

1

Abstract— Robot search for multiple dynamic users within a

multi-room environment is important for social robots to find

and engage in various human-robot interaction scenarios with

these users. In this paper, we present a novel autonomous person

search technique for a robot finding a group of dynamic users

before a deadline. The uniqueness of our approach is that unlike

existing robot search methods, we consider activity information

to predict where, when, and for how long a user will be in a

specific room. This allows for the generation of search plans

without any assumption on the frequency of user movements. We

represent our search problem as an extension of the orienteering

problem, which we define herein as the robot person search

orienteering problem (PSOP). User activity information is

represented as spatial-temporal user activity probability density

functions (APDFs). We solve the PSOP using APDFs to generate

a search plan to maximize the expected number of users found

before the deadline. The solution of the PSOP is obtained in two

steps. First, by solving a variant of the multiperiod knapsack

problem to determine which rooms should be searched and for

how long these rooms should be searched. Then we solve the

traveling salesman problem to obtain the order in which to

search these rooms. Experiments were conducted to validate the

performance of our robot search method in finding different

numbers of multiple dynamic users for varying environment sizes

and search durations. We also compared our method with two

coverage planners and a Markov decision process planner. On

average, our planner found more users than the other planners

for a variety of scenarios. Lastly, we performed experiments that

introduced uncertainty into both the APDFs as well as during the

search to validate the robustness of our overall approach.

Note to Practitioners— The majority of current social robot

applications either consider users being collocated with the robot

in the same region or users being static within another region in

the environment. However, several applications exist where users

are dynamic within their environments and for which a robot

needs to find them in order to provide assistance, for example, in

office buildings, airports, museums, hospitals, and long-term care

facilities. In general, these users are performing activities within

these regions. We uniquely consider such activity information in

order to model user location probabilities. We developed a robot

This work was supported by the Natural Sciences and Engineering

Research Council of Canada (NSERC), Dr. Robot Inc., the Ontario Centres of

Excellence (OCE), the Canadian Consortium on Neurodegeneration in Aging

(CCNA), and the Canada Research Chairs program (CRC).

The authors are with the Autonomous Systems and Biomechatronics

Laboratory, Department of Mechanical and Industrial Engineering, University

of Toronto, Toronto M5S3G8 ON, Canada (e-mail: {sharaf.mohamed,

sanjif.rajaratnam, rio.hong}@mail.utoronto.ca; nejat@mie.utoronto.ca).

search planner that uses these probabilities to find users of

interest in multi-room environments. The planner is novel as it

reasons about when and which regions to search and for how

long, as well as if the same region needs to be searched multiple

times as users can perform multiple activities during the search

time frame in the same region or revisit a region to perform a

new activity. We have integrated the search planner within a

robot system architecture. The robot travels to each region and

then uses a local planner to navigate to locations within the

region. At each location, a person identification technique is used

to identify the target users in order to engage in human-robot

interactions. Experiments were performed for two search

applications: 1) a simulated Blueberry robot finding multiple

residents in a virtual representation of one of our collaborating

long-term care facilities, and 2) the physical Blueberry robot

finding multiple staff/students on a physical floor of a university

building. For both experiments, plans were generated on the

robot’s onboard Lenovo Thinkpad X230 using the Robot

Operating System (ROS) in Ubuntu. User activity data and maps

used for the experiments in the care facility can be found on our

website, here, under multi-user robot search. The physical

Blueberry robot was also equipped with an ASUS Xtion IR depth

camera, a Logitech pro c920 RGB camera, and a Hokuyo laser

range finder for person identification and navigation in the

environment. The results showed that our system was effective at

finding multiple dynamic users under varying environment sizes

and search durations. Our search planner also outperformed

other planners and was robust to uncertainties in the user model.

Future work will consider environments with multiple floors and

crowded regions, planners which directly reason about

environment dynamics, and local planners which reason about

user location probabilities within regions.

Index Terms— Social robots, search plans, multiple dynamic

users, human-robot interaction, orienteering problem.

I. INTRODUCTION

OBOTS can be used to search for people in many

different environments, such as inside buildings [1]–[18],

and outdoor urban [19]–[23] and natural [24]–[26] settings.

Applications in these environments range from search and

rescue [1]–[5],[24]–[26], surveillance and monitoring [6]–

[10],[19]–[23], to assisting users with daily tasks [11]–[18].

Social robots, in particular, have been developed to aid

users through interactions in a variety of human-centered

environments. For example, robots have been used as guides

in museums [27] and airports [28]. Furthermore, robots have

assisted guests in hotels with services such as item delivery

[29]. In private homes, social robots have helped with meal

Person Finding: An Autonomous Robot Search

Method for Finding Multiple Dynamic Users in

Human-Centered Environments

Sharaf C. Mohamed, Sanjif Rajaratnam, Seung Tae Hong, and Goldie Nejat, Member, IEEE

R

http://asblab.mie.utoronto.ca/research-areas/person-search-human-centered-environments
Frank
Text Box
Transactions on Automation Science and Engineering Manuscript (This is the author's version of an article that has been published. Changes were made by the publisher prior to publication. (https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8790973)

2

preparation [12] and provided teleconferencing [13].

Social robots have also been used in various healthcare

environments, including long-term care facilities and

hospitals. In long-term care, they have provided assistance to

older residents by guiding them to appointments [30],

providing prompting assistance with eating [31], and giving

reminders of upcoming activities [18]. They have also assisted

with recreational activities, such as facilitating interactive

reading groups [32], Bingo [33], and Trivia [34]. In hospital

settings, social robots have guided patients and visitors [35].

The applications mentioned above can benefit from the

robots being able to effectively search for a single person or

multiple people of interest in the environment, in order to

provide the necessary assistance via human-robot interaction

(HRI). However, currently the majority of existing social

robot applications assume that the users are initially collocated

with the robots [27]–[35]. If they are not collocated, the robots

are mainly searching for a single static user [11]–[13],[15].

A handful of methods have been developed to consider

dynamic users [14],[16]–[18], using spatial-temporal

probability density functions (PDFs). For example, in [14], a

hidden Markov model was used to model a user’s location. In

[16], a user location PDF was modeled using a Bayesian

network considering evidence observed in the environment

during the search. In [17], a user location PDF was modeled

using the frequency of visitation of the user to regions in the

environment. In [18], user location PDFs were modeled using

a combination of location frequency patterns, last known

locations, and spatial-temporal information from user

schedules. To the authors’ knowledge, a person search

technique has not yet considered both spatial-temporal user

location probabilities and user activity probability information.

In this paper, we present a novel multi-person search

planner to allow a robot to find, in real-time, multiple dynamic

users in a multi-room environment. We uniquely model our

problem as an extension of the orienteering problem (OP)

[36], which we define herein as the person search orienteering

problem (PSOP). Our approach is an extension of our

unpublished workshop paper [37] which first introduced the

concept of modeling this search problem as a combinatorial

optimization problem. However, in the workshop paper, only a

spatial-temporal user location PDF was used with the planner.

The proposed PSOP extends this initial problem definition by

introducing unique user activity probability density functions

(APDFs), which model the dynamic users’ behaviors

considering activity regions, start times, and durations, to

determine the probability of users remaining in a specific

region or revisiting a region to perform an activity. As a result,

the PSOP can be used to model users with varying levels of

dynamic behaviors without assumptions on the frequency at

which users move between regions.

Our novel multi-person search planner (MPSP) solves the

PSOP in real-time to provide search plans which maximize the

expected number of dynamic users found before a deadline.

This planner uses a two-stage approach: 1) a variant of the

multi-period knapsack problem [38] is first solved to

determine which regions to search and the duration to search

each region, and 2) the traveling salesman problem (TSP) [39]

is solved to determine the order in which to search the regions.

II. RELATED WORKS

Herein, we discuss existing person search methods

deployed by robots, and introduce orienteering problems

which can be used to model our new person search problem.

A. Person Search by Robots

Existing person search approaches for robots can be

categorized based on their specific application: 1) search and

rescue, 2) surveillance and monitoring, and 3) task assistance.

The objective of time-critical search and rescue missions is

to minimize the time to find victims. For example, in urban

scenarios involving static victims and no prior location

information, robots have used exploration techniques to

maximize coverage in unknown environments [1]–[3]. These

techniques include a team of robots executing graph traversal

algorithms [1] and frontier exploration methods [2],[3]. When

prior information was available, static victim discovery time

was minimized using either dynamic programing [4], or a

multi-agent partially observable Markov decision process

(POMDP) solved with a discounted 𝑑-step lookahead planner

[5]. In wilderness environments, a lost person’s location PDF

has been used, based on the victim’s last known location and

motion model [24]–[26]. In these searches, robots iteratively

move to and search the location with the highest user location

probability according to their location PDF.

In surveillance and monitoring problems, robots are used to

protect an environment from malicious attackers. Given no

prior attacker location information, teams of robots have

performed searches which minimize the time to fully cover

known environments [6],[19]–[21]. With prior information,

lookahead techniques have been implemented to minimize

uncertainty within the environment [22],[23]. Problems which

require robots to both clear regions and block access from

uncleared to cleared regions have been addressed using

recursive blocking in a tree topology [7]; frontier exploration

[8]; mixed integer programming [9]; and breath-first search

[10].

In task assistance problems, robots search for users within

indoor structured environments to assist them with specific

tasks. The environments are generally divided into regions

with each user being assigned a probability density for each

region [11]–[18]. One-step lookahead techniques have been

used to search the highest probability location when searching

for static [11]–[13] or dynamic [14] users. A POMDP

lookahead planner to search for a single dynamic user was

also used [16]. Markov decision process (MDP) planners have

also been designed for static [15] or dynamic [17],[18] users.

1) Summary and Challenges

The aforementioned person search methods can all be

classified into the following categories: 1) full environment

coverage planners [1],[2],[6]–[10],[19]–[21], 2) lookahead

planners [3],[5],[11]–[14],[16],[22]–[26], and 3) MDP-based

planners [4],[15],[17],[18].

3

When considering our robot search problem of looking for

multiple dynamic users in a multi-room environment before a

deadline, the aforementioned approaches have several

limitations. In particular, full environment coverage

techniques apply equal importance to searching each location

within the environment as they do not use any prior user

location information. Lookahead planners, on the other hand,

use prior user location information to choose optimal search

actions in the near future, however, they do not consider the

entire search duration. This can generate plans in which search

actions are performed that result in sub-optimal future actions.

MDP-based planners can generate optimal search plans

while considering the full search duration, however, due to the

Markovian assumption, the plans consider the probability of

finding a user as a function of only the current state.

Therefore, the history of when previous regions were searched

is not available. As a result, a robot may end up searching a

region, and then without considering the most likely time at

which a user would have revisited the region, search the same

region again.

B. Orienteering Problems (OPs)

The original orienteering problem considers a game where a

player moves within a known environment to travel between

pre-specified locations known as control points. A reward is

available at each control point and travel time is known

between each pair of control points [36]. Given a total amount

of time that can be spent by a single player, the objective is to

select an ordered subset of control points to be visited such that

the total reward is maximized. OPs have recently been applied

to robot task planning [40], robot surveillance [41], and robot

building clearing [42] problems.

OPs that have extended the original problem can be

categorized into problems that consider: 1) time-dependent

rewards, 2) history-dependent rewards, 3) multiple visits to a

point, or 4) reward acquisition time.

1) Orienteering Problems with Time-Dependent Rewards

OPs with time-dependent rewards can be categorized into

ones that have: 1) rewards that change linearly over time

[43],[44], 2) rewards that are discontinuous over time [45], or

3) rewards that are available only within a specific time

window [46]–[49]. Although the rewards in these problems

change over time, the rewards collected at each control point is

independent of previously acquired rewards.

2) Orienteering Problems with History-Dependent Rewards

OPs with history-dependent rewards consider how the

reward at a control point changes depending on previously

visited control points. History-dependencies can be categorized

as follows: 1) constraint on the minimum or maximum number

of control points of a certain type (e.g., visiting at least one art

exhibit in a museum, visiting at most two exhibits) [47],[48], 2)

incompatibility between control points (e.g., visiting only one

art exhibit) [50], or 3) non-binary history-dependence (e.g.,

visiting a second art exhibit having half the reward of the first

exhibit) [51]. Although the above problems consider history,

none allow for a control point to be visited more than once.

3) Orienteering Problems with Multiple Visits to a Point

A handful of problems have allowed for multiple visits to a

control point [41],[49],[52]. For example, in [41] each control

point had a time-dependent reward, and could be searched

repeatedly. However, the rewards were not history-dependent.

In [52], multiple vehicles visited blood banks to acquire

donated blood, available within six hours of being donated.

