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Abstract— Robot search for multiple dynamic users within a 

multi-room environment is important for social robots to find 

and engage in various human-robot interaction scenarios with 

these users. In this paper, we present a novel autonomous person 

search technique for a robot finding a group of dynamic users 

before a deadline. The uniqueness of our approach is that unlike 

existing robot search methods, we consider activity information 

to predict where, when, and for how long a user will be in a 

specific room. This allows for the generation of search plans 

without any assumption on the frequency of user movements. We 

represent our search problem as an extension of the orienteering 

problem, which we define herein as the robot person search 

orienteering problem (PSOP). User activity information is 

represented as spatial-temporal user activity probability density 

functions (APDFs). We solve the PSOP using APDFs to generate 

a search plan to maximize the expected number of users found 

before the deadline. The solution of the PSOP is obtained in two 

steps. First, by solving a variant of the multiperiod knapsack 

problem to determine which rooms should be searched and for 

how long these rooms should be searched. Then we solve the 

traveling salesman problem to obtain the order in which to 

search these rooms. Experiments were conducted to validate the 

performance of our robot search method in finding different 

numbers of multiple dynamic users for varying environment sizes 

and search durations. We also compared our method with two 

coverage planners and a Markov decision process planner. On 

average, our planner found more users than the other planners 

for a variety of scenarios. Lastly, we performed experiments that 

introduced uncertainty into both the APDFs as well as during the 

search to validate the robustness of our overall approach. 

Note to Practitioners— The majority of current social robot 

applications either consider users being collocated with the robot 

in the same region or users being static within another region in 

the environment. However, several applications exist where users 

are dynamic within their environments and for which a robot 

needs to find them in order to provide assistance, for example, in 

office buildings, airports, museums, hospitals, and long-term care 

facilities. In general, these users are performing activities within 

these regions. We uniquely consider such activity information in 

order to model user location probabilities. We developed a robot 
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search planner that uses these probabilities to find users of 

interest in multi-room environments. The planner is novel as it 

reasons about when and which regions to search and for how 

long, as well as if the same region needs to be searched multiple 

times as users can perform multiple activities during the search 

time frame in the same region or revisit a region to perform a 

new activity. We have integrated the search planner within a 

robot system architecture. The robot travels to each region and 

then uses a local planner to navigate to locations within the 

region. At each location, a person identification technique is used 

to identify the target users in order to engage in human-robot 

interactions. Experiments were performed for two search 

applications: 1) a simulated Blueberry robot finding multiple 

residents in a virtual representation of one of our collaborating 

long-term care facilities, and 2) the physical Blueberry robot 

finding multiple staff/students on a physical floor of a university 

building. For both experiments, plans were generated on the 

robot’s onboard Lenovo Thinkpad X230 using the Robot 

Operating System (ROS) in Ubuntu. User activity data and maps 

used for the experiments in the care facility can be found on our 

website, here, under multi-user robot search. The physical 

Blueberry robot was also equipped with an ASUS Xtion IR depth 

camera, a Logitech pro c920 RGB camera, and a Hokuyo laser 

range finder for person identification and navigation in the 

environment. The results showed that our system was effective at 

finding multiple dynamic users under varying environment sizes 

and search durations. Our search planner also outperformed 

other planners and was robust to uncertainties in the user model. 

Future work will consider environments with multiple floors and 

crowded regions, planners which directly reason about 

environment dynamics, and local planners which reason about 

user location probabilities within regions.  

 
Index Terms— Social robots, search plans, multiple dynamic 

users, human-robot interaction, orienteering problem. 

I. INTRODUCTION 

OBOTS can be used to search for people in many 

different environments, such as inside buildings [1]–[18], 

and outdoor urban [19]–[23] and natural [24]–[26] settings. 

Applications in these environments range from search and 

rescue [1]–[5],[24]–[26], surveillance and monitoring [6]–

[10],[19]–[23], to assisting users with daily tasks [11]–[18]. 

Social robots, in particular, have been developed to aid 

users through interactions in a variety of human-centered 

environments. For example, robots have been used as guides 

in museums [27] and airports [28]. Furthermore, robots have 

assisted guests in hotels with services such as item delivery 

[29]. In private homes, social robots have helped with meal 
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preparation [12] and provided teleconferencing [13]. 

Social robots have also been used in various healthcare 

environments, including long-term care facilities and 

hospitals. In long-term care, they have provided assistance to 

older residents by guiding them to appointments [30], 

providing prompting assistance with eating [31], and giving 

reminders of upcoming activities [18]. They have also assisted 

with recreational activities, such as facilitating interactive 

reading groups [32], Bingo [33], and Trivia [34]. In hospital 

settings, social robots have guided patients and visitors [35]. 

The applications mentioned above can benefit from the 

robots being able to effectively search for a single person or 

multiple people of interest in the environment, in order to 

provide the necessary assistance via human-robot interaction 

(HRI). However, currently the majority of existing social 

robot applications assume that the users are initially collocated 

with the robots [27]–[35]. If they are not collocated, the robots 

are mainly searching for a single static user [11]–[13],[15]. 

A handful of methods have been developed to consider 

dynamic users [14],[16]–[18], using spatial-temporal 

probability density functions (PDFs). For example, in [14], a 

hidden Markov model was used to model a user’s location. In 

[16], a user location PDF was modeled using a Bayesian 

network considering evidence observed in the environment 

during the search. In [17], a user location PDF was modeled 

using the frequency of visitation of the user to regions in the 

environment. In [18], user location PDFs were modeled using 

a combination of location frequency patterns, last known 

locations, and spatial-temporal information from user 

schedules. To the authors’ knowledge, a person search 

technique has not yet considered both spatial-temporal user 

location probabilities and user activity probability information.  

In this paper, we present a novel multi-person search 

planner to allow a robot to find, in real-time, multiple dynamic 

users in a multi-room environment. We uniquely model our 

problem as an extension of the orienteering problem (OP) 

[36], which we define herein as the person search orienteering 

problem (PSOP). Our approach is an extension of our 

unpublished workshop paper [37] which first introduced the 

concept of modeling this search problem as a combinatorial 

optimization problem. However, in the workshop paper, only a 

spatial-temporal user location PDF was used with the planner. 

The proposed PSOP extends this initial problem definition by 

introducing unique user activity probability density functions 

(APDFs), which model the dynamic users’ behaviors 

considering activity regions, start times, and durations, to 

determine the probability of users remaining in a specific 

region or revisiting a region to perform an activity. As a result, 

the PSOP can be used to model users with varying levels of 

dynamic behaviors without assumptions on the frequency at 

which users move between regions. 

Our novel multi-person search planner (MPSP) solves the 

PSOP in real-time to provide search plans which maximize the 

expected number of dynamic users found before a deadline. 

This planner uses a two-stage approach: 1) a variant of the 

multi-period knapsack problem [38] is first solved to 

determine which regions to search and the duration to search 

each region, and 2) the traveling salesman problem (TSP) [39] 

is solved to determine the order in which to search the regions.  

II. RELATED WORKS 

Herein, we discuss existing person search methods 

deployed by robots, and introduce orienteering problems 

which can be used to model our new person search problem. 

A. Person Search by Robots 

Existing person search approaches for robots can be 

categorized based on their specific application: 1) search and 

rescue, 2) surveillance and monitoring, and 3) task assistance. 

The objective of time-critical search and rescue missions is 

to minimize the time to find victims. For example, in urban 

scenarios involving static victims and no prior location 

information, robots have used exploration techniques to 

maximize coverage in unknown environments [1]–[3]. These 

techniques include a team of robots executing graph traversal 

algorithms [1] and frontier exploration methods [2],[3]. When 

prior information was available, static victim discovery time 

was minimized using either dynamic programing [4], or a 

multi-agent partially observable Markov decision process 

(POMDP) solved with a discounted 𝑑-step lookahead planner 

[5]. In wilderness environments, a lost person’s location PDF 

has been used, based on the victim’s last known location and 

motion model [24]–[26]. In these searches, robots iteratively 

move to and search the location with the highest user location 

probability according to their location PDF.  

In surveillance and monitoring problems, robots are used to 

protect an environment from malicious attackers. Given no 

prior attacker location information, teams of robots have 

performed searches which minimize the time to fully cover 

known environments [6],[19]–[21]. With prior information, 

lookahead techniques have been implemented to minimize 

uncertainty within the environment [22],[23]. Problems which 

require robots to both clear regions and block access from 

uncleared to cleared regions have been addressed using 

recursive blocking in a tree topology [7]; frontier exploration 

[8]; mixed integer programming [9]; and breath-first search 

[10].  

In task assistance problems, robots search for users within 

indoor structured environments to assist them with specific 

tasks. The environments are generally divided into regions 

with each user being assigned a probability density for each 

region [11]–[18]. One-step lookahead techniques have been 

used to search the highest probability location when searching 

for static [11]–[13] or dynamic [14] users. A POMDP 

lookahead planner to search for a single dynamic user was 

also used [16]. Markov decision process (MDP) planners have 

also been designed for static [15] or dynamic [17],[18] users.  

1) Summary and Challenges 

The aforementioned person search methods can all be 

classified into the following categories: 1) full environment 

coverage planners [1],[2],[6]–[10],[19]–[21], 2) lookahead 

planners [3],[5],[11]–[14],[16],[22]–[26], and 3) MDP-based 

planners [4],[15],[17],[18]. 
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When considering our robot search problem of looking for 

multiple dynamic users in a multi-room environment before a 

deadline, the aforementioned approaches have several 

limitations. In particular, full environment coverage 

techniques apply equal importance to searching each location 

within the environment as they do not use any prior user 

location information. Lookahead planners, on the other hand, 

use prior user location information to choose optimal search 

actions in the near future, however, they do not consider the 

entire search duration. This can generate plans in which search 

actions are performed that result in sub-optimal future actions. 

MDP-based planners can generate optimal search plans 

while considering the full search duration, however, due to the 

Markovian assumption, the plans consider the probability of 

finding a user as a function of only the current state. 

Therefore, the history of when previous regions were searched 

is not available. As a result, a robot may end up searching a 

region, and then without considering the most likely time at 

which a user would have revisited the region, search the same 

region again. 

