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Abstract  
Contextual information contained within human environments, such as text on signs, symbols and objects provide important infor-
mation for robots to use for exploration and navigation. To identify and segment contextual information from images obtained in 
these environments data-driven methods such as Convolutional Neural Networks (CNNs) can be used. However, these methods 
require significant amounts of human labeled data which is time-consuming to obtain. In this paper, we present the novel Weakly 
Supervised Mask Data Distillation (WeSuperMaDD) architecture for autonomously generating pseudo segmentation labels (PSLs) 
using CNNs not specifically trained for the task of text segmentation, e.g. CNNs alternatively trained for: object classification or 
image captioning. WeSuperMaDD is uniquely able to generate PSLs using learned image features from datasets that are sparse and 
with limited diversity, which are common in robot navigation tasks in human-centred environments (i.e., malls, stores). Our pro-
posed architecture uses a new mask refinement system which automatically searches for the PSL with the fewest foreground pixels 
that satisfies cost constraints. This removes the need for handcrafted heuristic rules. Extensive experiments were conducted to vali-
date the performance of WeSuperMaDD in generating PSLs for datasets containing text of various scales, fonts, orientations, cur-
vatures, and perspectives in several indoor/outdoor environments. A detailed comparison study conducted with existing approaches 
found a significant improvement in PSL quality. Furthermore, an instance segmentation CNN trained using the WeSuperMaDD 
architecture achieved measurable improvements in accuracy when compared to an instance segmentation CNN trained with Naive 
PSLs. We also found our method to have comparable performance to existing text detection methods. 
 
Keywords Weakly Supervised Learning for Robots · Environment Context Identification · Segmentation and Labeling · Robot Navigation and 
Exploration 

 

1 Introduction 

Human-centered environments contain an abundance of contex-
tual information such as text on signs, symbols, and objects that 
are used as landmarks to help guide users with point-to-point 
navigation in unknown environments (Vilar et al. 2014), and up-
date maps of the environment (Peng et al. 2018). Service robots 
working in varying human-centered (Dworakowski et al. 2021) 
environments can exploit these types of contextual information 
to aid with navigation. For example, robots can use text on aisle 
signs in grocery stores to determine which aisles to search for a 
particular item (Thompson et al. 2018). They have also used 
contextual information for mapping and localization. Namely by 
using an annotated map of an office with room placards for goal 
directed navigation (Case et al. 2011). Robots have also created 
semantic maps using product locations (Cleveland et al. 2017), 
maps from unique text landmarks identified in images (H. Wang 
et al. 2015), and have used salient objects identified from 
learned features (e.g. edges, contours, etc.) for visual odometry 
(Liang et al. 2019). These approaches rely specifically on a ro-
bot’s ability to identify and localize context in an environment.  

Recent work in the area of context detection and segmentation 
has made use of Convolutional Neural Networks (CNNs) to de-
tect the presence of various types of objects or text within 