For a repeated visit to a location, any reward acquired within

the past six hours could not be acquired again. In [49], a

tourist trip-planner generated a plan with multiple visits by

computing the reward as a function of the entire plan and

starting time, as opposed to assigning a reward to each

individual action in the plan. Although the techniques

presented in both [49] and [52] considered the rewards for

multiple visits to a control point, neither of these techniques

reasoned about situations in which the reward received at a

control point varies with the amount of time spent at that

control point.

4) Orienteering Problems with Reward Acquisition Time

The majority of problems have assumed that time is only

spent traveling between control points, however some

problems also considered time spent at the control points to

acquire rewards. Reward acquisition time can be categorized

as: 1) a constant acquisition time with a constant reward [47]–

[49],[53], or 2) a variable acquisition time with a proportional

reward [45],[54]. However, in both [45] and [54], the OP did

not consider rewards that are dependent on the time of day and

the control points could only be visited once.

5) Summary and Challenges

To-date, none of the aforementioned techniques have

simultaneously considered all four of the OP extensions

discussed above. However, to appropriately represent the

person search problem for task assistance, it is necessary that

the PSOP incorporates all these extensions. In the PSOP,

control points represent searchable regions and rewards

represent the expected number of target users found while

searching a region. As the users are dynamic, a user may enter

a region subsequent to the robot’s search, and therefore, the

robot may be required to search a region multiple times. Also

due to dynamic user behavior, the probability of finding a user

in a region changes with the time of day and is dependent on

when the region was last searched. Furthermore, the users may

have preferred locations within the regions, and as a result it

may be desirable to only search portions of the region.

Therefore, in our work we uniquely incorporate the

combination of non-binary history-dependent rewards available

within specific time windows, with variable reward acquisition

times and multiple visits to a region.

III. ROBOT PERSON SEARCH PROBLEM (PSOP)

Our PSOP requires a mobile social robot to look for multiple

dynamic users in a multi-room environment. Each search must

be completed before a specified deadline. Upon finding a user,

the robot initiates an assistive interaction with the user. In

comparison with the original OP, our PSOP replaces: 1) control

points with regions, 2) travel time between control points with

4

both travel time between regions and search time at the

destination region, and 3) control point rewards with

probabilities of finding users in the region. A complete list of

symbols used herein is provided as supplementary material.

Environment: The search environment is composed of

regions 𝑅 (𝑅1, 𝑅2, …, 𝑅𝐼). Physical boundaries such as walls

define each region. Regions are designated as neighbors if they

are physically accessible from one another, i.e., contain a

mutual doorway. The time it takes the robot to traverse the

shortest path between 𝑅𝑖 and 𝑅𝑖′ is denoted as 𝑡𝑖
𝑖′

. Robot paths

in the environment are obtained by successively moving to

neighboring regions. Regions are categorized by the type of

activities that can be performed in the region, e.g., eating

occurs in the dining room.

Activities: An activity 𝐴𝑚 denotes a task undertaken by a

user. Examples of activity categories are: eating, meetings,

watching television, reading, and taking a nap.

Users: The users in the shared environment are denoted as 𝑈

(𝑈1, 𝑈2, …, 𝑈𝑁). Throughout the day, users perform activities

in regions for varying durations of time.

Social Robot: The social robot searches for target users by

moving in the environment. It can navigate at a max speed of v

m/s that is based on the average speed of the users who

regularly occupy the environment. The robot can execute the

following actions: search, wait, and interact. The search action

requires the robot to move to a region and search locally within

the region. The wait action is performed when the robot needs

to stop, e.g., to allow a person to pass to avoid a collision or to

prevent starting a search action when ahead of schedule. The

interact action is performed once a target user is found.

Search query: The search query 𝑆 identifies a set of target

users 𝑈′ (𝑈1
′ , 𝑈2

′ , …, 𝑈𝑍
′) to be found by the robot between a

time frame, 𝑡𝑠𝑡𝑎𝑟𝑡 to 𝑡𝑒𝑛𝑑
. Each time frame is composed of

several discrete time periods 𝑇 (𝑇1, 𝑇2, …, 𝑇𝛺) of length

𝑡𝑝𝑒𝑟𝑖𝑜𝑑. A contiguous subset of 𝑇, 𝑇𝑗,𝑘 = {𝑇𝑗 , … , 𝑇𝑘}, is referred

to as a time window. For example, for a time frame from

𝑡𝑠𝑡𝑎𝑟𝑡 = 10: 00 to 𝑡𝑒𝑛𝑑 = 10: 15, with 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 = 5 minutes,

𝑇1 = 10: 00 − 10: 05, 𝑇2 = 10: 05 − 10: 10, and 𝑇1,2 =

10: 00 − 10: 10.

Search Plan: A search plan 𝑆𝑃 is a sequence of search

actions to be executed by the social robot in response to the

search query 𝑆:

 𝑆𝑃 = {𝑎1, … , 𝑎𝐻}, (1a)

 𝑎ℎ = 𝑎𝑖(ℎ),𝜔(ℎ), (1b)

 𝑡(ℎ) = 𝑡(𝑎𝑖(ℎ),𝜔(ℎ)) ∈ {0, 𝑡𝑢𝑛𝑖𝑡 , 2𝑡𝑢𝑛𝑖𝑡 , … , 𝑡𝑚𝑎𝑥}, (1c)

where 𝑎𝑖(ℎ),𝜔(ℎ), denotes the ℎ𝑡ℎ search action of 𝑆𝑃 which is a

search of region 𝑅𝑖(ℎ) during time period 𝑇𝜔(ℎ) for a duration

of 𝑡(𝑎𝑖(ℎ),𝜔(ℎ)). The possible search times within a region are

discretized into increments of 𝑡𝑢𝑛𝑖𝑡 seconds, with a maximum

of 𝑡𝑚𝑎𝑥 seconds.

IV. USER LOCATION MODEL

The user location PDFs are used to generate the rewards

needed in the PSOP. These PDFs are determined using activity

probability density functions which specify the probability of

an activity being performed by a user.

A. Activity Probability Density Function (APDF)

A user APDF is defined as:

 𝑃[𝛿𝑧,𝑖,𝑗,𝑘] =
C[𝛿𝑧,𝑖,𝑗,𝑘]

𝜉𝑧
, (2)

where 𝛿𝑧,𝑖,𝑗,𝑘 denotes the occurrence of an activity being

performed by 𝑈𝑧
′ in 𝑅𝑖 sharing a start time with 𝑇𝑗 and an end

time with 𝑇𝑘. C[𝛿𝑧,𝑖,𝑗,𝑘] is the number of incidences of 𝛿𝑧,𝑖,𝑗,𝑘

observed in the environment. Namely, past user activity data

can be obtained from observations of each 𝑈𝑧
′ in the

environment for a duration of 𝜉𝑧 days. These

observations, 𝐷(𝑑1, 𝑑2, …, 𝑑𝑌), are stored in a database, where

each 𝑑𝑦 is a tuple containing: an activity, a user, a region, a

start time, and an end time. The APDF is then determined

using the frequency in which 𝛿𝑧,𝑖,𝑗,𝑘 occurs in D.

There are two special cases in which 𝑑𝑦 may not have a start

or end time that directly coincides with any 𝑇𝜔, as seen in Fig.

1. In order to still consider these cases, 𝑑𝑦 must be separated

into a set of probabilistic observations that share start and end

times with time periods, such that both the original

observations and separated set of observations have the same

probability of finding the user during all time periods.

Fig. 1. Example of special cases (𝑑1 and 𝑑2) where 𝑑𝑦 does not share either a

start or end time with any 𝑇𝜔, and is separated into probabilistic observations.

Case 1: When the start or end times of 𝑑𝑦 do not lie inside

the search time frame, we truncate any segment of 𝑑𝑦 that is

before the first time period, 𝑇1, or after the last time period, 𝑇Ω.

For example, in Fig. 1, 𝑑1 is truncated to 𝑑1𝑎, resulting in an

increase of C[𝛿1,1,1,2] by 1.

Case 2: When 𝑑𝑦 lies within the search time frame but does

not have the same start or end time with any 𝑇𝜔, we consider

the probability of the robot finding the user during searches in

each time period. For example, for 𝑑2 in Fig. 1, the probability

of finding the user in 𝑇1 is 81.25%, in 𝑇2 is 100%, and in 𝑇3 is

50%. We assign the lowest of these probabilities to a

probabilistic observation corresponding to the smallest 𝑇𝑗,𝑘 that

contains all 𝑇𝜔 with non-zero probability, e.g. assigning 50% to

𝑑2𝑎 corresponding to 𝑇1,3. As a result, 50% of each 𝑇𝜔

probability is accounted for, leaving 31.25% in 𝑇1, 50% in 𝑇2,

and 0% in 𝑇3 to be accounted for. The process is repeated until

all the probabilities have been accounted for, which results in

31.25% for 𝑑2𝑏 corresponding to 𝑇1,2, and 18.75% for 𝑑2𝑐

100% 𝒅𝟏𝒂

18.75% 𝒅𝟐𝒄

31.25% 𝒅𝟐𝒃

50% 𝒅𝟐𝒂

𝒅𝟏 = {𝑨𝟏, 𝑼𝟏, 𝑹𝟏, 𝟖: 𝟓𝟔, 𝟗: 𝟑𝟐}

𝒅𝟐 = {𝑨𝟏, 𝑼𝟏, 𝑹𝟏, 𝟗: 𝟎𝟑, 𝟗: 𝟒𝟎}

𝑻𝟏

9:00 9:48

9:16 9:32 9:03 9:40

𝑻𝟐 𝑻𝟑
8:56

5

corresponding to 𝑇2,2. The probabilities for 𝑑2𝑎, 𝑑2𝑏, and 𝑑2𝑐

result in increases of C[𝛿1,1,1,3] by 0.5, C[𝛿1,1,1,2] by 0.3125,

and C[𝛿1,1,2,2] by 0.1875, respectively.

B. User Location Probability Density Function

The user location PDF, denoted as 𝑃[⋂ 𝜙𝑧,𝑖,𝜔
𝑘
𝜔=𝑗],

determines the probability of 𝑈𝑧
′ being in 𝑅𝑖 during 𝑇𝑗,𝑘, where

𝜙𝑧,𝑖,𝜔 denotes 𝑈𝑧
′ being in 𝑅𝑖 during time period 𝑇𝜔. The

APDF is used to determine 𝑃[⋂ 𝜙𝑧,𝑖,𝜔
𝑘
𝜔=𝑗] as the probability

that 𝑈𝑧
′ will perform an activity in 𝑅𝑖 during a time window

that contains 𝑇𝑗,𝑘:

 𝑃[⋂ 𝜙𝑧,𝑖,𝜔
𝑘
𝜔=𝑗] = ∑ ∑ 𝑃[𝛿𝑧,𝑖,𝑟,𝑚]Ω

𝑚=𝑘
𝑗
𝑟=1 . (3)

V. ROBOT SEARCH FOR MULTIPLE DYNAMIC USERS

The main objective of our proposed search approach is to

generate a search plan for a given search query which

maximizes the expected number of target users found.

As previously mentioned, we model our search problem as

an extension of the orienteering problem defined as PSOP. The

robot must select a subset of regions to search, a duration for

how long to search these regions, and the order in which to

search these regions. We divide the time frame into multiple

time periods to account for dynamic user behaviors. Each

region search must be completed within a time period. As

opposed to searching every location in each visited region, we

allow for a variable amount of search time to be spent at each

region to account for varying user location preferences within

the region. At each of the regions, the robot obtains a reward

associated with the expected number of target users found

based on the search duration and any previous searches of the

same region. The multi-period aspect introduces a maximum

search time within each time period, 𝑡𝑝𝑒𝑟𝑖𝑜𝑑, multiple visits to

a region allowing for at most one visit per time period, region

rewards that change across time periods, and conditional

rewards based on previous searches of the same region in

pervious time periods.

The objective of the PSOP is to maximize the total reward

acquired during the search:

maximize 𝑊(𝑎1) + ∑ 𝑊(𝑎ℎ| ⋂ 𝑎𝑥
ℎ−1
𝑥=1)𝐻

ℎ=2 , (4)

subject to ∑ (𝑡(ℎ) + 𝑡𝑖(ℎ−1)
𝑖(ℎ)

)𝑎ℎ∈𝑆𝑃𝜔
≤ 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 , ∀𝜔 ∈ [1, Ω] ,

where 𝑊(𝑎1) is the reward acquired by the robot performing

the first search action in 𝑆𝑃, 𝑊(𝑎ℎ| ⋂ 𝑎𝑥
ℎ−1
𝑥=1) is the reward

acquired from the robot performing search action 𝑎ℎ,

considering all the prior planned search actions, and 𝑆𝑃𝜔 is the

set of search actions (search plan) executed in 𝑇𝜔. The travel

time, 𝑡𝑖(ℎ−1)
𝑖(ℎ)

, for the first search action, ℎ = 1, is determined

using 𝑅0, which represents the starting region of the robot.