B. Orienteering Problems (OPs) 

The original orienteering problem considers a game where a 

player moves within a known environment to travel between 

pre-specified locations known as control points. A reward is 

available at each control point and travel time is known 

between each pair of control points [36]. Given a total amount 

of time that can be spent by a single player, the objective is to 

select an ordered subset of control points to be visited such that 

the total reward is maximized. OPs have recently been applied 

to robot task planning [40], robot surveillance [41], and robot 

building clearing [42] problems. 

OPs that have extended the original problem can be 

categorized into problems that consider: 1) time-dependent 

rewards, 2) history-dependent rewards, 3) multiple visits to a 

point, or 4) reward acquisition time. 

1) Orienteering Problems with Time-Dependent Rewards 

OPs with time-dependent rewards can be categorized into 

ones that have: 1) rewards that change linearly over time 

[43],[44], 2) rewards that are discontinuous over time [45], or 

3) rewards that are available only within a specific time 

window [46]–[49]. Although the rewards in these problems 

change over time, the rewards collected at each control point is 

independent of previously acquired rewards. 

2) Orienteering Problems with History-Dependent Rewards 

OPs with history-dependent rewards consider how the 

reward at a control point changes depending on previously 

visited control points. History-dependencies can be categorized 

as follows: 1) constraint on the minimum or maximum number 

of control points of a certain type (e.g., visiting at least one art 

exhibit in a museum, visiting at most two exhibits) [47],[48], 2) 

incompatibility between control points (e.g., visiting only one 

art exhibit) [50], or 3) non-binary history-dependence (e.g., 

visiting a second art exhibit having half the reward of the first 

exhibit) [51]. Although the above problems consider history, 

none allow for a control point to be visited more than once.  

3) Orienteering Problems with Multiple Visits to a Point 

A handful of problems have allowed for multiple visits to a 

control point [41],[49],[52]. For example, in [41] each control 

point had a time-dependent reward, and could be searched 

repeatedly. However, the rewards were not history-dependent. 

In [52], multiple vehicles visited blood banks to acquire 

donated blood, available within six hours of being donated. 

For a repeated visit to a location, any reward acquired within 

the past six hours could not be acquired again. In [49], a 

tourist trip-planner generated a plan with multiple visits by 

computing the reward as a function of the entire plan and 

starting time, as opposed to assigning a reward to each 

individual action in the plan. Although the techniques 

presented in both [49] and [52] considered the rewards for 

multiple visits to a control point, neither of these techniques 

reasoned about situations in which the reward received at a 

control point varies with the amount of time spent at that 

control point.  

4) Orienteering Problems with Reward Acquisition Time 

The majority of problems have assumed that time is only 

spent traveling between control points, however some 

problems also considered time spent at the control points to 

acquire rewards. Reward acquisition time can be categorized 

as: 1) a constant acquisition time with a constant reward [47]–

[49],[53], or 2) a variable acquisition time with a proportional 

reward [45],[54]. However, in both [45] and [54], the OP did 

not consider rewards that are dependent on the time of day and 

the control points could only be visited once. 

5) Summary and Challenges 

To-date, none of the aforementioned techniques have 

simultaneously considered all four of the OP extensions 

discussed above. However, to appropriately represent the 

person search problem for task assistance, it is necessary that 

the PSOP incorporates all these extensions. In the PSOP, 

control points represent searchable regions and rewards 

represent the expected number of target users found while 

searching a region. As the users are dynamic, a user may enter 

a region subsequent to the robot’s search, and therefore, the 

robot may be required to search a region multiple times. Also 

due to dynamic user behavior, the probability of finding a user 

in a region changes with the time of day and is dependent on 

when the region was last searched. Furthermore, the users may 

have preferred locations within the regions, and as a result it 

may be desirable to only search portions of the region. 

Therefore, in our work we uniquely incorporate the 

combination of non-binary history-dependent rewards available 

within specific time windows, with variable reward acquisition 

times and multiple visits to a region.  

III. ROBOT PERSON SEARCH PROBLEM (PSOP) 

Our PSOP requires a mobile social robot to look for multiple 

dynamic users in a multi-room environment. Each search must 

be completed before a specified deadline. Upon finding a user, 

the robot initiates an assistive interaction with the user. In 

comparison with the original OP, our PSOP replaces: 1) control 

points with regions, 2) travel time between control points with 
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both travel time between regions and search time at the 

destination region, and 3) control point rewards with 

probabilities of finding users in the region. A complete list of 

symbols used herein is provided as supplementary material. 

Environment: The search environment is composed of 

regions 𝑅 (𝑅1, 𝑅2, …, 𝑅𝐼). Physical boundaries such as walls 

define each region. Regions are designated as neighbors if they 

are physically accessible from one another, i.e., contain a 

mutual doorway. The time it takes the robot to traverse the 

shortest path between 𝑅𝑖 and 𝑅𝑖′  is denoted as 𝑡𝑖
𝑖′

. Robot paths 

in the environment are obtained by successively moving to 

neighboring regions. Regions are categorized by the type of 

activities that can be performed in the region, e.g., eating 

occurs in the dining room. 

Activities: An activity 𝐴𝑚 denotes a task undertaken by a 

user. Examples of activity categories are: eating, meetings, 

watching television, reading, and taking a nap. 

Users: The users in the shared environment are denoted as 𝑈 

(𝑈1, 𝑈2, …, 𝑈𝑁). Throughout the day, users perform activities 

in regions for varying durations of time. 

Social Robot: The social robot searches for target users by 

moving in the environment. It can navigate at a max speed of v 

m/s that is based on the average speed of the users who 

regularly occupy the environment. The robot can execute the 

following actions: search, wait, and interact. The search action 

requires the robot to move to a region and search locally within 

the region. The wait action is performed when the robot needs 

to stop, e.g., to allow a person to pass to avoid a collision or to 

prevent starting a search action when ahead of schedule. The 

interact action is performed once a target user is found. 

Search query: The search query 𝑆 identifies a set of target 

users 𝑈′ (𝑈1
′ , 𝑈2

′ , …, 𝑈𝑍
′ ) to be found by the robot between a 

time frame, 𝑡𝑠𝑡𝑎𝑟𝑡 to 𝑡𝑒𝑛𝑑
. Each time frame is composed of 

several discrete time periods 𝑇 (𝑇1, 𝑇2, …, 𝑇𝛺) of length 

𝑡𝑝𝑒𝑟𝑖𝑜𝑑. A contiguous subset of 𝑇, 𝑇𝑗,𝑘 = {𝑇𝑗 , … , 𝑇𝑘}, is referred 

to as a time window. For example, for a time frame from 

𝑡𝑠𝑡𝑎𝑟𝑡 = 10: 00 to 𝑡𝑒𝑛𝑑 = 10: 15, with 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 = 5 minutes, 

𝑇1 = 10: 00 − 10: 05, 𝑇2 = 10: 05 − 10: 10, and 𝑇1,2 =

10: 00 − 10: 10. 

Search Plan: A search plan 𝑆𝑃 is a sequence of search 

actions to be executed by the social robot in response to the 

search query 𝑆: 

 𝑆𝑃 = {𝑎1, … , 𝑎𝐻}, (1a) 

 𝑎ℎ = 𝑎𝑖(ℎ),𝜔(ℎ), (1b) 

 𝑡(ℎ) = 𝑡(𝑎𝑖(ℎ),𝜔(ℎ)) ∈ {0, 𝑡𝑢𝑛𝑖𝑡 , 2𝑡𝑢𝑛𝑖𝑡 , … , 𝑡𝑚𝑎𝑥}, (1c) 

where 𝑎𝑖(ℎ),𝜔(ℎ), denotes the ℎ𝑡ℎ  search action of 𝑆𝑃 which is a 

search of region 𝑅𝑖(ℎ) during time period 𝑇𝜔(ℎ) for a duration 

of 𝑡(𝑎𝑖(ℎ),𝜔(ℎ)). The possible search times within a region are 

discretized into increments of 𝑡𝑢𝑛𝑖𝑡 seconds, with a maximum 

of 𝑡𝑚𝑎𝑥 seconds.  

IV. USER LOCATION MODEL 

The user location PDFs are used to generate the rewards 

needed in the PSOP. These PDFs are determined using activity 

probability density functions which specify the probability of 

an activity being performed by a user. 

A. Activity Probability Density Function (APDF) 

A user APDF is defined as: 

 𝑃[𝛿𝑧,𝑖,𝑗,𝑘] =
C[𝛿𝑧,𝑖,𝑗,𝑘]

𝜉𝑧
, (2) 

where 𝛿𝑧,𝑖,𝑗,𝑘 denotes the occurrence of an activity being 

performed by 𝑈𝑧
′  in 𝑅𝑖 sharing a start time with 𝑇𝑗 and an end 

time with 𝑇𝑘. C[𝛿𝑧,𝑖,𝑗,𝑘] is the number of incidences of 𝛿𝑧,𝑖,𝑗,𝑘 

observed in the environment. Namely, past user activity data 

can be obtained from observations of each 𝑈𝑧
′  in the 

environment for a duration of 𝜉𝑧 days. These 

observations, 𝐷(𝑑1, 𝑑2, …, 𝑑𝑌), are stored in a database, where 

each 𝑑𝑦 is a tuple containing: an activity, a user, a region, a 

start time, and an end time. The APDF is then determined 

using the frequency in which 𝛿𝑧,𝑖,𝑗,𝑘 occurs in D. 

There are two special cases in which 𝑑𝑦 may not have a start 

or end time that directly coincides with any 𝑇𝜔, as seen in Fig. 

1. In order to still consider these cases, 𝑑𝑦 must be separated 

into a set of probabilistic observations that share start and end 

times with time periods, such that both the original 

observations and separated set of observations have the same 

probability of finding the user during all time periods. 

 
Fig. 1.  Example of special cases (𝑑1 and 𝑑2) where 𝑑𝑦 does not share either a 

start or end time with any 𝑇𝜔, and is separated into probabilistic observations. 

Case 1: When the start or end times of 𝑑𝑦 do not lie inside 

the search time frame, we truncate any segment of 𝑑𝑦  that is 

before the first time period, 𝑇1, or after the last time period, 𝑇Ω. 

For example, in Fig. 1, 𝑑1 is truncated to 𝑑1𝑎, resulting in an 

increase of C[𝛿1,1,1,2] by 1. 

