
level cognitive biases that are solved using a Contextual Bandit 
(CB) approach to optimize for how an individual processes 
information; and 2) lower level persuasive preferences 
optimized by Q-Learning (QL) to select a persuasive strategy 
for the robot to deploy that aligns with the user’s affect.  

The proposed architecture can be generalizable to different 
persuasion frameworks and applications. Herein, we consider 
the task of a robot persuading someone to exercise considering 
the Elaboration Likelihood Model (ELM) of persuasion [17]. 
ELM considers two different routes by which persuasion is 
processed: central (using rational, deliberate decisions) and 
peripheral (using intuitive, feeling-based decisions). To our 
knowledge, this research is the first to implement a static-
dynamic APS for socially assistive robotics and the first to 
incorporate user state decomposition into persuasive HRI. Our 
methodology allows socially assistive robots to incorporate a 
more humanlike decision-making approach in order to learn to 
adapt to people’s persuasive biases and preferences. 
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II.  RELATED WORK 

Relevant literature reviewed here is: 1) adaptive robots [11], 
[18]–[23]; 2) adaptive persuasive robots [12], [13]; and 3) robot 
hierarchical reinforcement learning (HRL) [2], [24]–[29].  

A. Adaptive Robots 

 There has been extensive research on (non-persuasive) 
adaptivity in HRI, with two recent comprehensive survey 
publications [11], [18]. Reactive adaptive systems have been 
used in social HRI applications such as matching user vocal 
pitch to aide in teaching [19] and mimicking nonverbal 
behaviors to improve social rapport [20]. Meanwhile, static 
adaptive systems in HRI have been used for robot-user 
personality matching [22] and guiding users in dressing while 
adapting to their mobility limitations [21]. 

In general, reactive HRI systems do not distinguish between 
individual users and instead generalize learnings across all 
users [11]. Meanwhile, most static adaptive HRI systems adapt 
based on explicitly established, a priori factors (often obtained 
through questionnaires) or by learning solely on interaction 
successes/failures without considering the influence of user 
context on these outcomes [11], [18]. 

HRI research on dynamic adaptive systems is comparatively 
limited [11]. Dynamic systems benefit from increased 
autonomy, greater robustness, and continual improvement; 
making them better suited to real-world, long-term interactions 
[18]. They have been used by robots to adapt tutoring support 
to a child’s reading level [23] and adapt cognitive training 
assistance to a user’s emotional arousal [2]. By leveraging both 
static user preferences and dynamic adaptation, robot behaviors 
can be adapted on deeper psychological measures, such as user 
cognition and emotional states, leading to a more holistic view 
of a user and more effective adaptation [11], [18]. 

B. Adaptive Persuasive Robots  

To-date, robotic adaptive persuasion has been implemented 
as static APS [12], [13]. In [12], the Tangy interactive robot 
autonomously facilitated a Bingo game, where it used 
persuasive attempts to encourage user actions such as marking 
a Bingo card. The persuasive system selected behaviors from 
either a neutral, praising, suggesting, or scarcity strategy based 
on individual user profiles. These profiles were learned using 
Thompson Sampling based on the success of the different 
strategies in previous interactions. In [13], a Pepper robot 
personalized messages about healthy eating to users based on 
biometric assumptions of age and gender. Convolutional 
Neural Networks (CNNs) were used to classify users by gender 
and age (young, adult, or older adult). The persuasive messages 
were then based on the presumed goals of those age groups (e.g. 
younger users’ goals are to improve physical appearance).  

As previously mentioned both these robots use static APS, 
as they assume that either a user’s profile [12] or age/gender 
[13] do not change during HRI. The Persuasive Systems Design 
(PSD) framework proposes design principles and evaluation 
methods for developing persuasive technologies [14]. Among 
the seven primary design principles recommended by the PSD 
are personalization – offering user-specific persuasive content 
– and tailoring – aligning persuasive content to the immediate 
context of a user. This framework highlights the importance of 

incorporating both static (personalization) and dynamic 
(tailoring) adaptive persuasion. To our knowledge, no robotic 
system has implemented dynamic APS for use in HRI nor has 
one explored the combination of static-dynamic adaptation. 