images of an environment (He et al. 2017; Liao, Zhang, et al. 
2018; Radosavovic et al. 2018). However, the amount of human 
effort required to generate the vast expert labeled datasets re-
quired for training these existing networks significantly in-
creases the overall time cost of their use. While some existing 
datasets do provide the labels necessary to train CNNs for seg-
mentation tasks, they are limited in scope, and only target spe-
cific (e.g. people, animals) objects, not necessarily applicable 
for contextual information for robotic exploration and naviga-
tion problems. For example, the widely used PASCAL VOC da-
taset only has 20 object classes, mainly consisting of a limited 
set of people, animals, vehicles, and some indoor objects 
(Everingham et al. 2015). Therefore, CNNs trained with this da-
taset cannot be used to provide the large range of contextual in-
formation needed for robots to interpret their environments for 
exploration and navigation tasks. Other datasets provide larger 
numbers of classes, however, again only a small portion of ex-
amples relative to the number of classes are available. For ex-
ample, the ADE20k dataset (B. Zhou et al. 2019) contains 3,169 
classes of people, vehicles, and objects in rooms, but only 270 
of the classes have more than 100 instances. Training CNNs to 
accurately segment large numbers of classes with a dataset such 
as ADE20k which has a long-tail class distribution is an open 
challenge (Y. Li et al. 2020). On the other hand, datasets such as 
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the Waymo open dataset (Sun et al. 2019), Open Images 
(Benenson et al. 2019), and ICDAR-15,17 (Karatzas et al. 2015; 
Nayef et al. 2017) contain several context categories with many 
examples that can be used by robots, e.g., text, cars, etc., but they 
are not fully labeled, requiring the classification of each pixel in 
an image in the dataset prior to training. Creating labels for all 
context instances within these datasets is significantly time con-
suming and must be done manually. Past research has found that 
the time required to manually generate a segmentation label is 
approximately 54s per context instance (Jain and Grauman 
2013). Based on this we can estimate that it would take 20 years 
to segment all 2D objects in the Waymo open dataset! While 
transfer learning approaches using large-scale synthetic datasets 
such as SynthText (Gupta et al. 2016) can be used, these ap-
proaches still require a fully annotated dataset with segmenta-
tion labels from real-world environments. For the Total-Text da-
taset (Ch’ng and Chan 2017) with 11,459 text instances, this 
would require over 170 hours of manual labeling. 

Given the large investment needed to create these labels, sev-
eral automated methods have been proposed to generate pseudo 
segmentation labels (PSLs) to segment an input image and to 
replace human expert labels. In general, naive methods have 
been proposed to avoid the human time-cost of per-pixel seg-
mentation by: 1) using bounding box labels (Khoreva et al. 
2017), or 2) generating soft labels (i.e. labels between 0 and 1) 
based on the assumed shape of context instances (J. Liu et al. 
2019). However, these approaches rely on specific assumptions 
about the shape and structure of context instances that are not 
always valid, for example, assuming objects do not have holes 
(e.g. the center of the character ‘o’).  

Recently, semi or weakly supervised learning methods have 
been proposed to introduce learned features into the label gen-
eration process. Semi-supervised methods train a model using a 
dataset containing fully labeled and unlabeled data to generate 
pseudo labels for the unlabeled subset (Chapelle et al. 2010). An 
example of semi-supervised learning is data distillation where 
the fully labeled subset of a dataset is used to train a CNN. The 
CNN is then used to generate labels for unlabeled images using 
an ensemble of predictions from multiple transformed versions 
of each image (Radosavovic et al. 2018). These methods, how-
ever, still require human expert supervision to generate the la-
beled set. Alternatively, weakly supervised methods generate 
PSLs using partial information such as class or bounding box 
labels to completely label a dataset (Z.-H. Zhou 2017). For ex-
ample, weakly supervised methods use techniques such as class 
peak response (Y. Zhou et al. 2018), adversarial erasing (Wei et 
al. 2017), and Class Activation Maps (CAMs) (Saleh et al. 
2018). However, these approaches can significantly restrict the 
types of CNNs that can be trained due to the use of specialized 
CNN layers which determine the contribution of pixels in the 
input image to the CNN’s final output. For example, CAMs 

require an additional global average pooling layer followed by a 
fully connected layer. Requiring specific layers limits the ap-
plicability of such existing weakly supervised segmentation 
methods since they cannot be generalized to all problems.  

To avoid fully training a network, in (Khoreva et al. 2017), 
unsupervised segmentation methods, such as GrabCut (Rother 
et al. 2004) were used. However, since this method is class ag-
nostic, it results in significant noise being present in the gener-
ated labels, it reduces the performance of the trained models 
compared to fully supervised models (Khoreva et al. 2017).  