Case 2: When 𝑑𝑦 lies within the search time frame but does 

not have the same start or end time with any 𝑇𝜔, we consider 

the probability of the robot finding the user during searches in 

each time period. For example, for 𝑑2 in Fig. 1, the probability 

of finding the user in 𝑇1 is 81.25%, in 𝑇2 is 100%, and in 𝑇3 is 

50%. We assign the lowest of these probabilities to a 

probabilistic observation corresponding to the smallest 𝑇𝑗,𝑘 that 

contains all 𝑇𝜔 with non-zero probability, e.g. assigning 50% to 

𝑑2𝑎 corresponding to 𝑇1,3. As a result, 50% of each 𝑇𝜔 

probability is accounted for, leaving 31.25% in 𝑇1, 50% in 𝑇2, 

and 0% in 𝑇3 to be accounted for. The process is repeated until 

all the probabilities have been accounted for, which results in 

31.25% for 𝑑2𝑏 corresponding to 𝑇1,2, and 18.75% for 𝑑2𝑐 

100% 𝒅𝟏𝒂 
  

18.75% 𝒅𝟐𝒄 

31.25% 𝒅𝟐𝒃 

50% 𝒅𝟐𝒂 

𝒅𝟏 = {𝑨𝟏, 𝑼𝟏, 𝑹𝟏, 𝟖: 𝟓𝟔, 𝟗: 𝟑𝟐} 

 

𝒅𝟐 = {𝑨𝟏, 𝑼𝟏, 𝑹𝟏, 𝟗: 𝟎𝟑, 𝟗: 𝟒𝟎} 

𝑻𝟏 

9:00 9:48 

 

9:16 9:32 9:03 9:40 

𝑻𝟐 𝑻𝟑 
8:56 
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corresponding to 𝑇2,2. The probabilities for 𝑑2𝑎, 𝑑2𝑏, and 𝑑2𝑐 

result in increases of C[𝛿1,1,1,3] by 0.5, C[𝛿1,1,1,2] by 0.3125, 

and C[𝛿1,1,2,2] by 0.1875, respectively. 

B. User Location Probability Density Function 

The user location PDF, denoted as 𝑃[⋂ 𝜙𝑧,𝑖,𝜔
𝑘
𝜔=𝑗 ], 

determines the probability of 𝑈𝑧
′  being in 𝑅𝑖 during 𝑇𝑗,𝑘, where 

𝜙𝑧,𝑖,𝜔 denotes 𝑈𝑧
′  being in 𝑅𝑖 during time period 𝑇𝜔. The 

APDF is used to determine 𝑃[⋂ 𝜙𝑧,𝑖,𝜔
𝑘
𝜔=𝑗 ] as the probability 

that 𝑈𝑧
′  will perform an activity in 𝑅𝑖 during a time window 

that contains 𝑇𝑗,𝑘:  

 𝑃[⋂ 𝜙𝑧,𝑖,𝜔
𝑘
𝜔=𝑗 ] = ∑ ∑ 𝑃[𝛿𝑧,𝑖,𝑟,𝑚]Ω

𝑚=𝑘
𝑗
𝑟=1 . (3) 

V. ROBOT SEARCH FOR MULTIPLE DYNAMIC USERS 

The main objective of our proposed search approach is to 

generate a search plan for a given search query which 

maximizes the expected number of target users found. 

As previously mentioned, we model our search problem as 

an extension of the orienteering problem defined as PSOP. The 

robot must select a subset of regions to search, a duration for 

how long to search these regions, and the order in which to 

search these regions. We divide the time frame into multiple 

time periods to account for dynamic user behaviors. Each 

region search must be completed within a time period. As 

opposed to searching every location in each visited region, we 

allow for a variable amount of search time to be spent at each 

region to account for varying user location preferences within 

the region. At each of the regions, the robot obtains a reward 

associated with the expected number of target users found 

based on the search duration and any previous searches of the 

same region. The multi-period aspect introduces a maximum 

search time within each time period, 𝑡𝑝𝑒𝑟𝑖𝑜𝑑, multiple visits to 

a region allowing for at most one visit per time period, region 

rewards that change across time periods, and conditional 

rewards based on previous searches of the same region in 

pervious time periods.  

The objective of the PSOP is to maximize the total reward 

acquired during the search: 

maximize 𝑊(𝑎1) + ∑ 𝑊(𝑎ℎ| ⋂ 𝑎𝑥
ℎ−1
𝑥=1 )𝐻

ℎ=2 ,  (4) 

subject to  ∑ (𝑡(ℎ) + 𝑡𝑖(ℎ−1)
𝑖(ℎ)

)𝑎ℎ∈𝑆𝑃𝜔
≤ 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 , ∀𝜔 ∈ [1, Ω] ,  

where 𝑊(𝑎1) is the reward acquired by the robot performing 

the first search action in 𝑆𝑃, 𝑊(𝑎ℎ| ⋂ 𝑎𝑥
ℎ−1
𝑥=1 ) is the reward 

acquired from the robot performing search action 𝑎ℎ, 

considering all the prior planned search actions, and 𝑆𝑃𝜔  is the 

set of search actions (search plan) executed in 𝑇𝜔. The travel 

time, 𝑡𝑖(ℎ−1)
𝑖(ℎ)

, for the first search action, ℎ = 1, is determined 

using 𝑅0, which represents the starting region of the robot. 

As the PSOP is an extension of the OP which is NP-hard 

[55], our problem is also NP-hard. Therefore, we approximate 

its optimal solution by solving two sub-problems: 1) the 

conditional multiperiod knapsack problem (CMPKP), which is 

a variant of the multiperiod knapsack problem (MPKP) [38], 

and 2) the traveling salesman problem (TSP) [39]. The 

CMPKP expands on the MPKP by using user APDFs when 

assigning rewards to a set of search actions for the same region 

in multiple time periods.  

User location PDFs are first used to compute the reward for 

each search action. Using these rewards, the CMPKP generates 

an unordered plan, 𝑆𝑃𝐾𝑃, which specifies the time 𝑡(𝑎𝑖,𝜔) to 

spend searching each region 𝑅𝑖 during every time period 𝑇𝜔 in 

order to maximize the total reward acquired. The TSP is then 

used to find a one-to-one mapping from the unordered CMPKP 

plan to the ordered multi-person search plan, 𝑓: 𝑆𝑃𝐾𝑃 → 𝑆𝑃, 

which minimizes the total time required to complete the search 

in each respective time period. The interdependence between 

the KP and TSP requires the KP to allocate as much time as 

possible to searching, while still leaving enough time to travel 

between regions such that the TSP can generate a solution the 

robot can execute within the time frame. Too little search time 

results in the robot wasting time between actions, too much 

results in an infeasible plan. If the shortest sequence of 

performing the planned search actions exceeds 𝑡𝑝𝑒𝑟𝑖𝑜𝑑, the 

procedure is iterated to obtain a feasible search plan. During 

the execution of a search plan, if a target user is found, the 

rewards assigned to searching each region for that user are 

removed and the robot replans. An overview of our proposed 

PSOP approach is presented in Fig. 2. 

 
Fig. 2.  Search plan generation using the proposed MPSP to solve the PSOP.  

We apply our aforementioned approach, as even small 

instances of the PSOP cannot be solved optimally. For 

example, considering a scenario with 6 users, 6 private rooms, 

4 common rooms, 3 time periods, 4 search durations within 

each region (e.g. 12, 24, 36, 48 seconds), and a 10 minute time 

frame: the total number of solutions to explore is lower 

bounded by the total number of permutations of all ten rooms 

in all time periods, i.e., (10! 410)3 = 5.5x1037. However, as 

previously mentioned the PSOP can be decomposed into the 

CMPKP and TSP sub-problems. Both sub-problems can be 

solved optimally in a feasible time as discussed in the 

following subsections. Even though solving the sub-problems 

results in regions being selected by approximating the travel 

time, this approximation can produce near-optimal results for 

the PSOP as the best solutions are likely to spend significantly 

more time searching within regions than traveling between 
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regions. Similar sub-problem decompositions for first selecting 

control points and then ordering the control points have 

previously been successfully applied to OPs [56],[57]. 

A. Rewards for Search Actions 

The MPSP assigns a reward for a search action 𝑎𝑖,𝜔 being 

implemented in 𝑅𝑖 during 𝑇𝜔 for a duration 𝑡(𝑎𝑖,𝜔). This 

reward represents the expected number of target users found 

when performing 𝑎𝑖,𝜔. This reward is defined as 𝑊(𝑎𝑖,𝜔) if the 

planner has not selected to search 𝑅𝑖 during any previous time 

period. In order to determine 𝑊(𝑎𝑖,𝜔), the planner requires the 

probability, 𝑃[𝜙𝑧,𝑖,𝜔], of each target user 𝑈𝑧
′  being in region 𝑅𝑖, 

and the probability, 𝑃[𝜃𝑧,𝑖,𝜔|𝜙𝑧,𝑖,𝜔], of the robot finding each 

target user given the user is in the region. 𝜃𝑧,𝑖,𝜔 denotes the 

robot finding 𝑈𝑧
′  when searching 𝑅𝑖 during 𝑇𝜔 for a duration 

of 𝑡(𝑎𝑖,𝜔). 𝑃[𝜙𝑧,𝑖,𝜔] is provided from the APDF, Eq. (3). 