Research in psychology has identified close to 100 different 
persuasive strategies ranging from altruism to deceit [30]. 
Within persuasive HRI, our own past research has measured 
the persuasiveness of strategies using objective and subjective 
measures including: comparing logical and emotional 
strategies in a robot’s ability to influence participants estimates 
in a guessing game [31]; subjective responses on robot 
persuasiveness, trustworthiness, and willingness to help the 
robot when comparing directness and familiarity effects [32]; 
and comparing the effects of a robot’s use of different authority 
types on its ability to influence user responses in attention and 
memory tasks [33]. Other researchers have investigated 
objective measures such as: robot use of goodwill, similarity, 
or expertise strategies in motivating users’ number of exercise 
repetitions [34]; comparing robot use of social or factual 
feedback in encouraging users to use less energy on a simulated 
washing machine [35]; and comparing reward and coercion 
strategies in influencing user coffee brand selection [36]. 

C. Hierarchical Reinforcement Learning in Robotics 

HRL has been used in social HRI to assist with cognitive 
training activities, such as using MAXQ for memory games [2], 
[24], and for activities of daily living, such as using a POMDP 
approach for providing reminders [25]. CB methods have been 
used in robot grasping applications [26] and playing bandit 
tasks [27], but they have not been hierarchical in nature nor 
used for social HRI applications.  

Hybrid hierarchical control architectures using QL have been 
leveraged by mobile robots to decompose navigation problems 
into multiple levels with different observability. For example, 
in [28], a hybrid structure was used to hierarchically separate a 
robot navigation problem into a high level Semi-MDP with 
abstract task states and actions and a lower level MDP to 
coordinate navigation control. In [29], a hybrid structure had a 
high-level POMDP model of abstract, macro tasks (e.g. target 
search) and a lower level MDP for online navigation. 

In all aforementioned robotics approaches the hierarchical 
structures were used to deconstruct task spaces. A recent 
survey on human-centered RL for social robotics – an approach 
where humans are involved in learning through either implicit 
or explicit rewards or guidance to the agent [37] – highlighted 
the potential value of using hierarchical learning architectures 
to deal with the complexity of human states and feedback [38].  

Though HRL in robotics is typically used to deconstruct task 
spaces [2], [24]–[29], research on app-based recommender 
systems has shown the potential of using HRL for user state 
decomposition [39], [40]. To the authors’ knowledge, no HRL 
approach has been used to optimize robot persuasive behaviors 
by deconstructing user states into hierarchical layers. Our 
proposed hybrid architecture is: 1) the first to incorporate 
dynamic states into a robotic APS in order to jointly consider 
static and dynamic states in a persuasive hierarchical structure, 
and 2) the first to consider user state decomposition in 
persuasive robotics applications. 
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III. HYBRID LEARNING ARCHITECTURE FOR ROBOT 

ADAPTIVE PERSUASIVE SYSTEM 

We have developed a Hybrid Hierarchical Learning (HHL) 
architecture for adapting persuasive behaviors of socially 
assistive robots during assistive HRI, Fig. 1. Our static-
dynamic adaptation architecture is based upon the ELM [17], 
which describes how people process stimuli in order to be 
positively persuaded by others. The ELM considers both static, 
dispositional factors, and dynamic, situational factors for 
influencing the outcome of persuasive attempts. Within our 
architecture, the static dispositional state is the Need for 
Cognition (NfC), a personality bias dictating the tendency for 
an individual to engage in and enjoy thinking [41]. Human 
affect is considered a dynamic, situational state [42], which can 
change during the course of the interaction. The ELM proposes 
two top level routes to persuasive processing [17]: 1) central, 
which focuses on rational consideration of available 
information, and 2) peripheral, which focuses on automatic 
feelings about the presented cues. Research has shown that 
individuals with a high NfC (NfC+) statistically are more 
biased towards the central route, which processes persuasion 
more logically, while those with a lower NfC (NfC-) scrutinize 
arguments less and are more biased towards the more intuitive, 
peripheral route [16]. With both these persuasive routes, 
dynamic situational factors, such as affect, can influence how 
people process persuasive attempts [17]. 