As the PSOP is an extension of the OP which is NP-hard

[55], our problem is also NP-hard. Therefore, we approximate

its optimal solution by solving two sub-problems: 1) the

conditional multiperiod knapsack problem (CMPKP), which is

a variant of the multiperiod knapsack problem (MPKP) [38],

and 2) the traveling salesman problem (TSP) [39]. The

CMPKP expands on the MPKP by using user APDFs when

assigning rewards to a set of search actions for the same region

in multiple time periods.

User location PDFs are first used to compute the reward for

each search action. Using these rewards, the CMPKP generates

an unordered plan, 𝑆𝑃𝐾𝑃, which specifies the time 𝑡(𝑎𝑖,𝜔) to

spend searching each region 𝑅𝑖 during every time period 𝑇𝜔 in

order to maximize the total reward acquired. The TSP is then

used to find a one-to-one mapping from the unordered CMPKP

plan to the ordered multi-person search plan, 𝑓: 𝑆𝑃𝐾𝑃 → 𝑆𝑃,

which minimizes the total time required to complete the search

in each respective time period. The interdependence between

the KP and TSP requires the KP to allocate as much time as

possible to searching, while still leaving enough time to travel

between regions such that the TSP can generate a solution the

robot can execute within the time frame. Too little search time

results in the robot wasting time between actions, too much

results in an infeasible plan. If the shortest sequence of

performing the planned search actions exceeds 𝑡𝑝𝑒𝑟𝑖𝑜𝑑, the

procedure is iterated to obtain a feasible search plan. During

the execution of a search plan, if a target user is found, the

rewards assigned to searching each region for that user are

removed and the robot replans. An overview of our proposed

PSOP approach is presented in Fig. 2.

Fig. 2. Search plan generation using the proposed MPSP to solve the PSOP.

We apply our aforementioned approach, as even small

instances of the PSOP cannot be solved optimally. For

example, considering a scenario with 6 users, 6 private rooms,

4 common rooms, 3 time periods, 4 search durations within

each region (e.g. 12, 24, 36, 48 seconds), and a 10 minute time

frame: the total number of solutions to explore is lower

bounded by the total number of permutations of all ten rooms

in all time periods, i.e., (10! 410)3 = 5.5x1037. However, as

previously mentioned the PSOP can be decomposed into the

CMPKP and TSP sub-problems. Both sub-problems can be

solved optimally in a feasible time as discussed in the

following subsections. Even though solving the sub-problems

results in regions being selected by approximating the travel

time, this approximation can produce near-optimal results for

the PSOP as the best solutions are likely to spend significantly

more time searching within regions than traveling between

Reward for Performing an Action

Search Plan (SP)

Unordered List of Regions
to be Searched

 CMPKP

(Region Selector)

 TSP

(Region Scheduler)

Rewards for Search Actions

(Expected Number of Users Found)

Iterate if Infeasible Search Plan

 PSOP

(Generating Search Plan)

Plan Execution

(Robot Executes Plan)

Replan if a Target User is Found

User Location PDFs

6

regions. Similar sub-problem decompositions for first selecting

control points and then ordering the control points have

previously been successfully applied to OPs [56],[57].

A. Rewards for Search Actions

The MPSP assigns a reward for a search action 𝑎𝑖,𝜔 being

implemented in 𝑅𝑖 during 𝑇𝜔 for a duration 𝑡(𝑎𝑖,𝜔). This

reward represents the expected number of target users found

when performing 𝑎𝑖,𝜔. This reward is defined as 𝑊(𝑎𝑖,𝜔) if the

planner has not selected to search 𝑅𝑖 during any previous time

period. In order to determine 𝑊(𝑎𝑖,𝜔), the planner requires the

probability, 𝑃[𝜙𝑧,𝑖,𝜔], of each target user 𝑈𝑧
′ being in region 𝑅𝑖,

and the probability, 𝑃[𝜃𝑧,𝑖,𝜔|𝜙𝑧,𝑖,𝜔], of the robot finding each

target user given the user is in the region. 𝜃𝑧,𝑖,𝜔 denotes the

robot finding 𝑈𝑧
′ when searching 𝑅𝑖 during 𝑇𝜔 for a duration

of 𝑡(𝑎𝑖,𝜔). 𝑃[𝜙𝑧,𝑖,𝜔] is provided from the APDF, Eq. (3).

𝑃[𝜃𝑧,𝑖,𝜔|𝜙𝑧,𝑖,𝜔] is provided by a local planner used by the robot

to search within regions. An example local planner, used in the

experiments for this paper, could divide a region into cells and

assign a probability to finding a user in each cell as a function

of the time period. The resulting probability provided to the

planner would correspond to the sum of probabilities of the

searched cells, based on the local plan generated for the

specified search duration provided. 𝑊(𝑎𝑖,𝜔) is then determined

as follows:

 𝑊(𝑎𝑖,𝜔) = ∑ 𝑃[𝜃𝑧,𝑖,𝜔|𝜙𝑧,𝑖,𝜔]𝑃[𝜙𝑧,𝑖,𝜔]𝑧∈𝑈′ . (5)

 If the planner has already selected to search 𝑅𝑖 in previous

time periods, the reward assigned to 𝑎𝑖,𝜔 is defined as:

 𝑊(𝑎𝑖,𝜔| ⋂ 𝑎𝑖,𝑘
𝜔−1
𝑘=1) = 𝑊(𝑎𝑖,𝜔) − (6)

 ∑ ∑ 𝑃[⋃ 𝜃𝑘
𝜔−1
𝑘=𝑗 , 𝜃𝜔| ⋂ 𝜙𝑘

𝜔
𝑘=𝑗]

𝑧,𝑖
𝑃[⋂ 𝜙𝑘

𝜔
𝑘=𝑗]

𝑧,𝑖

𝜔−1
𝑗=1𝑧∈𝑈′ ,

where the notation [∙]𝑧,𝑖 indicates that the variables in the

brackets apply to 𝑈𝑧
′ and 𝑅𝑖. 𝑃[⋃ 𝜃𝑘

𝜔−1
𝑘=𝑗 , 𝜃𝜔| ⋂ 𝜙𝑘

𝜔
𝑘=𝑗]

𝑧,𝑖
 is the

probability of the robot finding 𝑈𝑧
′ when searching 𝑅𝑖 during a

previous time window 𝑇𝑗,𝜔−1 and during the current time

period 𝑇𝜔, given 𝑈𝑧
′ stays within 𝑅𝑖 for the entire duration of

𝑇𝑗,𝜔. We subtract this probability to ensure rewards are not

assigned twice for finding the same target user. We obtain

𝑃[⋃ 𝜃𝑘
𝜔−1
𝑘=𝑗 , 𝜃𝜔| ⋂ 𝜙𝑘

𝜔
𝑘=𝑗]

𝑧,𝑖
 from a local search planner. In

Section VI, we provide an example of a local search technique

that can be used, including the probabilities it provides.

B. Conditional Multiperiod Knapsack Problem

The CMPKP uses the search action rewards to select an

unordered set of search actions which maximizes the total

acquired reward while ensuring each search action can be

performed within its allocated time period:

maximize ∑ (𝑊(𝑎𝑖,1) + ∑ 𝑊(𝑎𝑖,𝜔| ⋂ 𝑎𝑖,𝑘
𝜔−1
𝑘=1)Ω

𝜔=2)𝑖∈𝑅 , (7)

subject to ∑ (𝑡(𝑎𝑖,𝜔) + 𝛾𝑖,𝜔𝑡𝑚𝑜𝑣𝑒)𝑖∈𝑅 ≤ 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 , ∀𝜔 ∈ [1, Ω],

where 𝛾𝑖,𝜔 indicates if a search occurs within 𝑅𝑖 during 𝑇𝜔, i.e.,

𝛾𝑖,𝜔 = 0 if duration 𝑡(𝑎𝑖,𝜔) = 0, and 𝛾𝑖,𝜔 = 1 otherwise, and

𝑡𝑚𝑜𝑣𝑒 is a constant estimated travel time between the regions

as the order in which the regions are visited is unknown.

We represent the CMPKP as a minimum flow graph, Fig. 3.

Within this graph, all feasible amounts of elapsed search time

per time period, defined as 𝑄 = {𝑄1, … , 𝑄Ω}, are enumerated.

Each node 𝑁𝑄
𝑖 in the graph represents a decision node in which

the time to search 𝑅𝑖, denoted as 𝜏𝑖 = {𝑡(𝑎𝑖,1), … , 𝑡(𝑎𝑖,Ω)}, is

determined given that 𝑄 has already been allocated to search

regions 𝑅1 to 𝑅𝑖−1. Nodes 𝑁𝑄
𝐼′+1 represent terminal nodes. 𝐼′

represents the number of rooms in which a target user may be

present. A pair of nodes is connected by an edge 𝐸𝜏𝑖
𝑖 which

corresponds to one of the possible search time decisions for 𝑅𝑖.

Each edge weight is set to the negative sum of the rewards

corresponding to the search actions that would be performed to

transition between its two connecting nodes:

 𝑊(𝐸𝜏𝑖
𝑖) = −𝑊(𝑎𝑖,1) − ∑ 𝑊(𝑎𝑖,𝜔| ⋂ 𝑎𝑖,𝑘

𝜔−1
𝑘=1)Ω

𝜔=2 . (8)

We assign negative edge weights such that minimizing the sum

of the edge weights when traversing the graph will result in

maximizing the reward. To solve the minimum flow graph, we

use the Bellman-Ford shortest path algorithm [58] from the

starting node 𝑁0,…,0
1 to any terminal node.

Fig. 3. Minimum flow graph for the CMPKP where 𝑡𝑖,𝜔 represents 𝑡(𝑎𝑖,𝜔).

The CMPKP can become practically infeasible to solve for a

large number of time periods, 𝛺, or for a large value of
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡 ,

since the time complexity of the Bellman-Ford algorithm is the

number of nodes, |𝑁|, multiplied by the number of edges, |𝐸|:

 𝑂(|𝑁||𝐸|) = 𝑂 ((
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡)
2𝛺

𝐼′2
(

𝑡𝑚𝑎𝑥

𝑡𝑢𝑛𝑖𝑡)

Ω

). (9)

Therefore, we can approximate its solution for such scenarios

using the iterative MPSP (I-MPSP) which solves each time

period sequentially, as shown in Fig. 4. Hereafter, we refer to

the non-iterative MPSP discussed above as the complete time

frame MPSP (C-MPSP), while MPSP will be used to refer to

the planner class which contains both the C-MPSP and I-MPSP

solutions.

For the I-MPSP, we represent the CMPKP as Ω minimum

flow graphs, denoted as 𝐺1, … , 𝐺Ω. The decision nodes 𝑁𝑄𝜔

𝑖,𝜔

correspond to selecting the search time in 𝑇𝜔 for 𝑅𝑖 given that

 𝑹𝟏 𝑹𝟐 𝑹𝒊 𝑹𝒊+𝟏

𝑹

T
im

e
 E

la
p

se
d

𝟎, … , 𝟎

𝒕𝒖𝒏𝒊𝒕 + 𝒕𝒎𝒐𝒗𝒆, 𝟎, . . , 𝟎

𝑸𝟏, … , 𝑸𝛀

𝑸𝟏 + 𝒕𝒊,𝟏, … , 𝑸𝛀 + 𝒕𝒊,𝛀

𝑵𝑸𝟏,..,𝑸𝛀

𝒊

𝒕𝒑𝒆𝒓𝒊𝒐𝒅, … , 𝒕𝒑𝒆𝒓𝒊𝒐𝒅

Region

𝑬𝑸𝟏+𝒕𝒊,𝟏,..,𝑸𝛀+𝒕𝒊,𝛀

𝒊

7

𝑄𝜔 has already been assigned to search 𝑅1 to 𝑅𝑖−1. The edges

𝐸
𝑡(𝑎𝑖,𝜔)
𝑖,𝜔

 represent the decision to search 𝑅𝑖 for 𝑡(𝑎𝑖,𝜔) in 𝑇𝜔.

Each edge in graph 𝐺𝜔 has a weight corresponding to the

negative reward of the search action that would be performed.

This reward is dependent on the edges selected for the same

region in the previous graphs 𝐺1 to 𝐺𝜔−1:

 𝑊 (𝐸
𝑡(𝑎𝑖,𝜔)
𝑖,𝜔 |𝐸

𝑡(𝑎𝑖,𝜔−1)
𝑖,𝜔−1 , … , 𝐸

𝑡(𝑎𝑖,1)
𝑖,1) =

 −𝑊(𝑎𝑖,𝜔| ⋂ 𝑎𝑖,𝑘
𝜔−1
𝑘=1). (10)

Fig. 4. Sequential approach to solve the CMPKP where 𝑡𝑖,𝜔 represents 𝑡(𝑎𝑖,𝜔).