𝑃[𝜃𝑧,𝑖,𝜔|𝜙𝑧,𝑖,𝜔] is provided by a local planner used by the robot 

to search within regions.  An example local planner, used in the 

experiments for this paper, could divide a region into cells and 

assign a probability to finding a user in each cell as a function 

of the time period. The resulting probability provided to the 

planner would correspond to the sum of probabilities of the 

searched cells, based on the local plan generated for the 

specified search duration provided. 𝑊(𝑎𝑖,𝜔) is then determined 

as follows: 

 𝑊(𝑎𝑖,𝜔) = ∑ 𝑃[𝜃𝑧,𝑖,𝜔|𝜙𝑧,𝑖,𝜔]𝑃[𝜙𝑧,𝑖,𝜔]𝑧∈𝑈′ . (5) 

 If the planner has already selected to search 𝑅𝑖 in previous 

time periods, the reward assigned to 𝑎𝑖,𝜔 is defined as: 

 𝑊(𝑎𝑖,𝜔| ⋂ 𝑎𝑖,𝑘
𝜔−1
𝑘=1 ) = 𝑊(𝑎𝑖,𝜔) − (6) 

 ∑ ∑ 𝑃[⋃ 𝜃𝑘
𝜔−1
𝑘=𝑗 , 𝜃𝜔| ⋂ 𝜙𝑘

𝜔
𝑘=𝑗 ]

𝑧,𝑖
𝑃[⋂ 𝜙𝑘

𝜔
𝑘=𝑗 ]

𝑧,𝑖

𝜔−1
𝑗=1𝑧∈𝑈′  ,  

where the notation [∙]𝑧,𝑖 indicates that the variables in the 

brackets apply to 𝑈𝑧
′  and 𝑅𝑖. 𝑃[⋃ 𝜃𝑘

𝜔−1
𝑘=𝑗 , 𝜃𝜔| ⋂ 𝜙𝑘

𝜔
𝑘=𝑗 ]

𝑧,𝑖
 is the 

probability of the robot finding 𝑈𝑧
′  when searching 𝑅𝑖 during a 

previous time window 𝑇𝑗,𝜔−1 and during the current time 

period 𝑇𝜔, given 𝑈𝑧
′  stays within 𝑅𝑖 for the entire duration of 

𝑇𝑗,𝜔. We subtract this probability to ensure rewards are not 

assigned twice for finding the same target user. We obtain 

𝑃[⋃ 𝜃𝑘
𝜔−1
𝑘=𝑗 , 𝜃𝜔| ⋂ 𝜙𝑘

𝜔
𝑘=𝑗 ]

𝑧,𝑖
 from a local search planner. In 

Section VI, we provide an example of a local search technique 

that can be used, including the probabilities it provides. 

B. Conditional Multiperiod Knapsack Problem 

The CMPKP uses the search action rewards to select an 

unordered set of search actions which maximizes the total 

acquired reward while ensuring each search action can be 

performed within its allocated time period:  

maximize ∑ (𝑊(𝑎𝑖,1) + ∑ 𝑊(𝑎𝑖,𝜔| ⋂ 𝑎𝑖,𝑘
𝜔−1
𝑘=1 )Ω

𝜔=2 )𝑖∈𝑅 ,  (7) 

subject to  ∑ (𝑡(𝑎𝑖,𝜔) + 𝛾𝑖,𝜔𝑡𝑚𝑜𝑣𝑒)𝑖∈𝑅 ≤ 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 , ∀𝜔 ∈ [1, Ω], 

where 𝛾𝑖,𝜔 indicates if a search occurs within 𝑅𝑖 during 𝑇𝜔, i.e., 

𝛾𝑖,𝜔 = 0 if duration 𝑡(𝑎𝑖,𝜔) = 0, and 𝛾𝑖,𝜔 = 1 otherwise, and 

𝑡𝑚𝑜𝑣𝑒 is a constant estimated travel time between the regions 

as the order in which the regions are visited is unknown. 

We represent the CMPKP as a minimum flow graph, Fig. 3. 

Within this graph, all feasible amounts of elapsed search time 

per time period, defined as 𝑄 = {𝑄1, … , 𝑄Ω}, are enumerated. 

Each node 𝑁𝑄
𝑖  in the graph represents a decision node in which 

the time to search 𝑅𝑖, denoted as 𝜏𝑖 = {𝑡(𝑎𝑖,1), … , 𝑡(𝑎𝑖,Ω)}, is 

determined given that 𝑄 has already been allocated to search 

regions 𝑅1 to 𝑅𝑖−1. Nodes 𝑁𝑄
𝐼′+1 represent terminal nodes. 𝐼′ 

represents the number of rooms in which a target user may be 

present. A pair of nodes is connected by an edge 𝐸𝜏𝑖
𝑖  which 

corresponds to one of the possible search time decisions for 𝑅𝑖. 

Each edge weight is set to the negative sum of the rewards 

corresponding to the search actions that would be performed to 

transition between its two connecting nodes:  

 𝑊(𝐸𝜏𝑖
𝑖 ) = −𝑊(𝑎𝑖,1)  − ∑ 𝑊(𝑎𝑖,𝜔| ⋂ 𝑎𝑖,𝑘

𝜔−1
𝑘=1 )Ω

𝜔=2 . (8) 

We assign negative edge weights such that minimizing the sum 

of the edge weights when traversing the graph will result in 

maximizing the reward. To solve the minimum flow graph, we 

use the Bellman-Ford shortest path algorithm [58] from the 

starting node 𝑁0,…,0
1  to any terminal node. 

 
Fig. 3.  Minimum flow graph for the CMPKP where 𝑡𝑖,𝜔 represents 𝑡(𝑎𝑖,𝜔). 

The CMPKP can become practically infeasible to solve for a 

large number of time periods, 𝛺, or for a large value of 
𝑡𝑝𝑒𝑟𝑖𝑜𝑑 

𝑡𝑢𝑛𝑖𝑡 , 

since the time complexity of the Bellman-Ford algorithm is the 

number of nodes, |𝑁|, multiplied by the number of edges, |𝐸|: 

 𝑂(|𝑁||𝐸|) = 𝑂 ((
𝑡𝑝𝑒𝑟𝑖𝑜𝑑 

𝑡𝑢𝑛𝑖𝑡 )
2𝛺

𝐼′2
(

𝑡𝑚𝑎𝑥 

𝑡𝑢𝑛𝑖𝑡 )

Ω

).  (9) 

Therefore, we can approximate its solution for such scenarios 

using the iterative MPSP (I-MPSP) which solves each time 

period sequentially, as shown in Fig. 4. Hereafter, we refer to 

the non-iterative MPSP discussed above as the complete time 

frame MPSP (C-MPSP), while MPSP will be used to refer to 

the planner class which contains both the C-MPSP and I-MPSP 

solutions. 

For the I-MPSP, we represent the CMPKP as Ω minimum 

flow graphs, denoted as 𝐺1, … , 𝐺Ω. The decision nodes 𝑁𝑄𝜔

𝑖,𝜔
 

correspond to selecting the search time in 𝑇𝜔 for 𝑅𝑖 given that 
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𝑄𝜔  has already been assigned to search 𝑅1 to 𝑅𝑖−1. The edges 

𝐸
𝑡(𝑎𝑖,𝜔)
𝑖,𝜔

 represent the decision to search 𝑅𝑖 for 𝑡(𝑎𝑖,𝜔) in 𝑇𝜔. 

Each edge in graph 𝐺𝜔 has a weight corresponding to the 

negative reward of the search action that would be performed. 

This reward is dependent on the edges selected for the same 

region in the previous graphs 𝐺1 to 𝐺𝜔−1:  

 𝑊 (𝐸
𝑡(𝑎𝑖,𝜔)
𝑖,𝜔 |𝐸

𝑡(𝑎𝑖,𝜔−1)
𝑖,𝜔−1 , … , 𝐸

𝑡(𝑎𝑖,1)
𝑖,1 ) = 

 −𝑊(𝑎𝑖,𝜔| ⋂ 𝑎𝑖,𝑘
𝜔−1
𝑘=1 ). (10) 

 
Fig. 4.  Sequential approach to solve the CMPKP where 𝑡𝑖,𝜔 represents 𝑡(𝑎𝑖,𝜔).  

The search plan, 𝑆𝑃𝐾𝑃, is generated by sequentially solving 

each minimum flow graph using the Bellman Ford algorithm as 

discussed above. The time complexity of the approximation is: 

 𝑂(𝛺|𝑁||𝐸|) =  𝑂 (Ω (
𝑡𝑝𝑒𝑟𝑖𝑜𝑑 

𝑡𝑢𝑛𝑖𝑡 )
2

𝐼′2
(

𝑡𝑚𝑎𝑥 

𝑡𝑢𝑛𝑖𝑡 )).  (11) 

Hence a solution can be obtained even for large values of 𝛺 

and 
𝑡𝑝𝑒𝑟𝑖𝑜𝑑 

𝑡𝑢𝑛𝑖𝑡 . 

C. Traveling Salesman Problem 

The CMPKP provides an unordered set of search actions per 

time period. However, as the solution to the PSOP requires an 

ordered set of search actions, we must find a mapping 

𝑓: 𝑆𝑃𝐾𝑃 → 𝑆𝑃 that will provide an optimal ordering that 

minimizes the travel time within each time period:  

minimize ∑ (𝑡𝑖(ℎ−1)
𝑖(ℎ)

),𝑎ℎ∈𝑆𝑃𝜔
∀𝜔 ∈ [1, Ω]. (12) 

The ordering for each time period is solved iteratively. The last 

region of the previous time period is used as the starting region 

for the next time period. The environments we consider for the 

task assistance application, such as a floor of an office building 

or long-term care facility, can be represented using tree 

topologies (i.e., they consist of long hallways with rooms 

branching off of the hallways). Given a tree topology, in order 

to obtain the optimal shortest tour that visits all the selected 

regions, a depth first search is performed [59]. Namely, the 

region farthest from the starting region is searched last. This 

algorithm for solving the TSP has a linear time complexity. For 

environments with non-tree topologies, a depth first search 

does not solve the TSP, in which case we recommend using the 

Lin-Kernighan heuristic to solve the TSP. This technique has 

been shown to have a run-time which scales linearly with the 

number of nodes and has generated optimal solutions for 

several TSP problems of sizes up to 10,000 nodes [60]. 

D. Feasible Search Plans 

Initially, we use a greedy approach which selects 𝑡𝑚𝑜𝑣𝑒 to be 

equal to 𝑡𝑢𝑛𝑖𝑡. Upon obtaining the search plan, 𝑆𝑃, if the time 

it takes to execute all the search actions in the same time period 

exceeds the time allotted to that time period, we replan by 

increasing 𝑡𝑚𝑜𝑣𝑒 by 𝑡𝑢𝑛𝑖𝑡, until the condition below is 

satisfied:  

 ∑ (𝑡(ℎ) + 𝑡𝑖(ℎ−1)
𝑖(ℎ)

)𝑎ℎ∈𝑆𝑃𝜔
≤ 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 , ∀𝜔 ∈ [1, Ω]. (13) 

When the feasible search plan is executed, once a target user 

𝑈𝑧
′  is found, the plan no longer consists of an optimized 

sequence of search actions to find the remaining users. 

Therefore, replanning occurs. 

E. Replanning 

To replan, a new plan is generated such that it only searches 

for the remaining users during the time that remains in each 

time period. The rewards for the search actions in the new 

plan are conditioned on all search actions already performed 

by the robot and no longer consider the users that have already 

been found. As a result, the CMPKP only considers edges in 

the minimum flow graphs that match the time already spent 

searching regions in previous time periods and are at least 

equal to time spent searching regions in the current time period.  