As robots must operate in different environments with vary-
ing terrain, configurations, and objects, large datasets must be 
obtained to train a robust segmentation CNN for context detec-
tion. The size of these datasets makes generating segmentation 
labels time consuming and slow. Using weakly supervised meth-
ods to generate PSLs is desirable as they do not require fully 
labeled data and can therefore reduce manual labeling effort. 
However, weakly supervised methods require training with 
large diverse datasets to learn a feature representation that must 
then be segmented using handcrafted heuristic rules. Moreover, 
training must be repeated if new data is added to a dataset (Saleh 
et al. 2018; Wei et al. 2017; Y. Zhou et al. 2018) thus increasing 
the computational cost of their use. Alternatively, we propose 
using readily available CNNs that are not trained specifically for 
text segmentation (but rather object classification, scene classi-
fication, etc.) as their convolutional layers can readily be trans-
ferred to the segmentation task (Zamir et al. 2018). These CNNs 
are trained with sparse labels, such as the overall class of an ob-
ject (chair or desk), or the classes of a sequence of objects (cat 
and dog), rather than per-pixel image classification (which exact 
pixels in an image contain a dog). In order to segment contextual 
information using PSLs, features within these classes (e.g. 
edges, contours) need to be identified. By extracting the features 
used by these CNNs and incorporating them into a weakly su-
pervised learning framework we minimize the need for addi-
tional training, while providing a source of informative image 
features to guide label generation. 

In this paper, we present a novel autonomous Weakly Super-
vised Mask Data Distillation pseudo label generation architec-
ture, WeSuperMaDD, for the segmentation of contextual infor-
mation in varying environments using a partially labeled dataset 
containing bounding boxes and context labels (e.g. object class 
labels, image caption labels, etc.). These labels can be used to 
directly train existing CNN models for robotics tasks such as 
context identification and recognition, including for robot navi-
gation, exploration, and obstacle avoidance. Our main contribu-
tions are:  
1) we present the first architecture which uses learned features 

extracted from existing CNNs not trained specifically for 
scene text segmentation to generate PSLs for: a) sequences of 
disjointed objects (e.g., text characters) regardless of dataset 
sparsity or diversity, and b) without the need for gradient-
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based backpropagation, removing the need also for iterative 
training.   

2) we introduce an autonomous mask refinement system that 
uniquely searches for PSLs that both have the fewest fore-
ground pixels and satisfy cost constraints as measured by a 
cost function. This mask refinement system is unique with 
respect to other existing techniques in that by automating this 
step, the need for human involvement is eliminated.  

3) we perform extensive experiments to successfully validate 
that our proposed WeSuperMaDD generates PSLs of varying 
scale, fonts, curvatures and sizes of text in different environ-
ments and has a higher segmentation quality than several 
common and state-of-the-art existing weakly, semi, and fully 
supervised segmentation methods, while having segmenta-
tion accuracy comparable to a state-of-the-art semi-super-
vised method. Furthermore, with respect to removing the 
need for additional training, our proposed method is able to 
robustly and repeatedly generate PSLs on disjointed text and 
with higher segmentation accuracy than an existing state-of-
the-art method. 

4) Furthermore, we show that our trained instance segmentation 
CNN has improved accuracy in generating segmentation out-
puts than an instance segmentation CNN trained with the 
standard Naive PSL generation method and maintains similar 
performance to several existing state-of-the-art text and seg-
mentation detectors. 
 
By combining these learned features and our new mask re-

finement process, we remove the costly need for human experts 
to train a CNN for PSL generation and to create the handcrafted 
rules for segmentation that are typically required in previous 
works. The main advantage of our architecture is that it allows 
for the robust generation of PSLs in partially labeled datasets 
obtained by robots as they explore their environments, without 
the need for large diverse datasets. The proposed method has 
wide applicability for various robotics context detection tasks 
such as the simultaneous segmentation and detection of text in 
scenes, classification of terrain types, and grasping and manipu-
lation of objects. 

2 Related Work 

The literature on semi and weakly supervised learning is dis-
cussed in this section with application to both robotics and ex-
isting methods which: 1) generate pseudo labels using a single 
output modality (e.g. segmentation, CAMs, etc.), and 2) train an 
ensemble of CNN output modalities to generate pseudo labels.  