Our HHL architecture builds upon the ELM by incorporating 
both these static and dynamic states into a hierarchical learning 
system. At the top level of the hierarchy, a user’s static, 
unobservable NfC state dictates their bias towards either the 
central or peripheral abstract action, Fig. 1. Though this state 
cannot be explicitly observed, by learning each user’s 
persuasive preferences through rewards obtained from direct 
interactions, the system can implicitly learn to select the 

abstract action that aligns with that user’s NfC bias. The lower 
level of the hierarchy observes user affective states in order to 
learn the selection of appropriate persuasive robot primitive 
actions. Affect is modeled using the six basic emotional states 
of happy, surprise, sad, fear, disgust, and anger [43]. These 
provide a universal framework for estimating affect from non-
verbal modes like facial expressions [44] and body language 
[45]. In the central route, there are a possibility of 6 persuasive 
strategies designed based on Cialdini’s principles of influence: 
reciprocity, commitment, consensus, liking, authority, and 
scarcity [46]. These principles are commonly used in 
persuasive technologies when logical/rational approaches are 
required [9], [10]. For the peripheral route, we designed 6 
persuasive strategies based on the six basic emotions [43]. This 
emotional framework is used, herein, as the use of emotional 
expressions in persuasive attempts has been shown to influence 
how people actually process these attempts, particularly those 
of lower NfC [47]. 

We represent the robot persuasion problem using a hybrid 
approach, where the top layer is modeled as a CB problem and 
the lower level as an QL problem. We discuss the details of 
these approaches below. 

A. Contextual Bandit for Static NfC Bias 

We model the top level of our hierarchy as a CB problem 
[48], as actions (abstract or primitive) do not affect user NfC 
state. Each persuasive attempt made is represented by a discrete 
episode, t. Observations include the current user 𝑢 ∈
{𝑢ଵ … 𝑢ே} and set of available abstract actions �̅� = {𝑎തଵ

 , 𝑎തଶ
} 

together with their feature vector 𝑥௧,, referred to as the context 
[49]. The context vector provides information about both the 
user 𝑢 and action 𝑎ത. At each episode t, the system selects an 
abstract action 𝑎ത௧

 based on prior observations of rewards given 
the context and selected actions (𝑥ଵ,, 𝑎തଵ

 , 𝑟ଵ), …, 
(𝑥௧ିଵ,, 𝑎ത௧ିଵ

 , 𝑟௧ିଵ), and learns by observing the current reward 

Fig. 1. HHL architecture, showing static upper layer with CB policy and dynamic lower layer with QL policies. 
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(provided in response to the low level primitive action taken) 
given the current context and selected action (𝑥௧,, 𝑎ത௧

 , 𝑟௧). The 
goal is to maximize the expected total reward (∑ 𝑬(𝒙𝒕,𝒂,𝒓𝒕)

்
௧ୀଵ ). 

The policy (ℬ) uses Vowpal Wabbit’s Contextual Bandit 
Reinforcement Learning [50] with an epoch-greedy exploration 
approach [48] to maximize 𝑟௧ at each episode. 

The selected abstract action 𝑎ത௧
 informs which lower level 

policy, central (Qc) or peripheral (Qp), will be used to determine 
a robot’s primitive persuasive action. 

B. Q-Learning for Dynamic Affective State  

 QL uses a Markov Decision Process (MDP) formulation to 
model the process of selecting a persuasive primitive action, 
defined by tuple < 𝑆, 𝐴, 𝑅, 𝛵 > [51]. 𝑆 is the set of user 
affective states {𝑠ଵ

 , … , 𝑠
} determined by a robot affect 

estimation system. A is the set of robot persuasive primitive 
actions, a sub-set of which is available to the central policy 
𝐴 = {𝑎ଵ