Replanning can also be used to deal with unexpected 

changes in the environment (e.g., a closed door) in which two 

regions which were previously neighboring are no longer 

physically accessible to one another [61]. In this case the 

robot’s stored map of the environment can be updated to 

indicate which regions are no longer neighbors. Any pair of 

regions with a shortest path affected by this change has a new 

shortest path computed using the updated environment 

information, and the travel time between the pair of regions is 

also updated. Using the updated environment and travel times, 

a new search plan is generated for the time remaining in each 

time period. 

VI. IMPLEMENTATION  

We integrated the MPSP with a local search planner and a 

person identification method on a mobile robot platform to 

validate its performance within a multi-room environment.  

A. The Socially Assistive Robot Blueberry 

The robot used in our experiments is the socially assistive 

robot Blueberry, Fig. 5. Blueberry navigates using its 

differential drive base and has a number of sensors, including a 

Hokuyo laser range finder, an Xtion IR depth camera, a 

Logitech pro c920 RGB camera, and optical wheel encoders. 

The robot navigates an environment with an average speed of 

0.8m/s. It can also interact with users using its synthesized 

voice and animated face. We have developed a system 

architecture, Fig. 6, to integrate our planner and a local search 

planner with the Blueberry robot. Our architecture is 

implemented within the robot operating system (ROS) 

framework on Ubuntu. 

The MPSP initiates the search planning process based on a 

Time Period 1 (𝑇1)  
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search query request. It generates a search plan for the robot to 

implement. Once the robot enters a region, the local planner is 

used to search the region for a specified time. The local planner 

sends navigation goals to the robot’s navigation system and 

user identification goals to the person identification module. 

The person identification module uses RGB and depth data 

from the cameras to detect and recognize target users. Once a 

target user is recognized, the planner performs replanning to 

find the remaining target users. 

 
Fig. 5.  The socially assistive robot Blueberry. 

 
Fig. 6.  Robot system architecture. 

1) Localization and Mapping 

A 2.5D grid map of the environment is generated for 

localization and navigation purposes using both laser scans 

from the laser range finder and 3D point clouds from the depth 

camera. The latter provides obstacle information in the height 

range of the robot. To generate the map, Blueberry navigates 

the environment of interest while using this sensory 

information as input into the Gmapping simultaneous 

localization and mapping (SLAM) technique [62]. 

B. Local Planner 

Our planner is not dependent on a specific local planner and 

can be integrated with any local planner that can provide both 

𝑃[𝜃𝜔|𝜙𝜔]𝑧,𝑖 and 𝑃[⋃ 𝜃𝑘
𝜔−1
𝑘=𝑗 , 𝜃𝜔| ⋂ 𝜙𝑘

𝜔
𝑘=𝑗 ]

𝑧,𝑖
, as needed in 

Eqs. (5) and (6), respectively. For the experiments presented 

herein, the local planner divides the regions into cells, and 

assigns an equal probability to finding a user in any cell. To 

generate a search plan, we used a TSP local planner that uses 

dynamic programming to plan a minimum time tour of each 

region [63]. The tour consists of locations in the region from 

which cells are searched. This approach is used as the robot 

does not have a priori information regarding user locations 

within regions, and therefore the local planner can only 

optimize the order of cells to search by minimizing travel time 

between subsequent cells. The first time a region is searched, 

the robot begins the tour by searching the closest cell to the 

door and then following the tour order. If the robot needs to 

perform a subsequent search of a region, the tour is continued 

from the last visited cell. The local planner assumes each cell 

can be searched in 𝑡𝑐𝑒𝑙𝑙 , to account for the time needed to 

travel between locations and perform person identification. 

For the TSP local plan, 𝑃[𝜃𝜔|𝜙𝜔]𝑧,𝑖 is determined as the 

percentage of 𝑅𝑖 that can be searched in 𝑡(𝑎𝑖,𝜔): 

 𝑃[𝜃𝜔|𝜙𝜔]𝑧,𝑖 =
𝑡(𝑎𝑖,𝜔)

𝑡𝑐𝑒𝑙𝑙𝛽𝑖
,  (14) 

where 𝛽𝑖 denotes the number of cells in 𝑅𝑖. 

𝑃[⋃ 𝜃𝑘
𝜔−1
𝑘=𝑗 , 𝜃𝜔| ⋂ 𝜙𝑘

𝜔
𝑘=𝑗 ]

𝑧,𝑖
 is determined as the percentage of 

𝑅𝑖 that has already been searched in 𝑇𝑗,𝜔−1 and is being 

searched again in 𝑇𝜔: 

 𝑃[⋃ 𝜃𝑘
𝜔−1
𝑘=𝑗 , 𝜃𝜔| ⋂ 𝜙𝑘

𝜔
𝑘=𝑗 ]

𝑧,𝑖
=  

 𝑚𝑎𝑥 (0,
𝑡(𝑎𝑖,𝜔)

𝑡𝑐𝑒𝑙𝑙𝛽𝑖
− 𝑚𝑎𝑥 (1 −

∑ 𝑡(𝑎𝑖,𝑘)𝜔−1
𝑘=𝑗

𝑡𝑐𝑒𝑙𝑙𝛽𝑖
, 0)).  (15) 

If the time spent searching 𝑅𝑖 during 𝑇𝑗,𝜔−1 is more than 

enough time to search every cell in 𝑅𝑖, then any cells searched 

during 𝑇𝜔 will have already been previously searched in 

𝑇𝑗,𝜔−1. If the time spent searching 𝑅𝑖 during both 𝑇𝑗,𝜔−1 and 

𝑇𝜔 is not enough to search the entire region, then the cells that 

were not searched during 𝑇𝑗,𝜔−1 are then searched during 𝑇𝜔. 

C. Person Identification 

Once the robot navigates to a location within a region, it 

searches the corresponding cell for target users. The robot 

obtains RGB and depth images using multiple head 

orientations to obtain full coverage of the cell. The person 

identification technique is then performed in four stages: 1) 

person detection, 2) orientation recognition, 3) person 

recognition, and 4) person identification contingency strategy.  

1) Person Detection 

To perform real-time person detection, we adapt the 

template matching technique presented in [64]. We conduct 

2D head and shoulder silhouette template matching to find the 

highest correlation between templates of different sizes and 

each segment from a depth image, where segments are 

generated using a sliding window approach. We iterate over 

the matches in descending order of correlation, merging any 

matches within a defined distance (i.e., 100 pixels). We then 

use a support vector machine (SVM) classifier with a radial 

basis function kernel to classify each template match as a 

person, based on a feature set. This set includes the following 

features for each match: correlation, number of merged 

matches, average correlation across merged matches, 

theoretical head area, ratio between actual and theoretical head 

radii, ratio between theoretical head and actual body areas, and 

position of actual head relative to body. The actual head radius 

is obtained by finding the distance from the center of the head 
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to the nearest edge in the depth image. The theoretical head 

radius and area are based on the depth of the head in the depth 

image [64]. The actual body area is obtained by finding 

contours in the depth image [65], approximating polygons that 

fit these contours [66], and then finding the area of the 

smallest rectangle that encloses each polygon.  

 The SVM classifier was trained using a dataset of 1,700 

images of people at different distances and orientations, as well 

as 300 images without people. The people in the dataset were 

not the same as those who participated in the experiments 

presented below. 

2) Orientation Recognition 

Once a person has been detected, his/her head orientation is 

determined by using both front facing and profile Haar 

cascades [67]. The head orientation is approximated to be front 

(detected by front facing cascade), front-left/front-right 

(detected by front facing and respective profile cascades), or 

left/right (detected by only the respective profile cascade).  

3) Person Recognition 

Once the head orientation is known, the person is identified 

using a deep convolutional neural network (DCNN) [68]. The 

DCNN was trained using a database of 100 RGB face images 

of each target user, who the robot needs to find, in different 

orientations. During the person recognition stage, a person is 

recognized if a confidence level above 70% is achieved.  

4) Person Identification Contingency Strategy 

In the cases where orientation or person recognition fails, a 

person identification contingency strategy is used by the robot, 

Table I. Namely, if either orientation or person recognition 

fails, Blueberry performs the corresponding action 1, which 

consists of the robot changing both its orientation and position 

with respect to the person in order to rerun the respective 

recognition. During these actions the robot maintains a social 

distance of approximately 1.5m from the person [69]. If action 

1 is implemented for both cases, and recognition is not 

achieved, the robot verbally requests the person to identify 

himself/herself by asking “Hi, what is your name?”.  

TABLE I.  PERSON IDENTIFICATION CONTINGENCY PLAN 
Failures Action 1 Action 2 

Orientation 
Recognition  

Move in increments of 120° to new 

locations approximately 1.5m from the 

person and rerun orientation recognition 
Verbal 

confirmation 
Person 

Recognition  

Move in increments of 30° to new 

locations about the person until 
approximately 1.5m in front of the 

person and rerun person recognition 

VII. SEARCH EXPERIMENTS 

We have conducted experiments in which: 1) a simulated 

Blueberry robot searches for multiple residents in virtual long-

term care environments, and 2) the physical Blueberry robot 

searches for multiple employees on a floor of a real university 

building. The overall objective of these experiments was to 

validate the robustness of our person search method in finding 

people of interest under varying conditions. As mentioned 

above, the experiments used a TSP local planner to generate 

search plans within regions. 

A. Long-term Care Environments 

Our first set of experiments focused on a simulated 

Blueberry robot searching for multiple residents in a virtual 

long-term care facility. The environments used were modeled 

and scaled based on the layout of one of our partner long-term 

care facilities. We developed a custom simulator in C++ using 

the OpenGL library. The simulator interfaces with the search 

planner providing a search query and receiving a search plan. 

A grid-world environment was created in which the robot and 

users moved in cardinal directions. To move between multiple 

locations the robot and users followed shortest path trajectories.  

Activities: Different activity sets were used to test the 

performance of our search technique when looking for users 

with varying activity preferences. Each activity set consisted of 

such activities as take a nap, read, listen to music, play games, 

watch T.V., and eat, being performed at varying times of the 

day and in specific regions of the environment, Table II. In 

Table II, the time of day column refers to times during which 

the activities can be performed, however users only perform 

the activity for a duration between 15 and 60 minutes in a 

single region. Activities with longer durations are possible if a 

user performs the same activity consecutively. Similarly, a 

single activity can be performed for an extended duration in 

multiple regions. The activity sets were generated using the 

daily schedules of residents at our partner care facility.  