The search plan, 𝑆𝑃𝐾𝑃, is generated by sequentially solving

each minimum flow graph using the Bellman Ford algorithm as

discussed above. The time complexity of the approximation is:

 𝑂(𝛺|𝑁||𝐸|) = 𝑂 (Ω (
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡)
2

𝐼′2
(

𝑡𝑚𝑎𝑥

𝑡𝑢𝑛𝑖𝑡)). (11)

Hence a solution can be obtained even for large values of 𝛺

and
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡 .

C. Traveling Salesman Problem

The CMPKP provides an unordered set of search actions per

time period. However, as the solution to the PSOP requires an

ordered set of search actions, we must find a mapping

𝑓: 𝑆𝑃𝐾𝑃 → 𝑆𝑃 that will provide an optimal ordering that

minimizes the travel time within each time period:

minimize ∑ (𝑡𝑖(ℎ−1)
𝑖(ℎ)

),𝑎ℎ∈𝑆𝑃𝜔
∀𝜔 ∈ [1, Ω]. (12)

The ordering for each time period is solved iteratively. The last

region of the previous time period is used as the starting region

for the next time period. The environments we consider for the

task assistance application, such as a floor of an office building

or long-term care facility, can be represented using tree

topologies (i.e., they consist of long hallways with rooms

branching off of the hallways). Given a tree topology, in order

to obtain the optimal shortest tour that visits all the selected

regions, a depth first search is performed [59]. Namely, the

region farthest from the starting region is searched last. This

algorithm for solving the TSP has a linear time complexity. For

environments with non-tree topologies, a depth first search

does not solve the TSP, in which case we recommend using the

Lin-Kernighan heuristic to solve the TSP. This technique has

been shown to have a run-time which scales linearly with the

number of nodes and has generated optimal solutions for

several TSP problems of sizes up to 10,000 nodes [60].

D. Feasible Search Plans

Initially, we use a greedy approach which selects 𝑡𝑚𝑜𝑣𝑒 to be

equal to 𝑡𝑢𝑛𝑖𝑡. Upon obtaining the search plan, 𝑆𝑃, if the time

it takes to execute all the search actions in the same time period

exceeds the time allotted to that time period, we replan by

increasing 𝑡𝑚𝑜𝑣𝑒 by 𝑡𝑢𝑛𝑖𝑡, until the condition below is

satisfied:

 ∑ (𝑡(ℎ) + 𝑡𝑖(ℎ−1)
𝑖(ℎ)

)𝑎ℎ∈𝑆𝑃𝜔
≤ 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 , ∀𝜔 ∈ [1, Ω]. (13)

When the feasible search plan is executed, once a target user

𝑈𝑧
′ is found, the plan no longer consists of an optimized

sequence of search actions to find the remaining users.

Therefore, replanning occurs.

E. Replanning

To replan, a new plan is generated such that it only searches

for the remaining users during the time that remains in each

time period. The rewards for the search actions in the new

plan are conditioned on all search actions already performed

by the robot and no longer consider the users that have already

been found. As a result, the CMPKP only considers edges in

the minimum flow graphs that match the time already spent

searching regions in previous time periods and are at least

equal to time spent searching regions in the current time period.

Replanning can also be used to deal with unexpected

changes in the environment (e.g., a closed door) in which two

regions which were previously neighboring are no longer

physically accessible to one another [61]. In this case the

robot’s stored map of the environment can be updated to

indicate which regions are no longer neighbors. Any pair of

regions with a shortest path affected by this change has a new

shortest path computed using the updated environment

information, and the travel time between the pair of regions is

also updated. Using the updated environment and travel times,

a new search plan is generated for the time remaining in each

time period.

VI. IMPLEMENTATION

We integrated the MPSP with a local search planner and a

person identification method on a mobile robot platform to

validate its performance within a multi-room environment.

A. The Socially Assistive Robot Blueberry

The robot used in our experiments is the socially assistive

robot Blueberry, Fig. 5. Blueberry navigates using its

differential drive base and has a number of sensors, including a

Hokuyo laser range finder, an Xtion IR depth camera, a

Logitech pro c920 RGB camera, and optical wheel encoders.

The robot navigates an environment with an average speed of

0.8m/s. It can also interact with users using its synthesized

voice and animated face. We have developed a system

architecture, Fig. 6, to integrate our planner and a local search

planner with the Blueberry robot. Our architecture is

implemented within the robot operating system (ROS)

framework on Ubuntu.

The MPSP initiates the search planning process based on a

Time Period 1 (𝑇1)

𝑬𝑸𝟏+𝒕𝒊,𝟏

𝒊,𝟏

𝑹𝒊 𝑹𝒊+𝟏

T
im

e
 E

la
p

se
d

𝑸𝟏

𝑵𝑸𝟏

𝒊,𝟏

𝑸𝟏 + 𝒕𝒊,𝟏

Region
Time Period 𝜔 (𝑇𝜔)

𝑬𝑸𝝎+𝒕𝒊,𝝎

𝒊,𝝎

𝑹𝒊 𝑹𝒊+𝟏

T
im

e
 E

la
p

se
d

𝑸𝜔
𝑵𝑸𝝎

𝒊,𝝎

𝑸𝜔 + 𝒕𝑖,𝜔

Region

8

search query request. It generates a search plan for the robot to

implement. Once the robot enters a region, the local planner is

used to search the region for a specified time. The local planner

sends navigation goals to the robot’s navigation system and

user identification goals to the person identification module.

The person identification module uses RGB and depth data

from the cameras to detect and recognize target users. Once a

target user is recognized, the planner performs replanning to

find the remaining target users.

Fig. 5. The socially assistive robot Blueberry.

Fig. 6. Robot system architecture.

1) Localization and Mapping

A 2.5D grid map of the environment is generated for

localization and navigation purposes using both laser scans

from the laser range finder and 3D point clouds from the depth

camera. The latter provides obstacle information in the height

range of the robot. To generate the map, Blueberry navigates

the environment of interest while using this sensory

information as input into the Gmapping simultaneous

localization and mapping (SLAM) technique [62].

B. Local Planner

Our planner is not dependent on a specific local planner and

can be integrated with any local planner that can provide both

𝑃[𝜃𝜔|𝜙𝜔]𝑧,𝑖 and 𝑃[⋃ 𝜃𝑘
𝜔−1
𝑘=𝑗 , 𝜃𝜔| ⋂ 𝜙𝑘

𝜔
𝑘=𝑗]

𝑧,𝑖
, as needed in

Eqs. (5) and (6), respectively. For the experiments presented

herein, the local planner divides the regions into cells, and

assigns an equal probability to finding a user in any cell. To

generate a search plan, we used a TSP local planner that uses

dynamic programming to plan a minimum time tour of each

region [63]. The tour consists of locations in the region from

which cells are searched. This approach is used as the robot

does not have a priori information regarding user locations

within regions, and therefore the local planner can only

optimize the order of cells to search by minimizing travel time

between subsequent cells. The first time a region is searched,

the robot begins the tour by searching the closest cell to the

door and then following the tour order. If the robot needs to

perform a subsequent search of a region, the tour is continued

from the last visited cell. The local planner assumes each cell

can be searched in 𝑡𝑐𝑒𝑙𝑙 , to account for the time needed to

travel between locations and perform person identification.

For the TSP local plan, 𝑃[𝜃𝜔|𝜙𝜔]𝑧,𝑖 is determined as the

percentage of 𝑅𝑖 that can be searched in 𝑡(𝑎𝑖,𝜔):

 𝑃[𝜃𝜔|𝜙𝜔]𝑧,𝑖 =
𝑡(𝑎𝑖,𝜔)

𝑡𝑐𝑒𝑙𝑙𝛽𝑖
, (14)

where 𝛽𝑖 denotes the number of cells in 𝑅𝑖.

𝑃[⋃ 𝜃𝑘
𝜔−1
𝑘=𝑗 , 𝜃𝜔| ⋂ 𝜙𝑘

𝜔
𝑘=𝑗]

𝑧,𝑖
 is determined as the percentage of

𝑅𝑖 that has already been searched in 𝑇𝑗,𝜔−1 and is being

searched again in 𝑇𝜔:

 𝑃[⋃ 𝜃𝑘
𝜔−1
𝑘=𝑗 , 𝜃𝜔| ⋂ 𝜙𝑘

𝜔
𝑘=𝑗]

𝑧,𝑖
=

 𝑚𝑎𝑥 (0,
𝑡(𝑎𝑖,𝜔)

𝑡𝑐𝑒𝑙𝑙𝛽𝑖
− 𝑚𝑎𝑥 (1 −

∑ 𝑡(𝑎𝑖,𝑘)𝜔−1
𝑘=𝑗

𝑡𝑐𝑒𝑙𝑙𝛽𝑖
, 0)). (15)

If the time spent searching 𝑅𝑖 during 𝑇𝑗,𝜔−1 is more than

enough time to search every cell in 𝑅𝑖, then any cells searched

during 𝑇𝜔 will have already been previously searched in

𝑇𝑗,𝜔−1. If the time spent searching 𝑅𝑖 during both 𝑇𝑗,𝜔−1 and

𝑇𝜔 is not enough to search the entire region, then the cells that

were not searched during 𝑇𝑗,𝜔−1 are then searched during 𝑇𝜔.

C. Person Identification

Once the robot navigates to a location within a region, it

searches the corresponding cell for target users. The robot

obtains RGB and depth images using multiple head

orientations to obtain full coverage of the cell. The person

identification technique is then performed in four stages: 1)

person detection, 2) orientation recognition, 3) person

recognition, and 4) person identification contingency strategy.

1) Person Detection

To perform real-time person detection, we adapt the

template matching technique presented in [64]. We conduct

2D head and shoulder silhouette template matching to find the

highest correlation between templates of different sizes and

each segment from a depth image, where segments are

generated using a sliding window approach. We iterate over

the matches in descending order of correlation, merging any

matches within a defined distance (i.e., 100 pixels). We then

use a support vector machine (SVM) classifier with a radial

basis function kernel to classify each template match as a

person, based on a feature set. This set includes the following

features for each match: correlation, number of merged

matches, average correlation across merged matches,

theoretical head area, ratio between actual and theoretical head

radii, ratio between theoretical head and actual body areas, and

position of actual head relative to body. The actual head radius

is obtained by finding the distance from the center of the head

Differential Drive

Base

Hokuyo Laser

Range Finder

Speaker

ASUS Xtion IR

Depth Camera

Logitech Pro C920

RGB Camera

2-DOF Neck

Navigation

System

RGB
Camera

Odometry

MPSP

Low-Level

Controllers

Speaker and

Motors

Depth
Camera

Laser Range

Finder
Localization and

Mapping

Local

Planner

 Person Identification

Orientation

Detection

Recognition

9

to the nearest edge in the depth image. The theoretical head

radius and area are based on the depth of the head in the depth

image [64]. The actual body area is obtained by finding

contours in the depth image [65], approximating polygons that

fit these contours [66], and then finding the area of the

smallest rectangle that encloses each polygon.

 The SVM classifier was trained using a dataset of 1,700

images of people at different distances and orientations, as well

as 300 images without people. The people in the dataset were

not the same as those who participated in the experiments

presented below.

2) Orientation Recognition

Once a person has been detected, his/her head orientation is

determined by using both front facing and profile Haar

cascades [67]. The head orientation is approximated to be front

(detected by front facing cascade), front-left/front-right

(detected by front facing and respective profile cascades), or

left/right (detected by only the respective profile cascade).

3) Person Recognition

Once the head orientation is known, the person is identified

using a deep convolutional neural network (DCNN) [68]. The

DCNN was trained using a database of 100 RGB face images

of each target user, who the robot needs to find, in different

orientations. During the person recognition stage, a person is

recognized if a confidence level above 70% is achieved.

4) Person Identification Contingency Strategy

In the cases where orientation or person recognition fails, a

person identification contingency strategy is used by the robot,

Table I. Namely, if either orientation or person recognition

fails, Blueberry performs the corresponding action 1, which

consists of the robot changing both its orientation and position

with respect to the person in order to rerun the respective

recognition. During these actions the robot maintains a social

distance of approximately 1.5m from the person [69]. If action

1 is implemented for both cases, and recognition is not

achieved, the robot verbally requests the person to identify

himself/herself by asking “Hi, what is your name?”.

TABLE I. PERSON IDENTIFICATION CONTINGENCY PLAN
Failures Action 1 Action 2

Orientation
Recognition

Move in increments of 120° to new

locations approximately 1.5m from the

person and rerun orientation recognition
Verbal

confirmation
Person

Recognition

Move in increments of 30° to new

locations about the person until
approximately 1.5m in front of the

person and rerun person recognition

VII. SEARCH EXPERIMENTS

We have conducted experiments in which: 1) a simulated

Blueberry robot searches for multiple residents in virtual long-

term care environments, and 2) the physical Blueberry robot

searches for multiple employees on a floor of a real university

building. The overall objective of these experiments was to

validate the robustness of our person search method in finding

people of interest under varying conditions. As mentioned

above, the experiments used a TSP local planner to generate

search plans within regions.