, … , 𝑎
} and another sub-set to the peripheral policy 

𝐴 = {𝑎
 , … , 𝑎ଵଶ

 }. 𝑅(𝑠௧
 , 𝑎௧

) is the reward function that gives 
a reward 𝑟௧ for selecting primitive action 𝑎௧

 when observing 
user affective state 𝑠௧

 during episode t. 𝑇(𝑠௧ାଵ
 |𝑠௧

 , 𝑎௧
) is the 

transition function that determines whether taking action 𝑎௧
 in 

state 𝑠௧
 will transition the robot into a different state 𝑠௧ାଵ

 . After 
each episode t, the appropriate state-action Q-values are 
updated according to the Bellman equation [52]: 

𝑄∗(𝑠௧
, 𝑎௧

)=𝑄(𝑠௧
, 𝑎௧

) + 𝛼(𝑟௧+ 𝛾 max


𝑄(𝑠௧ାଵ
 , 𝑎௧ାଵ

 ) – 𝑄(𝑠௧
, 𝑎௧

))  (1) 

where α is the learning rate and γ is the discount factor. An 
epsilon-greedy exploration is utilized. 𝑟௧ is determined by 3 
potential outcomes, the robot: 1) persuades the user (𝑎 is a 
goal action that results in user compliance with the robot’s 
persuasive attempt), 2) does not persuade the user and results 
in a user affective state transition (𝑠௧ାଵ

 ≠ 𝑠௧
), or 3) does not 

persuade user and causes no affect state transition (𝑠௧ାଵ
 = 𝑠௧

): 

𝑅(𝑠௧
 , 𝑎௧

) =  𝑟௧ = ቐ

        1,      𝑎               

   −0.5,      𝑠௧ାଵ
 ≠ 𝑠௧

    

 −0.1,      𝑠௧ାଵ
 = 𝑠௧



         (2) 

A larger negative reward for 𝑠௧ାଵ
 ≠ 𝑠௧

  represents a more 
substantial penalty for the robot’s persuasive behavior failing 
to persuade the user and leading to a user affect change 
(assumed to be unwanted). This reward was kept consistent 
across all state changes to avoid making broad assumptions on 
the relative persuasive goodness/badness of specific states for 
each user. A smaller negative reward for 𝑠௧ାଵ

 = 𝑠௧
 represents 

a penalty for failed persuasion but no affective state change. 

IV. HRI SIMULATED EXPERIMENTS  

We conducted simulated experiments to evaluate the 
performance of our HHL architecture in determining robot 
persuasive behaviors for users with different dispositional 
biases and situational preferences. Namely, we ran comparison 
studies to investigate: 1) training performance, 2) robustness 
with respect to longitudinal user preference change, and 3) 
robustness to the introduction of noisy observations. 

In our HRI scenario, a socially assistive robot interacts daily 
with a group of 100 users for a period of one year, one 

individual at a time, attempting to persuade each to complete 
their exercise routine. We used an exercise scenario as exercise 
is one of the most common target applications for persuasive 
systems [53]. In this scenario, a robot identifies the user, 
estimates their affective state, and then attempts to persuade 
them to exercise using a selected: 1) central strategy, such as 
consensus (i.e. “everyone else I have spoken to today has done 
their exercises”) or commitment (i.e. “you promised me that 
you would complete your exercises today”); or 2) peripheral 
strategy, such as happy (i.e. “it would make me happy if you 
completed your daily exercises”) or surprise (i.e. “I’d be 
surprised if you didn’t want to do your exercises today”). 

A. User Model 

Users are first randomly assigned as either NfC+ or NfC- and 
only the relevant primitive actions (central for NfC+, peripheral 
for NfC-) are given positive, goal rewards (𝑎). The distribution 
of goal rewards (𝑎, 𝑟௧=1) is determined by the persuade/goal 
rate (𝑝). Namely, a higher persuade rate represents a greater 
number of state-action pairings that lead to successful 
persuasion. The distribution of transition rewards (𝑠௧ାଵ

 ≠ 𝑠௧
, 

𝑟௧=-0.5) is determined by the transition rate (𝑝்); a higher 
transition rate represents more state-action pairings that lead to 
user affect change. All other state-action pairings are given the 
default reward (𝑠௧ାଵ