Environments: We used multiple environments consisting 

of a combination of common rooms (shared by multiple users) 

and 26 private rooms (for individual users), representing 

regions in which the users could be found. The regions were 

divided into cells of size 2m by 2m based on the sensing range 

of the robot. The largest regions in the environment were the 

8m by 10m Garden and Dining Room, which contained 20 

cells, resulting in 𝑡𝑚𝑎𝑥 = 240𝑠. The environments increased in 

size based on the number of rooms they contained, e.g. 30, 33, 

36, 39, and 42 rooms. An example environment layout for 33 

rooms is shown in Fig. 7. Fig. 8 shows example layouts of both 

a common and a private room within the environment. 

TABLE II.  ACTIVITY SETS INDICATING ACTIVITY AVAILABILITY AND LOCATION 

 Activity Set 1 Activity Set 2 Activity Set 3 Activity Set 4 Activity Set 5 

Time of Day (hr) Region Time of Day (hr) Region Time of Day (hr) Region Time of Day (hr) Region Time of Day (hr) Region 

Take a Nap 7-10,13-16,19-21 PR,RR 7-13 PR,RR 7-10,13-16,19-21 PR   7-21 All 

Read 7-9 PR,L,G,RR 13-21 PR,L 8-10,12-14,16-18 G, RR 7-21 G 7-21 All 

Listen to Music 10-12,16-18 G,RR 9-12,14-18,20-21 G 10-12,14-16,18-20 G, RR 9-11,13-15 L 7-21 All 

Play Games 7-8,9-12,13-21 DR,L,RR 7-12,16-21 RR 7-9,14-16,19-21 RR, L 7-8,10-12,19-21 G 7-21 All 

Watch T.V. 7-21 PR,RR 7-21 PR 7-8,9-12,13-17,18-21 PR, DR, RR 7-21 RR 7-21 All 

Eat 8-9,12-13,17-18 DR 8-9,12-13,17-18 DR 8-9,12-13,17-18 DR 8-9,12-13,17-18 DR 7-21 All 

*Region Classifications: Private Room (PR), Dining Room (DR), Lobby (L), Garden (G), and Recreational Rooms (RR). 
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Users: There was a unique set of 𝑁 = 26 residents for every 

combination of activity set and environment. Each user had a 

unique set of spatial-temporal activity preferences (STAP). For 

each activity, the STAP contained a preference for the activity, 

a minimum and maximum duration between 15 and 60 

minutes, and a preference for each allowable region. 

Throughout the day, upon completing an activity, a new 

activity, duration, and region were selected based on the 

relative preferences for the allowable activities at the time. 

For example, from 12:00 to 1:00, one of the user’s STAP 

from activity set 1 (Table II) had a preference of 20% for 

watching T.V. and 80% for eating; a watching T.V. duration of 

30 to 60 minutes with a preference of 40% for their private 

room and 60% for the recreational room; and an eating 

duration of 30 to 45 minutes with a 100% preference for the 

dining room. Given this STAP, the user chose watching T.V. in 

their private room from 12:00-12:30 and eating in the dining 

room from 12:30 to 1:00. 

User activity data and maps used for the simulated 

experiments in the care facility can be found on our website, 

here, under multi-user robot search. Using the aforementioned 

data, the user location probabilities for the experiments 

presented herein were obtained using 𝜉𝑧 = 30 days of 

observation data. 

 
Fig. 7.  Long-term care environment layout: hallway (H); private room (PR) - 

4m x 4m; garden (G) and dining room (DR) - 8m x 10m; recreational room 

(RR) and lobby (L) - 8m x 8m; kitchen (K) - 4m x 8m; and nurses’ station (NR) 

and charging station (CS) - 4m x 4m. 

                
 (a)                         (b) 
Fig. 8.  Example layout of (a) recreational room, and (b) private room. 

Simulated Blueberry Robot: The simulated blueberry 

robot moved to regions and searched within regions specified 

in the search plan. The robot speed was 0.8m/s to match the 

real robot. An RGB-D sensor was simulated to have the same 

field of view as the ASUS Xtion camera used on the real 

robot. A total time of 12s was assigned to searching each 2 by 

2 cell, as 𝑡𝑐𝑒𝑙𝑙 = 12s. Experiments were conducted with the 

robot first being able to identify all users in all searched cells, 

and then with uncertainty introduced while searching a cell. 

tunit was selected, as a multiple of 𝑡𝑐𝑒𝑙𝑙 , 𝑡𝑢𝑛𝑖𝑡 = 𝜇𝑡𝑐𝑒𝑙𝑙 , such 

that our C-MPSP, Eq. (9), could plan within 1 second. For a 

fair comparison, the same 𝑡𝑢𝑛𝑖𝑡 was used for all planners, 

including during replanning. 

Search query: Each search started between 10:00am and 

6:00pm, and had a duration of 15, 21, 30, 39, or 45 minutes. 

During these searches, it can be expected that users will 

perform 1-3 different activities and may commence a new 

activity in an already searched region. In this case, the robot 

may have to return to search that region again in order to find 

the user. The time frame for each search was divided into Ω =
3 time periods. 

A total of 31,250 search trials were conducted. Each search 

trial considered a unique combination of: environment size = 

{30, 33, 36, 39, 42} rooms, number of target users = {1, 5, 10, 

15, 20}, search duration = {15, 21, 30, 39, 45} minutes, 

activity set = {1, 2, 3, 4, 5}, and search start time = {10:00, 

12:00, 14:00, 16:00, 18:00} on a 24 hour clock. Each 

combination was repeated 10 times.  

1)  C-MPSP and I-MPSP Performance  

The performance of each planner was evaluated using the 

success rate of each trial:  

 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 =
# 𝑜𝑓 𝑢𝑠𝑒𝑟𝑠 𝑓𝑜𝑢𝑛𝑑

#𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑢𝑠𝑒𝑟𝑠
.  (16) 

The mean success rate across trials for the varying environment 

sizes, search durations, and number of target users are 

presented in Fig. 9. The results indicated that the C-MPSP and 

I-MPSP technique performed similarly. This suggest that I-

MPSP is a good approximation of C-MPSP and can be used to 

generate plans for large environment sizes, search durations, 

number of target users, cells per region, and time periods, as 

the I-MPSP computation time scales linearly with these 

variables. 

As expected, the mean success rate achieved by our planner 

was inversely proportional to the environment size and directly 

proportional to the search duration. Furthermore, as our 

approach was designed to search for multiple users, the mean 

success rate was robust to the number of target users, achieving 

a similar success rate across a varying number of target users. 

2) Comparative Study 

We conducted a comparison study of the performance of our 

planners with respect to a full environment coverage (FEC) 

planner, a common room coverage (CRC) planner, and an 

MDP planner inspired by [18]. We chose an MDP planner for 

comparison as the existing person search planners for dynamic 

users in task assistance scenarios are MDP-based, e.g. 

[17],[18]. Both coverage planners generate plans to maximize 

the number of cells searched within each time period. FEC 

considers the entire environment, while CRC only considers 

common rooms. Coverage was solved optimally using a 

modified TSP that considered all subsets of regions as well as 

all varying search durations within each region. The MDP 

planner uses actions of either moving to a region, searching 

within a region for a number of time steps, or waiting in a 

region. The reward for performing each action depends on the 

expected number of target users found without considering 

previously searched regions, Eq. (5). The states represent the 

robot’s current action and number of time steps remaining to 

http://asblab.mie.utoronto.ca/research-areas/person-search-human-centered-environments
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complete the action. The full details of the MDP planner are 

presented in Appendix A and the coverage planners in 

Appendix B. For a fair comparison, as the state-of-the-art MDP 

planners do not use replanning, we compared the MDP planner 

to our planner with and without replanning.  

a. Performance Comparison of Search Techniques 

The overall mean success rates were 77.4% for our C-

MPSP, 77.6% for our C-MPSP without replanning, 78.2% for 

our I-MPSP, 76.7% for our I-MPSP without replanning, 

63.6% for the MDP planner, 58.8% for the FEC planner, and 

56.3% for the CRC planner. 

As shown in Fig. 9, there is a clear performance advantage 

to using the C-MPSP and I-MPSP for any parameterization of 

the problem. In particular, the C-MPSP and I-MPSP, both 

with and without replanning, performed better than the MDP 

and coverage planners, including for search scenarios with 

larger environments or shorter search durations.  

Kruskal-Wallis H tests with Bonferroni corrections were 

conducted to determine if the differences in the mean success 

rates for our planners in comparison to the MDP and coverage 

planners, both overall and for any parameterization, were 

statistically significant. Post-hoc two-tailed Dunn’s Multiple 

Comparison tests with a Bonferroni correction were used for 

pairwise comparisons. A significance level of 𝛼𝐾𝑊,𝑟𝑒𝑣𝑖𝑠𝑒𝑑 =

0.003 for the Kruskal-Wallis tests and 𝛼𝐷,𝑟𝑒𝑣𝑖𝑠𝑒𝑑 = 0.00025 

for Dunn’s were used to avoid Type 1 errors across multiple 

comparisons. The Bonferroni correction was calculated given 

an original 𝛼 = 0.05 divided by 16 Kruskal-Wallis tests (i.e., 

overall mean, and mean across independent performance 

variables) and 12 Dunn’s tests per Kruskal-Wallis test (i.e., all 

pairs between our 4 planners and the 3 other planners). The 

results of both tests showed that both overall and for each of 

the parameterizations statistically significant difference exist 

between our planners, with and without replanning, and the 

MDP and coverage planners. The Kruskal-Wallis tests showed 

differences in the overall mean success rates across the 

planners, 𝜒2(6) = 16145, 𝑝 <  0.0001, and for all the 

parameterizations, with the minimum χ2(6)  = 2511, 𝑝 <
 0.0001.  

b. Comparison of Search Techniques with User Models 

To investigate the effects of using the APDF, we compare 

the C-MPSP with replanning to the MDP planner as the latter 

also considers a user model. We provide a detailed example of 

the rewards obtained for the following search query using 

activity set 3: 10 target users, 36 regions, 30 minute time 

frame, and starting at 14:00. Table III shows the summation 

over all the target users for the probability of a target user 

performing an activity within a region during a time window, 

i.e., ∑ 𝑃[𝛿𝑧,𝑖,𝑗,𝑘]𝑧∈𝑈′ . 