A. Long-term Care Environments

Our first set of experiments focused on a simulated

Blueberry robot searching for multiple residents in a virtual

long-term care facility. The environments used were modeled

and scaled based on the layout of one of our partner long-term

care facilities. We developed a custom simulator in C++ using

the OpenGL library. The simulator interfaces with the search

planner providing a search query and receiving a search plan.

A grid-world environment was created in which the robot and

users moved in cardinal directions. To move between multiple

locations the robot and users followed shortest path trajectories.

Activities: Different activity sets were used to test the

performance of our search technique when looking for users

with varying activity preferences. Each activity set consisted of

such activities as take a nap, read, listen to music, play games,

watch T.V., and eat, being performed at varying times of the

day and in specific regions of the environment, Table II. In

Table II, the time of day column refers to times during which

the activities can be performed, however users only perform

the activity for a duration between 15 and 60 minutes in a

single region. Activities with longer durations are possible if a

user performs the same activity consecutively. Similarly, a

single activity can be performed for an extended duration in

multiple regions. The activity sets were generated using the

daily schedules of residents at our partner care facility.

Environments: We used multiple environments consisting

of a combination of common rooms (shared by multiple users)

and 26 private rooms (for individual users), representing

regions in which the users could be found. The regions were

divided into cells of size 2m by 2m based on the sensing range

of the robot. The largest regions in the environment were the

8m by 10m Garden and Dining Room, which contained 20

cells, resulting in 𝑡𝑚𝑎𝑥 = 240𝑠. The environments increased in

size based on the number of rooms they contained, e.g. 30, 33,

36, 39, and 42 rooms. An example environment layout for 33

rooms is shown in Fig. 7. Fig. 8 shows example layouts of both

a common and a private room within the environment.

TABLE II. ACTIVITY SETS INDICATING ACTIVITY AVAILABILITY AND LOCATION

 Activity Set 1 Activity Set 2 Activity Set 3 Activity Set 4 Activity Set 5

Time of Day (hr) Region Time of Day (hr) Region Time of Day (hr) Region Time of Day (hr) Region Time of Day (hr) Region

Take a Nap 7-10,13-16,19-21 PR,RR 7-13 PR,RR 7-10,13-16,19-21 PR 7-21 All

Read 7-9 PR,L,G,RR 13-21 PR,L 8-10,12-14,16-18 G, RR 7-21 G 7-21 All

Listen to Music 10-12,16-18 G,RR 9-12,14-18,20-21 G 10-12,14-16,18-20 G, RR 9-11,13-15 L 7-21 All

Play Games 7-8,9-12,13-21 DR,L,RR 7-12,16-21 RR 7-9,14-16,19-21 RR, L 7-8,10-12,19-21 G 7-21 All

Watch T.V. 7-21 PR,RR 7-21 PR 7-8,9-12,13-17,18-21 PR, DR, RR 7-21 RR 7-21 All

Eat 8-9,12-13,17-18 DR 8-9,12-13,17-18 DR 8-9,12-13,17-18 DR 8-9,12-13,17-18 DR 7-21 All

*Region Classifications: Private Room (PR), Dining Room (DR), Lobby (L), Garden (G), and Recreational Rooms (RR).

10

Users: There was a unique set of 𝑁 = 26 residents for every

combination of activity set and environment. Each user had a

unique set of spatial-temporal activity preferences (STAP). For

each activity, the STAP contained a preference for the activity,

a minimum and maximum duration between 15 and 60

minutes, and a preference for each allowable region.

Throughout the day, upon completing an activity, a new

activity, duration, and region were selected based on the

relative preferences for the allowable activities at the time.

For example, from 12:00 to 1:00, one of the user’s STAP

from activity set 1 (Table II) had a preference of 20% for

watching T.V. and 80% for eating; a watching T.V. duration of

30 to 60 minutes with a preference of 40% for their private

room and 60% for the recreational room; and an eating

duration of 30 to 45 minutes with a 100% preference for the

dining room. Given this STAP, the user chose watching T.V. in

their private room from 12:00-12:30 and eating in the dining

room from 12:30 to 1:00.

User activity data and maps used for the simulated

experiments in the care facility can be found on our website,

here, under multi-user robot search. Using the aforementioned

data, the user location probabilities for the experiments

presented herein were obtained using 𝜉𝑧 = 30 days of

observation data.

Fig. 7. Long-term care environment layout: hallway (H); private room (PR) -

4m x 4m; garden (G) and dining room (DR) - 8m x 10m; recreational room

(RR) and lobby (L) - 8m x 8m; kitchen (K) - 4m x 8m; and nurses’ station (NR)

and charging station (CS) - 4m x 4m.

 (a) (b)
Fig. 8. Example layout of (a) recreational room, and (b) private room.

Simulated Blueberry Robot: The simulated blueberry

robot moved to regions and searched within regions specified

in the search plan. The robot speed was 0.8m/s to match the

real robot. An RGB-D sensor was simulated to have the same

field of view as the ASUS Xtion camera used on the real

robot. A total time of 12s was assigned to searching each 2 by

2 cell, as 𝑡𝑐𝑒𝑙𝑙 = 12s. Experiments were conducted with the

robot first being able to identify all users in all searched cells,

and then with uncertainty introduced while searching a cell.

tunit was selected, as a multiple of 𝑡𝑐𝑒𝑙𝑙 , 𝑡𝑢𝑛𝑖𝑡 = 𝜇𝑡𝑐𝑒𝑙𝑙 , such

that our C-MPSP, Eq. (9), could plan within 1 second. For a

fair comparison, the same 𝑡𝑢𝑛𝑖𝑡 was used for all planners,

including during replanning.

Search query: Each search started between 10:00am and

6:00pm, and had a duration of 15, 21, 30, 39, or 45 minutes.

During these searches, it can be expected that users will

perform 1-3 different activities and may commence a new

activity in an already searched region. In this case, the robot

may have to return to search that region again in order to find

the user. The time frame for each search was divided into Ω =
3 time periods.

A total of 31,250 search trials were conducted. Each search

trial considered a unique combination of: environment size =

{30, 33, 36, 39, 42} rooms, number of target users = {1, 5, 10,

15, 20}, search duration = {15, 21, 30, 39, 45} minutes,

activity set = {1, 2, 3, 4, 5}, and search start time = {10:00,

12:00, 14:00, 16:00, 18:00} on a 24 hour clock. Each

combination was repeated 10 times.

1) C-MPSP and I-MPSP Performance

The performance of each planner was evaluated using the

success rate of each trial:

 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 =
𝑜𝑓 𝑢𝑠𝑒𝑟𝑠 𝑓𝑜𝑢𝑛𝑑

#𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑢𝑠𝑒𝑟𝑠
. (16)

The mean success rate across trials for the varying environment

sizes, search durations, and number of target users are

presented in Fig. 9. The results indicated that the C-MPSP and

I-MPSP technique performed similarly. This suggest that I-

MPSP is a good approximation of C-MPSP and can be used to

generate plans for large environment sizes, search durations,

number of target users, cells per region, and time periods, as

the I-MPSP computation time scales linearly with these

variables.

As expected, the mean success rate achieved by our planner

was inversely proportional to the environment size and directly

proportional to the search duration. Furthermore, as our

approach was designed to search for multiple users, the mean

success rate was robust to the number of target users, achieving

a similar success rate across a varying number of target users.

2) Comparative Study

We conducted a comparison study of the performance of our

planners with respect to a full environment coverage (FEC)

planner, a common room coverage (CRC) planner, and an

MDP planner inspired by [18]. We chose an MDP planner for

comparison as the existing person search planners for dynamic

users in task assistance scenarios are MDP-based, e.g.

[17],[18]. Both coverage planners generate plans to maximize

the number of cells searched within each time period. FEC

considers the entire environment, while CRC only considers

common rooms. Coverage was solved optimally using a

modified TSP that considered all subsets of regions as well as

all varying search durations within each region. The MDP

planner uses actions of either moving to a region, searching

within a region for a number of time steps, or waiting in a

region. The reward for performing each action depends on the

expected number of target users found without considering

previously searched regions, Eq. (5). The states represent the

robot’s current action and number of time steps remaining to

http://asblab.mie.utoronto.ca/research-areas/person-search-human-centered-environments

11

complete the action. The full details of the MDP planner are

presented in Appendix A and the coverage planners in

Appendix B. For a fair comparison, as the state-of-the-art MDP

planners do not use replanning, we compared the MDP planner

to our planner with and without replanning.

a. Performance Comparison of Search Techniques

The overall mean success rates were 77.4% for our C-

MPSP, 77.6% for our C-MPSP without replanning, 78.2% for

our I-MPSP, 76.7% for our I-MPSP without replanning,

63.6% for the MDP planner, 58.8% for the FEC planner, and

56.3% for the CRC planner.

As shown in Fig. 9, there is a clear performance advantage

to using the C-MPSP and I-MPSP for any parameterization of

the problem. In particular, the C-MPSP and I-MPSP, both

with and without replanning, performed better than the MDP

and coverage planners, including for search scenarios with

larger environments or shorter search durations.

Kruskal-Wallis H tests with Bonferroni corrections were

conducted to determine if the differences in the mean success

rates for our planners in comparison to the MDP and coverage

planners, both overall and for any parameterization, were

statistically significant. Post-hoc two-tailed Dunn’s Multiple

Comparison tests with a Bonferroni correction were used for

pairwise comparisons. A significance level of 𝛼𝐾𝑊,𝑟𝑒𝑣𝑖𝑠𝑒𝑑 =

0.003 for the Kruskal-Wallis tests and 𝛼𝐷,𝑟𝑒𝑣𝑖𝑠𝑒𝑑 = 0.00025

for Dunn’s were used to avoid Type 1 errors across multiple

comparisons. The Bonferroni correction was calculated given

an original 𝛼 = 0.05 divided by 16 Kruskal-Wallis tests (i.e.,

overall mean, and mean across independent performance

variables) and 12 Dunn’s tests per Kruskal-Wallis test (i.e., all

pairs between our 4 planners and the 3 other planners). The

results of both tests showed that both overall and for each of

the parameterizations statistically significant difference exist

between our planners, with and without replanning, and the

MDP and coverage planners. The Kruskal-Wallis tests showed

differences in the overall mean success rates across the

planners, 𝜒2(6) = 16145, 𝑝 < 0.0001, and for all the

parameterizations, with the minimum χ2(6) = 2511, 𝑝 <
 0.0001.

b. Comparison of Search Techniques with User Models

To investigate the effects of using the APDF, we compare

the C-MPSP with replanning to the MDP planner as the latter

also considers a user model. We provide a detailed example of

the rewards obtained for the following search query using

activity set 3: 10 target users, 36 regions, 30 minute time

frame, and starting at 14:00. Table III shows the summation

over all the target users for the probability of a target user

performing an activity within a region during a time window,

i.e., ∑ 𝑃[𝛿𝑧,𝑖,𝑗,𝑘]𝑧∈𝑈′ .

The plans generated by each planner for this search query

are presented in Table IV. In the table,
𝑡(𝑎𝑖,𝜔)

𝑡𝑐𝑒𝑙𝑙 represents the

number of cells searched within a region. For the MDP

planner a reward, 𝑊(𝑎𝑖,𝜔), is assigned to a current search

action without considering previous search actions. Although

the MDP planner does not consider previous search actions, for

comparison purposes we show the reward,

𝑊∗(𝑎𝑖,𝜔| ⋂ 𝑎𝑖,𝑘
𝜔−1
𝑘=1), that our C-MPSP would have assigned to

the search actions chosen by the MDP planner.

TABLE III. SUMMATION OF TARGET USERS’ ACTIVITY

PROBABILITIES

Private Room1 (PR1) Private Room3 (PR3) Garden (G)

Dining Room (DR) Recreational Room (RR) Lobby (L)

TABLE IV. GENERATED C-MPSP AND MDP PLANS

 𝑻𝝎

C-MPSP Plan w/ replanning MDP Plan

 𝑹𝒊

𝒕(𝒊,𝝎)

𝒕𝑐𝑒𝑙𝑙
 𝑾(𝒂𝒊,𝝎| ⋂ 𝒂𝒊,𝒌

𝝎−𝟏
𝒌=𝟏)

 𝑹𝒊

𝒕(𝒊,𝝎)

𝒕𝑐𝑒𝑙𝑙
 𝑾(𝒂𝒊,𝝎) 𝑾∗(𝒂𝒊,𝝎| ⋂ 𝒂𝒊,𝒌

𝝎−𝟏
𝒌=𝟏)

 𝑻𝟏
PR3

RR

L

4

16

16

0.27

3.18

2.24

PR3

L

PR1

RR

4

16

2

16

0.27

2.24

0.13

3.18

0.27

2.24

0.13

3.18

 𝑻𝟐
DR

G

20

20

1.08

1.12

G

RR

L

7

16

16

0.39

3.16

2.38

0.39

0.86

0.83

 𝑻𝟑

RR

DR

L

16

6

16

1.62

0.20

1.56

L

PR1

G

RR

16

1

10

16

2.49

0.04

0.78

3.00

0.77

0.04

0.78

0.79

Total 114 11.27 120 18.06 10.28

As can be seen in Table IV, the C-MPSP plan received a

smaller total reward than the MDP plan. However, the mean

success rate when executing the above MDP plan was

determined to be 17% lower than that of the C-MPSP plan.