2.1 Semi/Weakly Supervised Learning for Robots  

Semi and weakly supervised learning approaches have been 
used in robotic applications such as: 1) fruit counting for agri-
cultural robots (Bellocchio et al. 2019), 2) ego-motion 

estimation (Shariati et al. 2020), 3) object manipulation (Singh 
et al. 2017), 4) location detection for topological localization 
(Arandjelovic et al. 2016), and 5) 3D point cloud segmentation 
of a scene (B. H. Wang et al. 2019). Recently, a handful of pa-
pers have focused on using semi-supervised learning for semi-
automatic labeling of objects from multiple perspectives 
(Gregorio et al. 2020), weakly supervised learning for segment-
ing terrain (Barnes et al. 2017; Wellhausen et al. 2019), and de-
tecting surgical tools (Vardazaryan et al. 2018).  

In (Gregorio et al. 2020), a semi-supervised method was pro-
posed for generating object labels for industrial robotics. Images 
of an object were gathered by a camera mounted on a robot arm 
from multiple viewpoints while tracking the camera pose. The 
first image was manually labeled with a bounding box label, and 
all subsequent images were labeled using a relative transform 
based on the robot’s pose when the image was taken. 

In (Wellhausen et al. 2019), a robot was teleoperated through 
an environment and the robot’s footholds were recorded via 2D 
images taken by an onboard camera and proprioceptive sensors. 
The footholds in the image frame were labeled manually by ter-
rain type. In (Barnes et al. 2017), images and point cloud data 
from a 2D camera and LIDAR were recorded while a user drove 
a vehicle. A traversable path was labeled by registering the path 
taken into image frames using camera extrinsic parameters and 
vehicle odometry. Obstacles were detected and labeled in an im-
age using the point cloud data. In both cases, these partially la-
beled images were used to train a segmentation CNN to predict 
the labeled path properties.  

In (Vardazaryan et al. 2018), a method was proposed for 
weakly supervised robotic surgical tool detection and localiza-
tion using image level labels indicating tool presence. During 
training, an spatial pooling layer was applied to the final feature 
maps of a fully convolutional segmentation network to produce 
an output classification vector. The network was trained using a 
cross entropy loss to predict the presence of a tool. At test time, 
the position within the feature maps with maximal activation 
was considered to be the location of a surgical tool.  

2.2 Single Modality Methods 

In single modality approaches, only one output type is used from 
the CNN for PSL generation, e.g. per-pixel segmentation, and as 
a label for self-training to improve the PSLs. Both semi (Y. Baek 
et al. 2019; Bonechi et al. 2019; C. Wang et al. 2021) and weakly 
supervised (Khoreva et al. 2017), (Y. Zhou et al. 2018), (Jing et 
al. 2020; Niu et al. 2019; B. Zhang et al. 2019; Zhao et al. 2018) 
methods use this approach to calculate PSLs. 

2.2.1 Semi-Supervised Methods  

Semi-supervised single modality methods train a CNN using a 
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combination of fully and partially labeled data to generate 
pseudo labels for the partially labeled data using the fully la-
beled data as training labels (Y. Baek et al. 2019; Bonechi et al. 
2019; C. Wang et al. 2021). For example, in (Bonechi et al. 
2019), a semi-supervised text segmentation CNN used back-
ground-foreground segmentation to train a CNN using synthetic 
images of text. PSLs were generated automatically using the 
CNN’s segmentation output from the text segments cropped 
from real images of various environments. These labels were 
then used to train a text segmentation CNN. 

In (Y. Baek et al. 2019), a pipeline was proposed for training 
a text detection CNN using semi-supervised character segmen-
tation. First, character segmentation was generated using a syn-
thetic dataset containing character region masks and masks de-
fining the connections between adjacent characters. During 
training, labels for real images were generated by applying a wa-
tershed transform to the CNN’s character region output to obtain 
both the inter-character regions and per-character bounding 
boxes. The CNN was trained with both synthetic and real data 
concurrently to update labels for the real images throughout 
training.  