The plans generated by each planner for this search query 

are presented in Table IV. In the table, 
𝑡(𝑎𝑖,𝜔)

𝑡𝑐𝑒𝑙𝑙  represents the 

number of cells searched within a region. For the MDP 

planner a reward, 𝑊(𝑎𝑖,𝜔), is assigned to a current search 

action without considering previous search actions. Although 

the MDP planner does not consider previous search actions, for 

comparison purposes we show the reward, 

𝑊∗(𝑎𝑖,𝜔| ⋂ 𝑎𝑖,𝑘
𝜔−1
𝑘=1 ), that our C-MPSP would have assigned to 

the search actions chosen by the MDP planner. 

TABLE III. SUMMATION OF TARGET USERS’ ACTIVITY 

PROBABILITIES  

Private Room1 (PR1) Private Room3 (PR3) Garden (G) 

   
Dining Room (DR) Recreational Room (RR) Lobby (L) 

   

TABLE IV.  GENERATED C-MPSP AND MDP PLANS  

 𝑻𝝎 

C-MPSP Plan w/ replanning MDP Plan 

 𝑹𝒊 
 

𝒕(𝒊,𝝎)

𝒕𝑐𝑒𝑙𝑙  
 𝑾(𝒂𝒊,𝝎| ⋂ 𝒂𝒊,𝒌

𝝎−𝟏
𝒌=𝟏 ) 

 𝑹𝒊 
 

𝒕(𝒊,𝝎)

𝒕𝑐𝑒𝑙𝑙  
 𝑾(𝒂𝒊,𝝎)  𝑾∗(𝒂𝒊,𝝎| ⋂ 𝒂𝒊,𝒌

𝝎−𝟏
𝒌=𝟏 ) 

 𝑻𝟏 
PR3 

RR 

L 

4 

16 

16 

0.27 

3.18 

2.24 

PR3 

L 

PR1 

RR 

4 

16 

2 

16 

0.27 

2.24 

0.13 

3.18 

0.27 

2.24 

0.13 

3.18 

 𝑻𝟐 
DR 

G 

20 

20 

1.08 

1.12 

G 

RR 

L 

7 

16 

16 

0.39 

3.16 

2.38 

0.39 

0.86 

0.83 

 𝑻𝟑 

RR 

DR 

L 

16 

6 

16 

1.62 

0.20 

1.56 

L 

PR1 

G 

RR 

16 

1 

10 

16 

2.49 

0.04 

0.78 

3.00 

0.77 

0.04 

0.78 

0.79 

Total 114 11.27  120 18.06 10.28 

As can be seen in Table IV, the C-MPSP plan received a 

smaller total reward than the MDP plan. However, the mean 

success rate when executing the above MDP plan was 

determined to be 17% lower than that of the C-MPSP plan. 

This is due to the MDP planner not considering previous search 
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Fig. 9.  Mean success rates of each planner across independent performance variables 
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actions. For example, when the MDP planner chose to search 

all 16 cells in the recreational room during 𝑇2, it assigned a 

reward of 3.16. However, considering it had previously chosen 

to search all 16 cells in the same room during 𝑇1, the reward 

assigned by our C-MPSP would have only been 0.86. This 

reward does not include the summations of the target users’ 

probabilities of performing an activity within the recreational 

room during 𝑇1,2 and 𝑇1,3, i.e., 0.92 and 1.38 from Table III, as 

they have already been accounted for during 𝑇1. On the other 

hand, the MDP planner double counts these summations, both 

in the reward for the search action during 𝑇1 and the search 

action during 𝑇2. 

3) Introducing Uncertainty  

We conducted an additional set of experiments where we 

introduced uncertainty into the APDF as well as during the 

search to investigate the impact on the planners. The 

uncertainties introduced were: 1) misalignment of user 

activities with time periods, 2) observational errors during data 

collection, 3) deviation of user behaviors from their observed 

data, 4) varying number of observation days, and 5) 

introduction of detection errors during the search. 

The first uncertainty experiment, Experiment #1, 

investigated how the APDF models the user activity choices, 

namely how well the APDF handles the special case discussed 

in Section IV.A. Under normal conditions, users selected 

activities based on their STAP, and as a result the activities 

may not have aligned with the time periods (i.e., activities may 

have changed during a time period). As a result, we compared 

users who selected activities regularly based on their STAP, 

and users who selected activities based on their APDF (i.e., 

only changed their activities at the start of a time period). 

Activity misalignment was measured by iterating over each 

time period and considering all activities that occurred within 

that time period. The measurement was the percentage of the 

time period during which the activity was not being performed, 

normalized by the percentage of the activity duration that 

occurred within the time period. 

Experiment #2 examined observational errors in the data set, 

which varied from 0%, 25%, 50%, 75%, to 100% (fully 

uniform distribution). These errors were modeled by 

considering each observation in the data set and selecting to 

change the region with a probability equal to the error 

percentage. If a region was changed, the new region was 

randomly selected from all regions with a probability 

proportional to the area of each region. 

Experiment #3 examined the effect of users deviating from 

their STAP, varying from 0% to 100%. This deviation was 

modeled by having users select each next region from all 

regions with a probability equal to the deviation, otherwise, 

their next region was selected from their STAP. When 

selecting from all regions in the environment, their next region 

was selected with a probability proportional to the area of each 

region. 

Experiment #4 investigated varying the number of 

observation days. The cases considered were 1, 2, 3, 4, 5 and 

30 days. 1 to 5 represented practical amount of time to spend 

acquiring user data, where as 30 days was selected to provide 

enough data to act as a ground truth. 

Experiment #5 introduced varying detection rates during the 

search from 80%, 90%, to 100%. When searching a cell 

containing a user, the probability of identifying the user was 

equal to the detection rate. 

For each of the uncertainty experiments, 2025 search trials 

were conducted. Each search trial considered a unique 

combination of: environment size = {30, 36, 42} rooms, 

number of target users = {1, 10, 20}, search duration = {15, 

30, 45} minutes, activity set = {1, 3, 5}, and search start time 

= {10:00, 12:00, 14:00, 16:00, 18:00} on a 24 hour clock. 

Each combination was repeated 5 times. The time frame was 

divided into Ω = 3 time periods. The mean success rates for 

each of the 7 planners across the uncertainty variables are 

shown in Fig. 10.  

Kruskal-Wallis and a two-tailed Dunn’s test, both with 

Bonferroni correction, were conducted to determine if the 

differences in the mean success rates for our planners in 

comparison to the MDP and coverage planners, for any 

parameterization, were statistically significant. A significance 

level of 𝛼𝐾𝑊,𝑟𝑒𝑣𝑖𝑠𝑒𝑑 = 0.0019 and 𝛼𝐷,𝑟𝑒𝑣𝑖𝑠𝑒𝑑 = 0.00016 were 

used based on 26 Kruskal-Wallis tests and 12 Dunn’s tests per 

Kruskal-Wallis test.  For all tests, the Kruskal-Wallis test 

showed a statistically significant difference among the 

planners for the mean success rates across all 

parameterizations, with the minimum χ2(6) = 59, 𝑝 <
0.0001. For the majority of cases, the Dunn’s test showed a 

statistically significant difference in the mean success rates of 

our planners, and the MDP and coverage planners. The 

exceptions were I-MPSP without replanning versus: i) FEC 

for 2 observation days; and ii) CRC for 75% observational 

error. Furthermore, I-MPSP with replanning and C-MPSP 

without replanning versus: i) FEC for 2 observation days, 75% 

observational error, and 75% deviation from observed data; 

and ii) CRC for 1 observation day. Additionally, C-MPSP 

Fig. 10.  Mean success rate of each planner across independent uncertainty variables 
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with replanning versus: i) FEC for 75% observation error and 

2 observation days; and ii) CRC for 1 observation day. 

For Experiment #1, the STAP activity misalignment ranged 

from 6 to 18, whereas the APDF misalignment was only 2 to 

6. The results demonstrated that the misalignment had little 

impact on the performance of our planners which directly 

reasoned about the APDF. Experiment #2 showed that our 

planners continued to outperform the MDP planner at all 

levels of observation error and only performed worse than the 

coverage planners at 75% or more observational error. Similar 

to the second experiment, Experiment #3 showed our planners 

consistently outperformed the MDP planner, and only 

performed worse than the FEC technique at more than 75% 

deviation. Even at 100% deviation from observed data, we 

observed the C-MPSP remained within 5% of the FEC 

technique. This indicated that the coverage aspect of our 

planners was robust to the users’ behaviors as it assigned a 

large component of time to searching within regions in 

comparison to the time spent searching between regions. This 

property suggests, as previously stated, that selecting regions 

while only considering an average travel cost was an effective 

technique for generating near-optimal plans. Experiment #4 

indicated that 3 or more observation days were required to 

outperform the coverage approaches. Also, as expected, 

Experiment #5 demonstrated that the success rate of all 

techniques increased proportional with the detection rate. 

From the above experiments, we can see that the APDF 

accurately models the user activity choices, namely when 

handling the special case of activities in misalignment with 

time periods. We can also see that  our planners outperformed 

the MDP planner under all conditions and the coverage 

planners for the majority of the conditions, in large part due to 

reasoning about conditional rewards provided by the APDF. 

Furthermore, we can see that our planners are robust to errors 

in the APDF. One thing to note is that when the observational 

errors and behavior deviations increased to above 75%, or there 

were less than 2 observation days, the FEC technique 

performed better.  

B. University Office Building 

Our second set of experiments consisted of the Blueberry 

robot searching a multi-room floor of a university building for 

varying groups of dynamic users. Four different search trials 

were conducted with varying numbers of target users, search 

start times, and search durations.  

Activities: The following set of activities were used: 

meetings, independent work, laboratory work, reading, 

socializing, and eating.  

Environment: The environment consisted of nine private 

offices and four shared rooms- a cafeteria, boardroom, lounge, 

and research laboratory. The layout of the environment is 

presented in Fig. 11a. The 2.5D map of this environment 

generated using Gmapping is presented in Fig. 11b. The size of 

each cell in the region was 2m by 2m, and the search duration 

per cell was defined to be 𝑡𝑐𝑒𝑙𝑙 = 24s, and 𝑡𝑢𝑛𝑖𝑡 = 𝑡𝑐𝑒𝑙𝑙  (i.e., 

𝜇 = 1). The largest regions in the environment were 8m by 

10m, which contain 20 cells, resulting in 𝑡𝑚𝑎𝑥 = 480𝑠.  