 = 𝑠௧
, 𝑟௧=-0.1) indicating no successful 

persuasion or state change. 
 For all transition rewards, the transition function determines 

a subsequent state for the user to change to (𝑠௧ାଵ
 ≠ 𝑠௧

). For 
peripheral actions leading to transition, the user’s subsequent 
state becomes the same as the emotion the robot deployed 
during its previous action (𝑠௧ାଵ

 = 𝑎௧
), as robot-to-person 

emotion contagion, the automatic transfer of affective states, 
has been observed in a number of social HRI studies [54]. For 
example, if the robot uses a persuasive strategy based on 
sadness that leads to a user state transition, the subsequent user 
affective state will be sad as well. For any central action leading 
to transition, we model the user’s subsequent state as anger 
(𝑠௧ାଵ

 = 𝑠
), since the persuasion knowledge model identifies 

that awareness of being persuaded increases skepticism toward 
the persuader and causes affective reactions of negative valence 
such as anger [55]. 

B. Comparison Method 

We compare the performance of our HHL method against a 
flat POMDP method since a non-hierarchical formulation of 
the persuasion problem would consist of a partially observable 
state space; while affective state is observable, NfC bias is 
unobservable. Since the state space is discrete, we treat the 
POMDP as an equivalent belief MDP [56] defined by the tuple 
< 𝐵, 𝑍, 𝐴, 𝜌, 𝑃 >. B is the state belief space {𝑏ଵ, … , 𝑏ଵଶ} (2 NfC 
states x 6 affect states) informed by Z affect observations 
{𝑧ଵ

 , … , 𝑧
} = {𝑠ଵ

 , … , 𝑠
} with available primitive actions A 

={𝑎ଵ
 , … , 𝑎ଵଶ

 }. At each episode t, the belief MDP reward 
function 𝜌(𝑏௧ , 𝑎௧

) = ∑ 𝑏(𝑠௧
)𝑅(𝑠௧

 , 𝑎௧
)௦  gives the expected 

reward from the POMDP reward function 𝑅(𝑠௧
 , 𝑎௧

) given over 
the belief state probability distribution 𝑏(𝑠௧

). The transition 
function 𝑃(𝑧௧ାଵ|𝑏௧ , 𝑎௧

) determines the subsequent observation 
𝑧௧ାଵ for taking action 𝑎௧

 during belief state 𝑏௧. Since the state 
space is partially observable (e.g. the robot can observe 
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“happy” but not know whether a user is NfC+ or NfC-), each 
episode must form a probabilistic belief distribution over 𝑆: 
𝑏(𝑠௧

). An optimal policy can be learned as a greedy policy with 
respect to the Bellman equation for a belief MDP [57]:  

𝑉௧
∗(𝑏௧) = max


[ ∑ 𝑏(𝑠𝑡

𝑎)௦ 𝑅(𝑠𝑡
𝑎, 𝑎௧

)+𝛾 ∑ 𝑃(𝑧௧ାଵ|𝑏௧, 𝑎௧
)௭ 𝑉௧ିଵ(𝑏௧)] (3) 

where 𝑉௧(𝑏௧) is the value function, maximized by optimal 
action 𝑎௧

, and γ is the discount factor. We use the same reward 
function (2) and epsilon-greedy exploration approach as HHL. 

C. Experiment #1: Training Performance 

To compare the learning rate of the HHL model against the 
POMDP, a series of 10 simulated trials were conducted with 
one set varying persuade rates (𝑝= 10%, 20%, 30%, 40%, 
50%) and one set of varying transition rates (𝑝்  = 40%, 50%, 
60%, 70%, 80%). Both methods were able to learn an optimal 
policy for persuading users. Learning parameters were defined 
to be α=0.2, γ=0.05, and ε=0.2. 