This is due to the MDP planner not considering previous search

0.11
0.07

0.02
0.08 0.00

𝑇1 𝑇2

0.01

𝑇3

0.01
0.10

0.01
0.16 0.00

𝑇1 𝑇2

0.01

𝑇3

0.28
0.13

0.68
0.18 0.03

𝑇1 𝑇2

0.61

𝑇3

0.29
0.11

0.64
0.19 0.04

𝑇1 𝑇2

0.66

𝑇3

1.38
0.92

0.83
0.88 0.03

𝑇1 𝑇2

0.79

𝑇3

0.93
0.62

0.79
0.69 0.04

𝑇1 𝑇2

0.01

𝑇3

Fig. 9. Mean success rates of each planner across independent performance variables

12

actions. For example, when the MDP planner chose to search

all 16 cells in the recreational room during 𝑇2, it assigned a

reward of 3.16. However, considering it had previously chosen

to search all 16 cells in the same room during 𝑇1, the reward

assigned by our C-MPSP would have only been 0.86. This

reward does not include the summations of the target users’

probabilities of performing an activity within the recreational

room during 𝑇1,2 and 𝑇1,3, i.e., 0.92 and 1.38 from Table III, as

they have already been accounted for during 𝑇1. On the other

hand, the MDP planner double counts these summations, both

in the reward for the search action during 𝑇1 and the search

action during 𝑇2.

3) Introducing Uncertainty

We conducted an additional set of experiments where we

introduced uncertainty into the APDF as well as during the

search to investigate the impact on the planners. The

uncertainties introduced were: 1) misalignment of user

activities with time periods, 2) observational errors during data

collection, 3) deviation of user behaviors from their observed

data, 4) varying number of observation days, and 5)

introduction of detection errors during the search.

The first uncertainty experiment, Experiment #1,

investigated how the APDF models the user activity choices,

namely how well the APDF handles the special case discussed

in Section IV.A. Under normal conditions, users selected

activities based on their STAP, and as a result the activities

may not have aligned with the time periods (i.e., activities may

have changed during a time period). As a result, we compared

users who selected activities regularly based on their STAP,

and users who selected activities based on their APDF (i.e.,

only changed their activities at the start of a time period).

Activity misalignment was measured by iterating over each

time period and considering all activities that occurred within

that time period. The measurement was the percentage of the

time period during which the activity was not being performed,

normalized by the percentage of the activity duration that

occurred within the time period.

Experiment #2 examined observational errors in the data set,

which varied from 0%, 25%, 50%, 75%, to 100% (fully

uniform distribution). These errors were modeled by

considering each observation in the data set and selecting to

change the region with a probability equal to the error

percentage. If a region was changed, the new region was

randomly selected from all regions with a probability

proportional to the area of each region.

Experiment #3 examined the effect of users deviating from

their STAP, varying from 0% to 100%. This deviation was

modeled by having users select each next region from all

regions with a probability equal to the deviation, otherwise,

their next region was selected from their STAP. When

selecting from all regions in the environment, their next region

was selected with a probability proportional to the area of each

region.

Experiment #4 investigated varying the number of

observation days. The cases considered were 1, 2, 3, 4, 5 and

30 days. 1 to 5 represented practical amount of time to spend

acquiring user data, where as 30 days was selected to provide

enough data to act as a ground truth.

Experiment #5 introduced varying detection rates during the

search from 80%, 90%, to 100%. When searching a cell

containing a user, the probability of identifying the user was

equal to the detection rate.

For each of the uncertainty experiments, 2025 search trials

were conducted. Each search trial considered a unique

combination of: environment size = {30, 36, 42} rooms,

number of target users = {1, 10, 20}, search duration = {15,

30, 45} minutes, activity set = {1, 3, 5}, and search start time

= {10:00, 12:00, 14:00, 16:00, 18:00} on a 24 hour clock.

Each combination was repeated 5 times. The time frame was

divided into Ω = 3 time periods. The mean success rates for

each of the 7 planners across the uncertainty variables are

shown in Fig. 10.

Kruskal-Wallis and a two-tailed Dunn’s test, both with

Bonferroni correction, were conducted to determine if the

differences in the mean success rates for our planners in

comparison to the MDP and coverage planners, for any

parameterization, were statistically significant. A significance

level of 𝛼𝐾𝑊,𝑟𝑒𝑣𝑖𝑠𝑒𝑑 = 0.0019 and 𝛼𝐷,𝑟𝑒𝑣𝑖𝑠𝑒𝑑 = 0.00016 were

used based on 26 Kruskal-Wallis tests and 12 Dunn’s tests per

Kruskal-Wallis test. For all tests, the Kruskal-Wallis test

showed a statistically significant difference among the

planners for the mean success rates across all

parameterizations, with the minimum χ2(6) = 59, 𝑝 <
0.0001. For the majority of cases, the Dunn’s test showed a

statistically significant difference in the mean success rates of

our planners, and the MDP and coverage planners. The

exceptions were I-MPSP without replanning versus: i) FEC

for 2 observation days; and ii) CRC for 75% observational

error. Furthermore, I-MPSP with replanning and C-MPSP

without replanning versus: i) FEC for 2 observation days, 75%

observational error, and 75% deviation from observed data;

and ii) CRC for 1 observation day. Additionally, C-MPSP

Fig. 10. Mean success rate of each planner across independent uncertainty variables

13

with replanning versus: i) FEC for 75% observation error and

2 observation days; and ii) CRC for 1 observation day.

For Experiment #1, the STAP activity misalignment ranged

from 6 to 18, whereas the APDF misalignment was only 2 to

6. The results demonstrated that the misalignment had little

impact on the performance of our planners which directly

reasoned about the APDF. Experiment #2 showed that our

planners continued to outperform the MDP planner at all

levels of observation error and only performed worse than the

coverage planners at 75% or more observational error. Similar

to the second experiment, Experiment #3 showed our planners

consistently outperformed the MDP planner, and only

performed worse than the FEC technique at more than 75%

deviation. Even at 100% deviation from observed data, we

observed the C-MPSP remained within 5% of the FEC

technique. This indicated that the coverage aspect of our

planners was robust to the users’ behaviors as it assigned a

large component of time to searching within regions in

comparison to the time spent searching between regions. This

property suggests, as previously stated, that selecting regions

while only considering an average travel cost was an effective

technique for generating near-optimal plans. Experiment #4

indicated that 3 or more observation days were required to

outperform the coverage approaches. Also, as expected,

Experiment #5 demonstrated that the success rate of all

techniques increased proportional with the detection rate.

From the above experiments, we can see that the APDF

accurately models the user activity choices, namely when

handling the special case of activities in misalignment with

time periods. We can also see that our planners outperformed

the MDP planner under all conditions and the coverage

planners for the majority of the conditions, in large part due to

reasoning about conditional rewards provided by the APDF.

Furthermore, we can see that our planners are robust to errors

in the APDF. One thing to note is that when the observational

errors and behavior deviations increased to above 75%, or there

were less than 2 observation days, the FEC technique

performed better.

B. University Office Building

Our second set of experiments consisted of the Blueberry

robot searching a multi-room floor of a university building for

varying groups of dynamic users. Four different search trials

were conducted with varying numbers of target users, search

start times, and search durations.

Activities: The following set of activities were used:

meetings, independent work, laboratory work, reading,

socializing, and eating.

Environment: The environment consisted of nine private

offices and four shared rooms- a cafeteria, boardroom, lounge,

and research laboratory. The layout of the environment is

presented in Fig. 11a. The 2.5D map of this environment

generated using Gmapping is presented in Fig. 11b. The size of

each cell in the region was 2m by 2m, and the search duration

per cell was defined to be 𝑡𝑐𝑒𝑙𝑙 = 24s, and 𝑡𝑢𝑛𝑖𝑡 = 𝑡𝑐𝑒𝑙𝑙 (i.e.,

𝜇 = 1). The largest regions in the environment were 8m by

10m, which contain 20 cells, resulting in 𝑡𝑚𝑎𝑥 = 480𝑠.

Users: The number of target users for Blueberry to find in

the four trials was 1, 3, 6, and 9, respectively. All trials were

conducted with N = 9 users sharing the environment. User

schedules were obtained from the occupants of the floor for

𝜉𝑧 = 30 days.

 (a) (b)
Fig. 11. (a) Layout of the Office floor: hallway (H); private office (P) - 4m x

4m; boardroom (BR) – 8m x 8m; cafeteria (C), lounge (LO), and research

laboratory (L) - 8m x 10m; charging station (CS) - 6m x 4m; and washroom

(W) – 3m x 5m; and (b) 2.5D map.

Search Query: The search start times were: 5pm for 15

minutes (1 target user), 3pm for 15 minutes (3 target users),

11am for 30 minutes (6 target users), and 9am for 30 minutes

(9 target users), for each trial respectively. All trials were

conducted with Ω = 3 periods per time frame.

1) Results

The results for C-MPSP predicting user locations, and

person identification identifying a located user, are both

presented in Table V. Example behaviors performed by the

Blueberry robot while conducting the search are shown in Fig

12. A video showing the robot implementing the search plan

for trial #4 is presented here on our YouTube channel.

 (a) (b) (c)
Fig. 12. Robot behaviors: (a) moving to a region, (b) searching within a region,

and (c) performing person identification of a localized target user.

TABLE V. SEARCH RESULTS

 Trial 1 Trial 2 Trial 3 Trial 4
Search Start Time 5pm 3pm 11am 9am

Target Users to Find 1 3 6 9
Search Duration (mins) 15 15 30 30

Target Users Located 100% (1) 100% (3) 100% (6) 100% (9)

Target Users Identified 100% (1) 100% (3) 83.3% (5) 100% (9)

During all trials, the planner was able to predict the

locations of each of the target users. Furthermore, during the

first, second, and fourth search trials, 100% of users were also

identified. However, during the third search trial, when the

robot located a target user in his private office, the user was

not detected using the template matching technique due to his

poufy hairstyle that day, which made it difficult to match the

head contour. Later in the search, the same target user was

located in the cafeteria, however, the template matching

approach was still unable to detect the user.

There were other cases where the C-MPSP was able to

predict the location of target users who were not identified the

https://www.youtube.com/watch?v=C1_vW6JtckA

14

first time by the person identification module. For example,

during trial #3, the robot located a target user looking down

while reading a book in the lounge. The user was detected, but

could not be recognized as his head was tilted too far down.

The C-MPSP was able to later locate the same user in the

boardroom and person identification was able to successfully

recognize this user.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents a novel person search orienteering

problem, PSOP, and a multi-person search planner, MPSP,

which solved this problem by generating a plan to find

multiple dynamic users in a multi-room indoor environment.

User activity probability density functions are used to predict

the probability of a person remaining in a region or revisiting

the region again during a search time frame. Experiments

conducted showed that both the complete time frame, C-

MPSP, and iterative, I-MPSP, were robust to finding varying

numbers of users during different time frames and in

environments of different sizes. Comparisons with an MDP

planner as well as coverage planners showed that our planner

was able to find a larger number of target users under the

different conditions. Additional experiments verified that the

C-MPSP and I-MPSP techniques were robust to both

uncertainty in the user APDFs as well as uncertainty

introduced during the search. Furthermore, the results also

validated the integration of the MPSP within a robot

architecture for real-world robot search applications. Our

future work consists of extending our MPSP to search for

dynamic users in crowded environments. We also plan to scale

our problem to include cases with large environments that

have multiple floors and perform experiments incorporating

local planners that reason about user location probabilities.

Additionally, we will consider modeling the uncertainty in

environment dynamics using a probabilistic model considering

the probability of two adjacent regions being neighbors,

similar to previous approaches for modeling environment

dynamics as presented in [70]. This model can be directly used

during the planning phase.

APPENDIX A- MDP PLANNER

The MDP planner discretizes the time frame of the search

into time steps, each of length 𝑡𝑐𝑒𝑙𝑙 . During each time step, the

robot performs an action which allows it to transition into a

new state from the current state. The set of actions is selected

to maximize the expected number of target users found.