In (C. Wang et al. 2021), a semi-supervised framework was 
proposed for training a pixel-level scene text segmentation 
CNN. The CNN had two parallel output branches, the first was 
used for polygon-level text mask prediction, and the second for 
pixel-level text mask prediction. The output prediction of each 
branch was fed back to the other branch so that each task was 
guided by the learning of the other. As each image only con-
tained either a ground truth pixel-level or polygon-level mask, 
the prediction from the other branch served as a pseudo-label 
during training.  

2.2.2 Weakly Supervised Methods  

Weakly supervised single modality methods use only a partially 
labeled dataset and self-training to generate PSLs. The training 
targets used in self-training are generated using various different 
methods including: 1) using CNNs to predict segmentation of an 
image (Khoreva et al. 2017), (Y. Zhou et al. 2018), (Jing et al. 
2020; Zhao et al. 2018), 2) using CAMs processed by a Condi-
tional Random Field (CRF) (B. Zhang et al. 2019), 3) a genera-
tive output where a CNN is used to model a joint probability 
distribution of images and image labels (Niu et al. 2019) or 4) 
using CNN features from pre-trained models without additional 
training (Mahendran and Vedaldi 2016; Simonyan et al. 2014). 

Segmentation In (Khoreva et al. 2017), a weakly supervised 
framework for training segmentation networks was presented. 
Initial PSLs were generated by using a modified GrabCut 
(Rother et al. 2004) method. The masks were combined with ob-
jectness proposals from multiscale combinatorial grouping 
(Pont-Tuset et al. 2017) using a union operation. A segmentation 

network was then trained with these proposals. Labels used for 
supervision were updated using a set of rules comparing the pre-
vious label and segmentation output.  

In (Y. Zhou et al. 2018), a weakly supervised object segmen-
tation method consisting of a combination of image level labels 
and peaks in class response maps (local maxima in a feature 
map) was proposed. A classification loss was augmented with a 
peak stimulation function to force the network to focus on dis-
criminative regions. At test time class peaks were detected in the 
response maps and were refined using peak back propagation to 
generate an instance segmentation. The mask representing each 
peak in image space was ranked and then filtered using non-
maximum suppression to obtain final object proposals.  

In (Zhao et al. 2018), a weakly supervised framework for 
training segmentation networks using only bounding box anno-
tations was presented. When training the object segmentation 
network, a graph-based mask refinement technique was used to 
combine information from the predicted segmentation probabil-
ities, image texture, and ground truth bounding box to update the 
pseudo labels used as segmentation targets.  

In (Jing et al. 2020), a weakly supervised three-stage frame-
work for the training of a semantic segmentation network using 
only object labels was proposed. The first stage used a pre-
trained unsupervised object segmentation network to generate a 
coarse initial mask output. The second stage enhanced the gen-
erated mask using GrabCut (Rother et al. 2004) to improve fore-
ground-background segmentation. The third stage involved net-
work training, where, for each training example, a target was 
generated by processing the network’s output using the previous 
stage.  

CAMs In (B. Zhang et al. 2019), a weakly supervised online 
training procedure was used to train a semantic segmentation 
CNN based on class labels. The CNN had two parallel output 
branches, the first was used for CAM and object classification, 
and the second for per-pixel segmentation. During training, the 
CAM was filtered using a CRF and converted into a mask con-
taining foreground, background, and unknown information us-
ing a heuristic approach to train the segmentation output.  

Generative In (Niu et al. 2019), a weakly supervised defect de-
tection procedure using a cyclic generative adversarial CNN and 
class labels was used. Given both an image with a defect paired 
and an image without defects the CNN was trained to remove 
the defect from the image. Similarly, a second CNN was trained 
to introduce defects into images by using images with defects as 
ground truth. The outputs were then used as inputs into the op-
posite generative model and are trained to undo the changes to 
the image. Segmentation masks were generated by taking the 
difference between the generated defect free image and the orig-
inal input and applying heuristic rules.  
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Pre-trained CNN Models In (Simonyan et al. 2014), two CNN 
feature visualization techniques were presented, with one ex-
tended to generate weakly supervised PSLs. Given an input im-
age, a class label, and a CNN pre-trained for classification, the 
derivative of the class score with respect to the image was com-
puted using backpropagation and the ground truth label. A sali-
ency mask was then computed using the maximum gradient per 
image channel for each image pixel. GraphCut color segmenta-
tion was then applied. After GraphCut, the largest connected 
component set of foreground pixels was used as a PSL.  