1) Results 
Convergence graphs comparing normalized cumulative 

rewards for both the HHL (blue) and POMDP (red) methods 
for a year of daily interactions with 100 users are shown in Fig. 
2 (varying persuade rate) and Fig. 3 (varying transition rate). In 
general, HHL took on average 7,431 (σ=1,353) episodes to 
converge, versus POMDP which took on average 11,105 
(σ=1,113) episodes. HHL also accumulated more average total 
cumulative rewards (µ=23,107; σ=2,424) than POMDP 
(µ=17,841; σ=1,804), indicating fewer failed persuasive 
episodes and faster persuasive success, regardless of persuade 
and transition rates. A parametric dependent t-test found this 
difference in total cumulative rewards to be statistically 
significant (t(9)=20.1, p<0.0001). Shapiro-Wilk tests 
confirmed normality of our data for both HHL (W(10)=0.934, 
p=0.49) and POMDP (W(10)=0.966, p=0.85). 

Between trials, the total cumulative rewards obtained by the 
HHL increased by an average of 5.7% (σ=1.5%) per every 10% 
𝑝 increase (from 10%-50%) compared to 3.6% (σ=0.6%) for 
POMDP, Fig. 2. Meanwhile, HHL decreased by an average of 
2.8% (σ=1.4%) per every 10% 𝑝்  increase (from 40%-80%) 
compared to 4.2% (σ=1.6%) for POMDP, Fig. 3. 

D. Experiment #2: Robustness to User Preference Change 

To test the robustness of the HHL method to changes in user 
preferences over time, we ran an additional 10 trials, however, 
in these trials we allowed user state-action preferences to 
change at multiple intervals (at 1 and 2 years). While NfC bias 
is assumed to be static over time [58], affective state 
preferences can change longitudinally [42]. As such, after 
interacting with the users for 1 year, their lower level state-
action pairing preferences changed via random reassignment of 
reward values for each user. We randomly reassigned state-
action pairing preferences again at 2 years. For example, a 
NfC+ user that was initially persuaded by the consensus 
strategy when happy, might have changed to being persuaded 
by a commitment strategy at 1 year, and then changed to being 
persuaded by the reciprocity strategy at 2 years. However, their 
NfC+ bias towards logical strategies did not change. All other 
parameters were the same as experiment #1. 

 
Fig. 2.  Experiment #1 convergence graphs for HHL (blue) and POMDP (red) 

trials with varying persuade rate (𝑝) and total cumulative reward (Rc). 

 
Fig. 3.  Experiment #1 convergence graphs for HHL (blue) and POMDP (red) 

trials with varying transition rate (𝑝்) and total cumulative reward (Rc). 

1) Results 
Graphs comparing normalized cumulative rewards for both 

HHL (blue) and POMDP (red) methods with 100 users are 
shown in Fig. 4 (varying persuade rate) and Fig. 5 (varying 
transition rate), with preference changes visible at 1 and 2 
years, respectively. We observed that after both user preference 
changes, our HHL method converged on average at 101,401 
(σ=13,539) episodes, while POMDP converged, on average, at 
130,010 (σ=18,153) episodes. HHL also accumulated more 
average total rewards (µ=96,315; σ=9,238) than the POMDP 
(µ=80,205; σ=10,136) having more successful persuasive 
interactions overall. A dependent t-test found this difference in 
total cumulative rewards to be statistically significant 
(t(9)=39.32, p<0.0001). Shapiro-Wilk tests also confirmed 
normality of our data for both HHL (W(10)=0.849, p=0.06) and 
POMDP (W(10)=0.904, p=0.24). 

Between trials, the total cumulative rewards obtained by the 
POMDP increased by an average of 6.9% (σ=0.6%) per every 
10% 𝑝 increase (from 10%-50%) compared to 5.6% (σ=1.1%) 
for HHL, Fig. 4. Meanwhile, HHL decreased by an average of 
1.4% (σ=1.5%) per every 10% 𝑝்  increase (from 40%-80%) 
compared to 3.0% (σ=1.1%) for POMDP, Fig. 5. 
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Fig. 4.  Experiment #2 convergence graphs for HHL (blue) and POMDP (red) 

trials with varying persuade rate (𝑝) and total cumulative reward (Rc). 