A. Actions

At each time step, the MDP planner selects an action to take,

𝛼 ∈ {𝛼𝑅𝑖

𝑚𝑜𝑣𝑒 , 𝛼𝑡𝑠𝑡
𝑠𝑒𝑎𝑟𝑐ℎ , 𝛼𝑤𝑎𝑖𝑡}, where: 1) 𝛼𝑅𝑖

𝑚𝑜𝑣𝑒 is move toward

region 𝑅𝑖; 2) 𝛼𝑡𝑠𝑡
𝑠𝑒𝑎𝑟𝑐ℎ is search the current region for the next

𝑡𝑠𝑡 time steps; and 3) 𝛼𝑤𝑎𝑖𝑡 is do nothing.

B. States

At the start of each time step, the robot is in a particular

state, 𝑠 ∈ {𝑠0, 𝑠𝑅𝑖,𝑡𝑠𝑡
𝑚𝑜𝑣𝑒 , 𝑠𝑡𝑠𝑡

𝑠𝑒𝑎𝑟𝑐ℎ}, where: 1) 𝑠0 is the initial state;

2) 𝑠𝑅𝑖,𝑡𝑠𝑡
𝑚𝑜𝑣𝑒 is moving to region 𝑅𝑖 with 𝑡𝑠𝑡 time steps remaining

before arrival; and 3) 𝑠𝑡𝑠𝑡
𝑠𝑒𝑎𝑟𝑐ℎ is searching the current region for

𝑡𝑠𝑡 time steps.

C. Finite State Machine

The FSM used by the MDP planner is shown in Fig. A1. To

account for the dynamic behavior of a user, the MDP allows

for a region to be searched multiple times during the search,

however, only once within a single time period. The FSM also

does not allow for a search action, 𝛼𝑡𝑠𝑡
𝑠𝑒𝑎𝑟𝑐ℎ, to be selected when

there is less than 𝑡𝑠𝑡 time steps remaining in the current time

period.

D. Plan Generation

The MDP planner generates a plan using backwards

induction. The approach works by traversing the FSM in

reverse. Beginning at the last time step, a total reward, 𝑉(𝑠), is

assigned to each state to indicate the maximum number of

target users that can be found over the remainder of the search.

𝑉(𝑠) is determined by considering the expected number of

target users found by each immediate action, given by 𝑊(𝑠, 𝛼),

and the total reward for transitioning into the next state 𝑠′(𝛼)

by performing 𝛼:

 𝑉(𝑠) = max
𝛼

(𝑊(𝑠, 𝛼) + 𝑉(𝑠′(𝛼))). (A1)

The reward 𝑊(𝑠, 𝛼) is 0 if the action is to move or wait. If the

action is to search, the reward is computed in the same manner

as 𝑊(𝑎𝑖,𝜔), Eq. (5), where 𝑅𝑖 is the current region, 𝑇𝜔 is

determined using the current time step, and 𝑡(𝑎𝑖,𝜔) = 𝑡𝑠𝑡𝑡𝑐𝑒𝑙𝑙 .

The MDP plan is then generated by starting at the initial state

and taking the sequence of actions that maximizes the expected

number of target users found over the duration of the search:

 Π(𝑠) = arg max
𝛼

(𝑊(𝑠, 𝛼) + 𝑉(𝑠′(𝛼))). (A2)

Fig. A1. Finite state machine for the MDP planner.

𝛼𝑅
𝐼′

𝑚𝑜𝑣𝑒

𝛼𝑅𝑖

𝑚𝑜𝑣𝑒
𝛼𝑡𝑚𝑎𝑥

𝑠𝑒𝑎𝑟𝑐ℎ

 𝑠𝑅𝑖,𝑡𝑠𝑡−1
𝑚𝑜𝑣𝑒

𝛼𝑅𝑖

𝑚𝑜𝑣𝑒

𝑠𝑅𝑖,0

𝑚𝑜𝑣𝑒

𝛼𝑤𝑎𝑖𝑡

𝑠𝑅𝑖,𝑡𝑚𝑎𝑥−1

𝑠𝑒𝑎𝑟𝑐ℎ

 𝑠𝑅𝑖,𝑡𝑠𝑡−1
𝑠𝑒𝑎𝑟𝑐ℎ

𝑠𝑅𝑖,0

𝑠𝑒𝑎𝑟𝑐ℎ
𝛼1

𝑠𝑒𝑎𝑟𝑐ℎ

𝛼𝑡𝑠𝑡
𝑠𝑒𝑎𝑟𝑐ℎ 𝛼𝑡𝑠𝑡−1

𝑠𝑒𝑎𝑟𝑐ℎ

 𝑠𝑅𝑖,0
𝑠𝑒𝑎𝑟𝑐ℎ

𝛼𝑤𝑎𝑖𝑡

𝛼𝑡𝑚𝑎𝑥−1
𝑠𝑒𝑎𝑟𝑐ℎ

𝛼𝑅
𝑖′

𝑚𝑜𝑣𝑒

𝛼1
𝑠𝑒𝑎𝑟𝑐ℎ

𝑠

𝑅
𝐼′ ,𝑡𝑖

𝐼−1
𝑚𝑜𝑣𝑒

𝑠

𝑅
𝑖′ ,𝑡𝑖

𝑖′
−1

𝑚𝑜𝑣𝑒

𝑠

𝑅1,𝑡𝑖
1−1

𝑚𝑜𝑣𝑒

𝛼𝑅
𝑖′

𝑚𝑜𝑣𝑒

𝛼𝑅1
𝑚𝑜𝑣𝑒

𝛼𝑅
𝑖′

𝑚𝑜𝑣𝑒

𝛼𝑅1
𝑚𝑜𝑣𝑒

𝛼𝑅
𝐼′

𝑚𝑜𝑣𝑒

𝛼𝑅𝑖

𝑚𝑜𝑣𝑒

15

APPENDIX B – COVERAGE PLANNERS

The coverage planners plan a sequence of search actions to

maximize the total number of unique cells visited within the

time frame of the search. The full environment coverage (FEC)

planner considers all private and common rooms the target

users may occupy (e.g., if user 10 is not in the search query

private room 10 is not searched):

maximize ∑ (𝑡(ℎ))𝑎ℎ∈𝑆𝑃 , (B1)

subject to ∑ (𝑡(ℎ) + 𝑡𝑖(ℎ−1)
𝑖(ℎ)

)𝑎ℎ∈𝑆𝑃 ≤ 𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡 ,

 ∑ 𝑡(𝑖, 𝜔)Ω
𝜔=1 < 𝑡𝑐𝑒𝑙𝑙𝛽𝑖 , ∀𝑖 ∈ [1, 𝐼′].

The common room coverage (CRC) planner considers all

common rooms, denoted as 𝐼′′:

maximize ∑ (𝑡(ℎ))𝑎ℎ∈𝑆𝑃 , (B2)

subject to ∑ (𝑡(ℎ) + 𝑡𝑖(ℎ−1)
𝑖(ℎ)

)𝑎ℎ∈𝑆𝑃 ≤ 𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡 ,

 ∑ 𝑡(𝑖, 𝜔)Ω
𝜔=1 < 𝑡𝑐𝑒𝑙𝑙𝛽𝑖 , ∀𝑖 ∈ [1, 𝐼′′].

Repeated full searches of the environment are performed until

there is not enough time to search the entire environment.

When this happens, the robot returns to the first region

searched and generates a new plan with the remaining search

time based on the above formulations.

 A plan is generated for optimizing the search objective in the

coverage planners by considering every connected sub-tree in

the environment. As the optimal coverage solution cannot pass

by a region without searching it, the optimal solution must exist

within one of these sub-trees. The TSP is solved for each of

these sub-trees, using the technique discussed in Section V.C,

and a plan is generated for each sub-tree where every region in

the subtree is fully searched. If the resulting plan is not

feasible, the plan is modified to contain the largest partial

search of the region to be visited last, such that the plan

becomes feasible, if possible. Of all the feasible plans

generated, the optimal plan is the plan with the largest number

of cells searched.

ACKNOWLEDGEMENTS

The authors would like to thank our partner long-term care

facility and our experiment participants.

REFERENCES

[1] Ł. Białek, J. Szklarski, M. M. Borkowska, and M. Gnatowski, “Reasoning
with four-valued logic in multi-robotic search-and-rescue problem,”

Challenges in Autom., Robot. and Meas. Techn., vol. 440, no. 1, pp. 483–499,

2016.
[2] B. Doroodgar, Y. Liu, and G. Nejat, “A learning-based semi-autonomous

controller for robotic exploration of unknown disaster scenes while searching

for victims,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2719–2732, 2014.
[3] P. Dames and V. Kumar, “Autonomous localization of an unknown

number of targets without data association using teams of mobile sensors,”

IEEE Trans. Autom. Sci. Eng., vol. 12, no. 3, pp. 850–864, 2015.
[4] H. Lau, S. Huang, and G. Dissanayake, “Optimal search for multiple

targets in a built environment,” IEEE/RSJ Int. Conf. on Intell. Robots and

Syst., pp. 3740–3745, 2005.
[5] G. Hollinger, S. Singh, and J. Djugash, “Efficient multi-robot search for a

moving target,” Int. J. Robot. Res., vol. 28, no. 2, pp. 201–219, 2009.

[6] R. Patel, P. Agharkar, and F. Bullo, “Robotic surveillance and Markov
chains with minimal weighted Kemeny constant,” IEEE Trans. Autom. Contr.,

vol. 60, no. 12, pp. 3156–3167, 2015.

[7] A. Kolling and S. Carpin, “Pursuit-evasion on trees by robot teams,” IEEE
Trans. Robot., vol. 26, no. 1, pp. 32–47, 2010.

[8] J. Durham, A. Franchi, and F. Bullo, “Distributed pursuit-evasion without

mapping or global localization via local frontiers,” Auton. Robots, vol. 32, no.

1, pp. 81–95, 2012.

[9] J. Thunberg and P. Ögren, “A mixed integer linear programming approach

to pursuit evasion problems with optional connectivity constraints,” Auton.
Robots, vol. 31, no. 4, p. 333–343, 2011.

[10] N. M. Stiffler and J. M. O’Kane, “A complete algorithm for visibility-

based pursuit-evasion with multiple pursuers,” IEEE Int. Conf. on Robot.
Autom., pp. 1660–1667, 2014.

[11] P. Elinas, J. Hoey, and J.J. Little, “HOMER: Human oriented messenger

robot,” in AAAI Spring Symp. Human Inter. with Auton. Syst. in Compl. Env.,
pp. 45–51, 2003.

[12] P. Bovbel and G. Nejat, “Casper: An assistive kitchen robot to promote

aging in place,” J. Med. Devices, vol. 8, no. 3, pp. 1–2, 2014.
[13] M. Volkhardt and H. M. Gross, “Finding people in home environments

with a mobile robot,” Eur. Conf. Mobile Robots, pp. 282–287, 2013.

[14] A. Bayoumi, P. Karkowski, and M. Bennewitz, “Speeding up person
finding using hidden Markov models,” Robot. Auton. Syst., vol. 115, no. 1, pp.

40–48, 2019.

[15] S. A. Mehdi and K. Berns, “Behavior-based Search of Human by an

Autonomous Indoor Mobile Robot in Simulation,” Universal Access Inform.

Soc., vol. 13, no. 1, pp. 45–58, 2014.

[16] S. Lin and G. Nejat, “Robot Evidence Based Search for a Dynamic User
in an Indoor Environment,” ASME Int. Design Eng. Technical Conf. &

Comp. and Inf. in Eng. Conf., pp. 1–8, 2018.
[17] G. D. Tipaldi and K. O. Arras, “I want my coffee hot! Learning to find

people under spatio-temporal constraints,” IEEE Int. Conf. Robot. Autom., pp.

1217–1222, 2011.
[18] M. Schwenk, T. S. Vaquero, G. Nejat, and K. O. Arras, “Schedule-based

robotic search for multiple residents in a retirement home environment,” AAAI

Conf. Artificial Intell., pp. 2571–2577, 2014.
[19] N. Basilico, T.H. Chung, and S. Carpin, “Distributed online patrolling

with multi-agent teams of sentinels and searchers,” Distrib. Auton. Robot.

Syst., pp. 3–16, 2016.
[20] J. J. Acevedo, B. C. Arrue, I. Maza, and A. Ollero, “Cooperative large

area surveillance with a team of aerial mobile robots for long endurance

missions,” J. Intell. Robot. Syst., vol. 70, no. 1, pp. 329–345, 2013.
[21] J. Keller, D. Thakur, M. Likhachev, J. Gallier, V. Kumar, “Coordinated

path planning for fixed-wing UAS conducting persistent surveillance

missions,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 1, pp. 17–24, 2017.
[22] A. Wallar, E. Plaku, and D. A. Sofge, “Reactive motion planning for

unmanned aerial surveillance of risk-sensitive areas,” IEEE Trans. Autom. Sci.