In (Mahendran and Vedaldi 2016), a weakly supervised 
method using gradient information and a pre-trained CNN with 
a parallel reversed architecture were presented to generate PSLs. 
The reversed architecture was constructed using the gradient 
functions of individual layers along with per-layer manually 
specified rules. To generate a saliency mask, the CNN was eval-
uated until the last layer before softmax. The feature channel for 
visualization was selected as the channel with the maximally ac-
tivated neuron. The features and the selected channel were then 
used within the reversed architecture to generate a per-pixel sa-
liency mask. GrabCut segmentation was then applied. A PSL 
was generated by selecting the largest connected component set 
of foreground pixels. 

2.3 Ensemble Approaches 

Ensemble approaches combine multiple outputs of a CNN for 
pseudo label generation, taking advantage of multi-task learning 
and can therefore improve label quality for self-training (Ruder 
2017). The ensemble combinations include: 1) semi-supervised 
ensembling of multiple predictions from a single CNN using 
data distillation (Radosavovic et al. 2018), 2) weakly supervised 
ensemble of multiple segmentation maps (Ibrahim et al. 2018; 
Wu et al. 2020), 3) a weakly supervised ensemble of an attention 
and saliency map (Hou et al. 2017), and 4) weakly and semi-
supervised ensembles of a CAM and either a saliency map, seg-
mentation mask or intermediate CNN activations (G. Li et al. 
2018; Saleh et al. 2018; Selvaraju et al. 2020; L. Wang et al. 
2017; Wei et al. 2017, 2018).  

Data Distillation In (Radosavovic et al. 2018), a pre-trained 
CNN was used in a semi-supervised data distillation processes 
to generate labels for unlabeled data. Data distillation involved 
ensembling predictions using application specific rules from 
several augmented versions of an input image. Final labels were 
generated using task specific rules.  

Multiple Segmentation Maps In (Ibrahim et al. 2018), a semi-
supervised approach that iteratively improves an initial pre-
trained segmentation model was presented. Two segmentation 
models were pre-trained using fully labeled data, the first was 
trained with bounding boxes and images as input and the second 

was a self-correction module which corrected segmentation er-
rors made by the first model. Next, a segmentation CNN taking 
only the image as input was trained, pseudo labels for the weakly 
supervised part of the dataset were generated by applying the 
self-correction network to the CNN’s predictions. 

In (Wu et al. 2020), a semi-supervised text-level segmentation 
approach that generates polygon-level segmentation masks from 
bounding box annotations was presented. It consisted of two 
components: 1) Bounding Box Supervision (BBS) with Skele-
ton Attention Segmentation Network (SASN), and 2) Dynamic 
Self Training (DST). BBS consisted of three stages, whereby the 
first stage trains SASN with synthetic data with character-level 
annotations to generate polygon pseudo-labels; the second stage 
uses bounding box annotations to crop real images which are 
passed into SASN to generate polygon pseudo-labels; and a third 
stage which combines pseudo-labels to generate a global 
pseudo-label. In DST, supervised learning was used to train an 
initial detector to generate foreground maps on unlabeled data. 
Background maps were then obtained to filter false negatives 
using edge detection and distance thresholding. Images were 
resized to a pre-defined set of scales to generate multi-scale pre-
dictions. Training was performed using both foreground predic-
tions of unlabeled data and foreground segmentations of labeled 
data. This method segments the entire region containing the text 
as one continuous object, which can introduce background noise 
pixels. Moreover, it requires handcrafted heuristic rules such as 
distance thresholding to filter false positives. 