 
Fig. 5.  Experiment #2 convergence graphs for HHL (blue) and POMDP 

(red) trials with varying transition rate (𝑝்) and total cumulative reward (Rc). 

 
Fig. 6.  Experiment #3 convergence graphs for HHL (blue) and POMDP (red) 

trials with varying noise rate (𝑝) and total cumulative reward (Rc). 

E. Experiment #3: Robustness to Noisy Observations 

A third simulation was conducted to investigate the effects 
of noise in the affect estimation module. For these trials, the 
persuade and transition rates were held constant at their default 
values (𝑝= 10%, 𝑝்= 40%,) and affect estimation noise was 
introduced via a noise rate (𝑝= 10%, 20%, 30%, 40%, 50%). 
The noise rate represented the probability of the detected user 

affect being randomly assigned to another affective state. All 
other learning parameters were consistent with experiment #1. 

1) Results 
A graph of normalized cumulative rewards for varying noise 

rates for both the HHL (blue) and POMDP (red) methods is 
presented in Fig. 6. In general, HHL took on average 15,283 
(σ=6,549) episodes to converge, versus POMDP which took on 
average 22,505 (σ=9,626) episodes. HHL accumulated more 
cumulative rewards (µ=14,766; σ=5,773) than POMDP 
(µ=9,989; σ=5,500), indicating fewer failed persuasive 
episodes and faster persuasive convergence. A dependent t-test 
found the difference in total cumulative rewards to be 
statistically significant (t(4)=25.7, p<0.0001). Shapiro-Wilk 
tests confirmed normality of our data for both HHL 
(W(5)=0.971, p=0.88) and POMDP (W(5)=0.979, p=0.93). 

Between trials, the total cumulative rewards obtained by the 
HHL decreased by an average of 22.7% (σ=5.2%) per every 
10% 𝑝 increase (from 10%-50%) compared to 32.5% 
(σ=11.61) for POMDP, Fig. 6. 

We then conducted a test scenario where 100 simulated users 
were persuaded by the robot to exercise over the course of 365 
days. An additional five trials were conducted with similar 
noise rates of 10-50%. We observed each method’s persuasive 
success rate across the five noise rates for both the robot’s first 
and second attempts, Table I. Our HHL method had higher 
average compliance rates on both the first and second attempts 
for all noise levels. 

TABLE I   COMPLIANCE RATES FOR 1ST AND 2ND PERSUASIVE ATTEMPTS  

𝑝 HHL 1st  
Attempt 

HHL 2nd 
Attempt 

POMDP 1st 
Attempt 

POMDP 2nd 
Attempt 

10% 93.3% 98.9% 82.4% 87.5% 

20% 82.5% 91.9% 72.9% 80.9% 

30% 70.8% 81.8% 52.1% 59.7% 

40% 56.9% 67.0% 41.6% 49.2% 

50% 47.2% 55.8% 23.9% 27.8% 

V. DISCUSSIONS 

Our objectives with this research were to propose a novel, 
hybrid hierarchical APS for HRI that could incorporate both 
static and dynamic user preferences, learn faster than a non-
hierarchical approach, and be robust to longitudinal user 
changes. Our simulation results indicate a promising 
architecture that satisfies these objectives. Our HHL method 
outperformed the POMDP for all trials across all three 
experiments. Herein, we will discuss the detailed effects of 
varying persuade rate, transition rate, and noise rate on adaptive 
persuasion as well as some study considerations. 