Eng., vol. 12, no. 3, pp. 969–980, 2015.
[23] P. B. Sujit and D. Ghose, “Self assessment-based decision making for

multiagent cooperative search,” IEEE Trans. Autom. Sci. Eng., vol. 8, no. 4,

pp. 705–719, 2011.
[24] M. A. Goodrich, B. S. Morse, D. Gerhardt, J. L. Cooper, and M. Quigley,

“Supporting wilderness search and rescue using a camera-equipped mini

UAV,” J. Field Robot., vol. 25, no. 1, pp. 89–110, 2008.
[25] B. Lavis, T. Furukawa, and H. F. D. Whyte, “Dynamic space

reconfiguration for Bayesian search and tracking with moving targets,” Auton.

Robots, vol. 24, no. 4, pp. 387–399, 2008.
[26] A. Macwan, J. Vilela, G. Nejat, and B. Benhabib, “A multirobot path-

planning strategy for autonomous wilderness search and rescue,” IEEE Trans.

Cybern., vol. 45, no. 9, pp. 1784–1797, 2015.
[27] M. G. Rashed, R. Suzuki, A. Lam, Y. Kobayashi, and Y. Kuno,

“Toward museum guide robots proactively initiating interaction with

humans,” 10th Annual ACM/IEEE Int. Conf. Human-Robot Interaction

Extended Abstracts, pp. 1–2, 2015.

[28] R. Triebel, K. Arras, R. Alami, L. Beyer, S. Breuers, R. Chatila, M.

Chetouani, D. Cremers, V. Evers, M. Fiore, H. Hung, O. A. I. Ramírez, M.
Joosse, H. Khambhaita, T. Kucner, B. Leibe, A. J. Lilienthal, T. Linder, M.

Lohse, M. Magnusson, B. Okal, L. Palmieri, U. Rafi, M. van Rooij, and L.

Zhang, “SPENCER: A socially aware service robot for passenger guidance
and help in busy airports,” Field and Service Robot., pp. 607–622, 2016.

[29] E. Zalama, J. G. García-Bermejo, S. Marcos, S. Domínguez, R. Feliz, R.

Pinillos, and J. López, “Sacarino, a service robot in a hotel environment,”
ROBOT2013: 1st Iberian Robot. Conf., pp. 3–14, 2014.

[30] M. Montemerlo, J. Pineau, N. Roy, and S. Thrun, “Experiences with a

mobile robotic guide for the elderly,” 18th Nat. Conf. on Artificial Intell., pp.
587–592, 2002.

[31] D. McColl, W. G. Louie, and G. Nejat, “Brian 2.1: A socially assistive

robot for the elderly and cognitively impaired,” IEEE Robot. Autom. Mag.,

16

vol. 20, no. 1, pp. 74–83, 2013.
[32] W. Moyle, M. Cooke, E. Beattie, C. Jones, B. Klein, G. Cook, and C.

Gray, “Exploring the effect of companion robots on emotional expression in

older adults with dementia: A pilot randomized controlled trial,” J.
Gerontological Nursing, vol. 39, no. 5, pp. 46–53, 2013.

[33] J. Li, W. G. Louie, S. Mohamed, F. Despond, and G. Nejat, “A user-

study with Tangy the bingo facilitating robot and long-term care residents,”
Int. Symp. on Robot., Intell. Sensors, pp. 1–7, 2016.

[34] C. Thompson, S. Mohamed, W. G. Louie, J. Chen He, J. Li, G. Nejat,

“The robot Tangy facilitating Trivia games: A team-based user-study with
long-term care residents,” Int. Symp. on Robot., Intell. Sensors, pp.173–178,

2017.

[35] M. K. Hasan, A. S. M. Hoque, and T. Szecsi, “Application of a plug-and-
play guidance module for hospital robots,” Int. Conf. Ind. Eng. and

Operations Manage., pp. 1–6, 2013.

[36] T. Tsiligrides, “Heuristic Methods Applied to Orienteering,” J. Oper.
Res. Soc., vol. 35, no. 9, pp. 797-809, 1984.

[37] S. Mohamed and G. Nejat, “Autonomous search by a socially assistive

robot in a residential care environment for multiple elderly users using group
activity preferences,” 26th Int. Conf. Automat. Planning and Scheduling

Workshop on Planning and Robot., pp. 58–66, 2016.

[38] B. H. Faaland, “Technical note—The multiperiod knapsack problem,”

Oper. Res., vol. 29, no. 3, pp. 612–616, 1981.

[39] J. B. Kruskal, “On the shortest spanning subtree of a graph and the

traveling salesman problem,” Amer. Math. Soc., vol. 7, no. 1, pp. 48–50, 1956.
[40] K. E. C. Booth, T. T. Tran, G. Nejat, and J. C. Beck, “Mixed-Integer and

Constraint Programming Techniques for Mobile Robot Task Planning,” IEEE
Robot. Automat. Lett., vol. 1, no. 1, pp. 500–507, 2016.

[41] S. Bernardini, M. Fox, and D. Long, “Combining temporal planning with

probabilistic reasoning for autonomous surveillance missions,” Auton. Robots,
vol. 41, no. 1, pp. 181–203, 2017.

[42] M. Morin, M. P. Castro, K. E. C. Booth, T. T. Tran, C. Liu, and J. C.

Beck, “Intruder alert! Optimization models for solving the mobile robot
graph-clear problem,” Constraints, vol. 23, no. 3, pp. 335–354, 2018.

[43] M. Avci and M. G. Avci, “A GRASP with iterated local search for the

traveling repairman problem with profits,” Comp. Ind. Eng., vol. 113, no. 1,
pp. 323–332, 2017.

[44] E. J. Lodree, D. Carter, and E. Barbee, “The Donation Collections

Routing Problem,” Int. Conf. Dynamics of Disasters, pp. 159–189, 2016.
[45] W. Zheng, Z. Liao, and J. Qin, “Using a four-step heuristic algorithm to

design personalized day tour route within a tourist attraction,” Tourism

Manage., vol. 62, pp. 335–349, 2017.
[46] M. Mann, B. Zion, D. Rubinstein, R. Linker, and I. Shmulevich, “The

Orienteering Problem with Time Windows Applied to Robotic Melon

Harvesting,” J. Optimization Theory Appl., vol. 168, no. 1, pp. 246–267, 2016.
[47] C. Zhang, H. Liang, and K. Wang, “Trip Recommendation Meets Real-

World Constraints: POI Availability, Diversity, and Traveling Time

Uncertainty,” ACM Trans. Inform. Syst., vol. 35, no. 1, pp. 1–28, 2016.
[48] K. Sylejmani, J. Dorn, and N. Musliu, “Planning the trip itinerary for

tourist groups,” Inform. Technol. Tourism, vol. 17, no. 3, pp. 275–314, 2017.

[49] W. Y. Kwon, M. Kim, and I. H. Suh, “Probabilistic tourist trip-planning
with time-dependent human and environmental factors,” IEEE Int. Conf. Big

Data and Smart Computing, pp. 505–508, 2016.

[50] P. J. Palomo-Martínez, M. Angélica Salazar-Aguilar, G. Laporte, and A.
Langevin, “A hybrid variable neighborhood search for the Orienteering

Problem with mandatory visits and exclusionary constraints,” Comput. Oper.

Res., vol. 78, pp. 408–419, 2017.
[51] S. Rossi, F. Barile, C. Galdi, and L. Russo, “Artworks Sequences

Recommendations for Groups in Museums,” Int. Conf. Signal-Image Technol.

Internet-Based Syst., pp. 455–462, 2016.

[52] A. Mobasher, A. Ekici, and O. Ö. Özener, “Coordinating collection and

appointment scheduling operations at the blood donation sites,” Comp. Ind.

Eng., vol. 87, pp. 260–266, 2015.
[53] S. E. Butt and D. M. Ryan, “An optimal solution procedure for the

multiple tour maximum collection problem using column generation,”

Comput. Oper. Res., vol. 26, no. 4, pp. 427–441, 1999.
[54] G. Erdogan and G. Laporte, “The Orienteering Problem with Variable

Profits,” Networks, vol. 61, pp. 104–116, 2013.

[55] B. L. Golden, L. Levy, and R. Vohra, “The orienteering problem,” Naval
Res. Logistics, vol. 34, no. 3, pp. 307–318, 1987.

[56] A. Beham, J. Fechter, M. Kommenda, S. Wagner, S. M. Winkler, and M.

Affenzeller, “Optimization Strategies for Integrated Knapsack and Traveling
Salesman Problems,” Comp. Aided Syst. Theory, pp. 359–366, 2015.

[57] P. Bolzoni and S. Helmer, “Hybrid Best-First Greedy Search for

Orienteering with Category Constraints,” Advances in Spatial and Temporal

Databases, pp. 24–42, 2017.
[58] R. Bellman, “On a Routing Problem,” Quart. Appl. Math., vol. 16, no. 1,

pp. 87–90, 1958.

[59] N. Christofides, “Worst-case analysis of a new heuristic for the travelling

salesman problem.,” Symp. Algorithms Complex., vol. 1, no. 1, pp. 1–5, 1976.

[60] K. Helsgaun, “An effective implementation of the Lin–Kernighan

traveling salesman heuristic,” Eur. J. Oper. Res., vol. 126, no. 1, pp. 106–130,
2000.

[61] S. Oßwald, M. Bennewitz, W. Burgard, and C. Stachniss, "Speeding-Up

Robot Exploration by Exploiting Background Information," IEEE Robotics
and Automation Letters, pp. 716 – 723, 2016.

[62] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid

mapping with Rao-Blackwellized particle filters,” IEEE Trans. Robot., vol.
23, no. 1, pp. 34–46, 2007.

[63] R. Bellman, “Dynamic programming treatment of the travelling salesman

problem”. J. Assoc. Comput. Machinery, vol. 9, no. 1, pp. 61–63, 1962.
[64] L. Xia, C. C. Chen, and J. K. Aggarwal, “Human detection using depth

information by Kinect,” Comput. Vis. Pattern Recognition Workshops, pp.

15–22, 2011.
[65] S. Suzuki and K. Abe, “Topological structural analysis of digitized binary

images by border following,” Comput. Vis. Graph. Image Process., vol. 30,

no. 1, pp. 32–46, 1985.

[66] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature,”

Canadian Cartographer, vol. 10, no. 2, pp. 112-122, 1973.
[67] R. Lienhart and J. Maydt, “An extended set of Haar-like features for

rapid object detection,” Int. Conf. Image Process., vol. 1, no. 1, pp. 900–903,
2002.

[68] B. Amos, B. Ludwiczuk, and M. Satyanarayanan, “Openface: A general-

purpose face recognition library with mobile applications,” CMU School of
Comp. Sci., pp. 1–20 2016.

[69] M. L. Walters, K. Dautenhahn, K. L. Koay, C. Kaouri, R. Boekhorst, C.

Nehaniv, I. Werry, and D. Lee, “Close encounters: Spatial distances between
people and a robot of mechanistic appearance,” IEEE-RAS Int. Conf.

Humanoid Robots, pp. 450–455, 2005.

[70] J. M. Santos, T. Krajník, and T. Duckett, “Spatio-temporal exploration
strategies for long-term autonomy of mobile robots”, Robotics and

Autonomous Systems, pp. 116-126, 2017.

Sharaf C. Mohamed is a Ph.D. student in the

Department of Mechanical & Industrial Engineering at

the University of Toronto (UofT). He is a member of the
Autonomous Systems and Biomechatronics Laboratory

(ASBLab). His research interests include multi-robot

coordination, human-robot interaction, embedded
systems, and autonomous robotics. He received his

B.A.Sc. in Electrical & Computer Engineering at UofT.

Sanjif Rajaratnam was an M.A.Sc. student in the

Department of Mechanical & Industrial Engineering at
UofT and a member of the ASBLab. His research interests

include robotics and autonomous systems. He received his

B.A.Sc. in Mechanical Engineering from the University
of Waterloo.

Seung Tae Hong was a B.A.Sc. student in the Division of
Engineering Science, Biomedical Systems option, at UofT

and a member of the ASBLab. His research interests

include biomechatronics and human-robot interaction.

Goldie Nejat (S’03-M’06) is the Canada Research Chair

in Robots for Society and a Professor in the Department

of Mechanical & Industrial Engineering at UofT. She is
the Founder and Director of the ASBLab. She is also an

Adjunct Scientist at the Toronto Rehabilitation Institute.

Her research interests include intelligent assistive/service
robots, human-robot interactions, and semi-

autonomous/autonomous control. She received her

B.A.Sc. and Ph.D. degrees in Mechanical Engineering at the University of
Toronto.