Users: The number of target users for Blueberry to find in 

the four trials was 1, 3, 6, and 9, respectively. All trials were 

conducted with N = 9 users sharing the environment. User 

schedules were obtained from the occupants of the floor for 

𝜉𝑧 = 30 days. 

   
 (a)  (b) 
Fig. 11.  (a) Layout of the Office floor: hallway (H); private office (P) - 4m x 

4m; boardroom (BR) – 8m x 8m; cafeteria (C), lounge (LO), and research 

laboratory (L) - 8m x 10m; charging station (CS) - 6m x 4m; and washroom 

(W) – 3m x 5m; and (b) 2.5D map. 

Search Query: The search start times were: 5pm for 15 

minutes (1 target user), 3pm for 15 minutes (3 target users), 

11am for 30 minutes (6 target users), and 9am for 30 minutes 

(9 target users), for each trial respectively. All trials were 

conducted with Ω = 3 periods per time frame. 

1) Results 

The results for C-MPSP predicting user locations, and 

person identification identifying a located user, are both 

presented in Table V. Example behaviors performed by the 

Blueberry robot while conducting the search are shown in Fig 

12. A video showing the robot implementing the search plan 

for trial #4 is presented here on our YouTube channel. 

   
 (a) (b) (c) 
Fig. 12.  Robot behaviors: (a) moving to a region, (b) searching within a region, 

and (c) performing person identification of a localized target user. 

TABLE V. SEARCH RESULTS 

 Trial 1 Trial 2 Trial 3 Trial 4 
Search Start Time 5pm 3pm 11am 9am 

Target Users to Find 1 3 6 9 
Search Duration (mins) 15 15 30 30 

Target Users Located 100% (1) 100% (3) 100% (6) 100% (9) 

Target Users Identified 100% (1) 100% (3) 83.3% (5) 100% (9) 

During all trials, the planner was able to predict the 

locations of each of the target users. Furthermore, during the 

first, second, and fourth search trials, 100% of users were also 

identified. However, during the third search trial, when the 

robot located a target user in his private office, the user was 

not detected using the template matching technique due to his 

poufy hairstyle that day, which made it difficult to match the 

head contour. Later in the search, the same target user was 

located in the cafeteria, however, the template matching 

approach was still unable to detect the user.  

There were other cases where the C-MPSP was able to 

predict the location of target users who were not identified the 

https://www.youtube.com/watch?v=C1_vW6JtckA
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first time by the person identification module. For example, 

during trial #3, the robot located a target user looking down 

while reading a book in the lounge. The user was detected, but 

could not be recognized as his head was tilted too far down. 

The C-MPSP was able to later locate the same user in the 

boardroom and person identification was able to successfully 

recognize this user.  

VIII. CONCLUSIONS AND FUTURE WORK 

This paper presents a novel person search orienteering 

problem, PSOP, and a multi-person search planner, MPSP, 

which solved this problem by generating a plan to find 

multiple dynamic users in a multi-room indoor environment. 

User activity probability density functions are used to predict 

the probability of a person remaining in a region or revisiting 

the region again during a search time frame. Experiments 

conducted showed that both the complete time frame, C-

MPSP, and iterative, I-MPSP, were robust to finding varying 

numbers of users during different time frames and in 

environments of different sizes. Comparisons with an MDP 

planner as well as coverage planners showed that our planner 

was able to find a larger number of target users under the 

different conditions. Additional experiments verified that the 

C-MPSP and I-MPSP techniques were robust to both 

uncertainty in the user APDFs as well as uncertainty 

introduced during the search. Furthermore, the results also 

validated the integration of the MPSP within a robot 

architecture for real-world robot search applications. Our 

future work consists of extending our MPSP to search for 

dynamic users in crowded environments. We also plan to scale 

our problem to include cases with large environments that 

have multiple floors and perform experiments incorporating 

local planners that reason about user location probabilities. 

Additionally, we will consider modeling the uncertainty in 

environment dynamics using a probabilistic model considering 

the probability of two adjacent regions being neighbors, 

similar to previous approaches for modeling environment 

dynamics as presented in [70]. This model can be directly used 

during the planning phase. 

APPENDIX A- MDP PLANNER  

The MDP planner discretizes the time frame of the search 

into time steps, each of length 𝑡𝑐𝑒𝑙𝑙 . During each time step, the 

robot performs an action which allows it to transition into a 

new state from the current state. The set of actions is selected 

to maximize the expected number of target users found. 

A. Actions 

At each time step, the MDP planner selects an action to take, 

𝛼 ∈ {𝛼𝑅𝑖

𝑚𝑜𝑣𝑒 , 𝛼𝑡𝑠𝑡
𝑠𝑒𝑎𝑟𝑐ℎ , 𝛼𝑤𝑎𝑖𝑡}, where: 1) 𝛼𝑅𝑖

𝑚𝑜𝑣𝑒 is move toward 

region 𝑅𝑖; 2) 𝛼𝑡𝑠𝑡
𝑠𝑒𝑎𝑟𝑐ℎ is search the current region for the next 

𝑡𝑠𝑡 time steps; and 3) 𝛼𝑤𝑎𝑖𝑡 is do nothing. 

B. States 

At the start of each time step, the robot is in a particular 

state, 𝑠 ∈ {𝑠0, 𝑠𝑅𝑖,𝑡𝑠𝑡
𝑚𝑜𝑣𝑒 , 𝑠𝑡𝑠𝑡

𝑠𝑒𝑎𝑟𝑐ℎ}, where: 1) 𝑠0 is the initial state; 

2) 𝑠𝑅𝑖,𝑡𝑠𝑡
𝑚𝑜𝑣𝑒  is moving to region 𝑅𝑖 with 𝑡𝑠𝑡 time steps remaining 

before arrival; and 3) 𝑠𝑡𝑠𝑡
𝑠𝑒𝑎𝑟𝑐ℎ is searching the current region for 

𝑡𝑠𝑡  time steps. 

C. Finite State Machine 

The FSM used by the MDP planner is shown in Fig. A1. To 

account for the dynamic behavior of a user, the MDP allows 

for a region to be searched multiple times during the search, 

however, only once within a single time period. The FSM also 

does not allow for a search action, 𝛼𝑡𝑠𝑡
𝑠𝑒𝑎𝑟𝑐ℎ, to be selected when 

there is less than 𝑡𝑠𝑡 time steps remaining in the current time 

period. 

D. Plan Generation 

The MDP planner generates a plan using backwards 

induction. The approach works by traversing the FSM in 

reverse. Beginning at the last time step, a total reward, 𝑉(𝑠), is 

assigned to each state to indicate the maximum number of 

target users that can be found over the remainder of the search. 

𝑉(𝑠) is determined by considering the expected number of 

target users found by each immediate action, given by 𝑊(𝑠, 𝛼), 

and the total reward for transitioning into the next state 𝑠′(𝛼) 

by performing 𝛼: 

 𝑉(𝑠) = max
𝛼

(𝑊(𝑠, 𝛼) + 𝑉(𝑠′(𝛼))). (A1)  

The reward 𝑊(𝑠, 𝛼) is 0 if the action is to move or wait. If the 

action is to search, the reward is computed in the same manner 

as 𝑊(𝑎𝑖,𝜔), Eq. (5), where 𝑅𝑖 is the current region, 𝑇𝜔 is 

determined using the current time step, and 𝑡(𝑎𝑖,𝜔) = 𝑡𝑠𝑡𝑡𝑐𝑒𝑙𝑙 . 

The MDP plan is then generated by starting at the initial state 

and taking the sequence of actions that maximizes the expected 

number of target users found over the duration of the search: 

 Π(𝑠) = arg max
𝛼

(𝑊(𝑠, 𝛼) + 𝑉(𝑠′(𝛼))). (A2) 

Fig. A1.  Finite state machine for the MDP planner. 
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APPENDIX B – COVERAGE PLANNERS 

The coverage planners plan a sequence of search actions to 

maximize the total number of unique cells visited within the 

time frame of the search. The full environment coverage (FEC) 

planner considers all private and common rooms the target 

users may occupy (e.g., if user 10 is not in the search query 

private room 10 is not searched): 

maximize ∑ (𝑡(ℎ))𝑎ℎ∈𝑆𝑃 ,  (B1) 

subject to  ∑ (𝑡(ℎ) + 𝑡𝑖(ℎ−1)
𝑖(ℎ)

)𝑎ℎ∈𝑆𝑃 ≤ 𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡  , 

 ∑ 𝑡(𝑖, 𝜔)Ω
𝜔=1 < 𝑡𝑐𝑒𝑙𝑙𝛽𝑖 , ∀𝑖 ∈ [1, 𝐼′]. 

The common room coverage (CRC) planner considers all 

common rooms, denoted as 𝐼′′: 

maximize ∑ (𝑡(ℎ))𝑎ℎ∈𝑆𝑃 ,  (B2) 

subject to  ∑ (𝑡(ℎ) + 𝑡𝑖(ℎ−1)
𝑖(ℎ)

)𝑎ℎ∈𝑆𝑃 ≤ 𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡  , 

 ∑ 𝑡(𝑖, 𝜔)Ω
𝜔=1 < 𝑡𝑐𝑒𝑙𝑙𝛽𝑖 , ∀𝑖 ∈ [1, 𝐼′′]. 

Repeated full searches of the environment are performed until 

there is not enough time to search the entire environment. 

When this happens, the robot returns to the first region 

searched and generates a new plan with the remaining search 

time based on the above formulations. 

 A plan is generated for optimizing the search objective in the 

coverage planners by considering every connected sub-tree in 

the environment. As the optimal coverage solution cannot pass 

by a region without searching it, the optimal solution must exist 

within one of these sub-trees. The TSP is solved for each of 

these sub-trees, using the technique discussed in Section V.C, 

and a plan is generated for each sub-tree where every region in 

the subtree is fully searched. If the resulting plan is not 

feasible, the plan is modified to contain the largest partial 

search of the region to be visited last, such that the plan 

becomes feasible, if possible. Of all the feasible plans 

generated, the optimal plan is the plan with the largest number 

of cells searched. 
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