A. Effects of Persuasion Rate 

By changing the persuade rate we simulate users who are not 
easily persuaded (𝑝=10%) to those who are more persuadable 
(𝑝=50%) by different robot behaviors. In experiment #1, we 
observed a larger average increase in cumulative reward gain 
for our HHL method due to increasing persuade rate compared 
to the POMDP method. In experiment #2, when user 
preferences changed, the opposite was observed: the POMDP 
method had a larger average increase in cumulative reward gain 
due to increasing persuade rate than the HHL.  
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The effect of increasing persuade rate on HHL had a very 
similar effect on rewards between the two experiments, 
showing that it responded more consistently to the two 
scenarios. The POMDP method benefitted from the increasing 
persuade rate for the latter experiment. This improved 
performance of the POMDP in experiment #2 due to increased 
persuade rate was presumably because at higher persuade rates, 
the 1 and 2 year changes were less impactful. This is because 
statistically, some of the preference changes may have resulted 
in no preference change if the new pairing randomly selected 
an old pairing (e.g. for 𝑝=10%, 1 of 6 actions led to persuasion 
and was statistically likely to change to one of the other 5 
actions; for 𝑝=50%, 3 of 6 actions led to persuasion, with half 
a chance of being reassigned to prior pairings). Regardless, the 
HHL still outperformed POMDP on the least persuadable users 
(𝑝=10%) and all other trials.  

B. Effects of Transition Rate 

By increasing the transition rate, we simulate users who are 
more likely to change their affective state due to robot 
persuasive actions. As transition rate increased in experiment 
#1, we observed a slower average decrease in cumulative 
rewards for the HHL model compared to the POMDP. In 
experiment #2, a similar but smaller decrease was observed: 
HHL once again has a slower average decrease in rewards 
compared to POMDP. This suggests that the HHL model is 
better at handling increased transition rates (i.e. users who more 
frequently change affective state due to robot actions) 
presumably due to the reduced state space afforded by learning 
a user’s static NfC bias in the hierarchical structure. 

C. Effects of Noise 

In experiment #3, as affect noise increased, a slower average 
decrease in cumulative rewards was observed for our HHL 
method compared to the POMDP method. This suggests that 
the HHL model is more robust to observation noise. This is 
likely due to the hierarchical structure of the HHL architecture 
versus the non-hierarchical POMDP. For POMDP, there is only 
one overall policy which would directly learn from such noisy 
observations, whereas in the HHL, three separate policies are 
learned due to its hierarchy, and the noise only affects the 
learning of two of the policies in any given episode. 

D. Considerations & Limitations 

The HHL approach is a general architecture and is not 
limited to any one psychological framework (i.e. ELM) or set 
of state/action definitions. What is critical to the architecture is 
the hierarchical structure that separates dynamic user states in 
one level from static states in another to enable the use of a 
hybrid approach; in our case, a top level CB method and lower 
level QL method to deal with different state observabilities.  

We also compared our HHL method to other ablations (e.g. 
considering exclusively static-only or dynamic-only user 
states). The HHL method performed substantially better than 
these ablations. The POMDP approach presented herein also 
performed better than the ablations and was therefore presented 
in this study as the most competitive benchmark for the HHL. 

In our experiments, we assumed that every user state had at 
minimum one successful robot persuasive action associated 

with it. In reality, some users may be unpersuadable in certain 
states [59], [60]. As such, while our system tenaciously 
attempted to persuade a user multiple times until succeeding 
for learning purposes, in real-world settings, much like with 
human persuasion, a robot would need to learn when to give up 
after an appropriate number of attempts and when to try again. 

VI. CONCLUSIONS 

In this paper, we proposed a novel, hybrid hierarchical APS 
architecture for socially assistive robots engaging in persuasive 
HRI. The architecture uniquely separates static, dispositional 
user states (such as NfC) and dynamic, situational states (such 
as affect) in a hierarchical structure, using a CB method to 
optimize the top level policy for cognition bias and a QL 
method to optimize the lower level affective strategy 
preferences. Simulated experiments showed that the HHL 
converges at a faster rate than a non-hierarchical method, is 
more robust to longitudinal user preference change, particularly 
for users with a high transition rate (i.e. whose affective state 
can change more easily due to robot persuasive behavior), and 
is more robust to observation noise. Future research will 
incorporate our HHL methodology within the control 
architecture of a social robot with complementary perception 
and control modules to investigate the effectiveness of this 
proposed static-dynamic adaptive approach in real-world 
persuasive HRI scenarios. These modules will include user 
identification, affect classification, and interaction and activity 
monitoring, where the later will monitor the quality of the 
interaction and compliance/engagement of the user during 
adaptive persuasion.  
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