Ensembling Saliency and Attention Maps In (Hou et al. 2017), a 
weakly supervised Expectation Maximization (EM) based 
method for the generation of segmentation masks using only im-
age labels was presented. An initial estimate for the mask was 
generated using the per pixel maximum of a class agnostic sali-
ency map and an attention map (J. Zhang et al. 2018) obtained 
from pre-existing CNNs via excitation backpropagation. The M-
step trained a CNN with a multi-part loss function comparing 
the posterior and the predicted mask. The E-step was performed 
by constraining the latent posterior using the image labels, this 
was used to update target labels at each iteration. 

Ensembling of a Combination of Methods In (Wei et al. 2017), 
a weakly supervised iterative object region erasing approach for 
object segmentation using class labels was presented. The pro-
cess first trains a CNN with CAMs to convergence. Using heu-
ristic rules, the CAMs and a saliency map from a pre-trained 
network were combined to remove aspects of the image discrim-
inative for a particular class. This process was repeated begin-
ning from training until the network no longer converged. 
Pseudo labels were formed using the removed regions.  

In (Saleh et al. 2018), a weakly supervised segmentation CNN 
trained using class labels was presented. Both intermediate net-
work activations and CAM features were combined to generate 
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a mask label. Intermediate activations taken from layers of the 
CNN were hand selected based on their apparent discriminative 
ability. The masks were combined and binarized using heuristic 
rules and smoothed using a CRF. The predicted mask and class 
labels were used to train the network’s segmentation output.  

In (G. Li et al. 2018), a weakly supervised procedure to refine 
salient object masks generated from an unsupervised method us-
ing a CNN trained with class labels was proposed. A CNN was 
trained using supervision from the original saliency masks and 
the class label of the image. Then, the original saliency mask, 
predicted mask, and the top-3 class CAMs were fused using a 
CRF to produce an updated annotation for each image. The 
training and label updating process was repeated to generate the 
final object labels.  

In (L. Wang et al. 2017), a weakly supervised training proce-
dure was used to train a CNN for salient object segmentation 
using class labels. A modified CAM layer was used to predict 
segmentation masks. The network was initially trained for clas-
sification, with an L1 penalty on the saliency mask. During 
training, a saliency map was predicted and refined using a CRF, 
which was used to train the network with a bootstrapping loss.  

In (Wei et al. 2018), a CNN with dilated convolution layers 
was presented for generating pseudo labels in a semi-supervised 
setting, where only some images had class level labels. The 
CNN was trained to predict a CAM, and a saliency map. The 
outputs were combined using a mask merging procedure to up-
date the segmentation target during training with class level la-
bels. When training with fully labeled images, the segmentation 
output was trained using a per-pixel per-class loss.  

In (Selvaraju et al. 2020), a weakly supervised method for 
generating a segmentation CNN using a pre-trained classifica-
tion CNN, Grad-CAM, and class labels was presented. Grad-
CAM generated class activation maps by taking the weighted 
average of feature maps at a particular CNN layer. The weights 
were calculated using the average gradient of the class score 
with respect to the feature map of interest. The method used 
Grad-CAMs within the Seed, Expand, Constrain (Kolesnikov 
and Lampert 2016) method to generate PSLs. The latter method 
trained a segmentation CNN using a combination of a seeding, 
expansion, and constrain-to-boundary losses. The Seed loss 
trained the segmentation output to match weak localization land-
marks provided by a combination of Grad-CAMs that have been 
generated from the pre-trained classification CNN and a sali-
ency detection method. The expand and constrain losses were 
used to refine the initial segmentation seed to full objects.  

In (Wan et al. 2018), a weakly supervised minimum entropy 
based approach was presented using object presence labels for 
generating bounding box pseudo labels. A CNN was trained 
with two additional branches:  object localization and object dis-
covery. First, region proposals for objects were generated using 
selective search and features were extracted using a CNN. At 

each training step these features were multiplied with an object 
confidence score. The object discovery branch was trained to 
assign a probability to the presence of an object within the re-
gion. In images labeled as not having any objects, the CNN was 
trained with a classification loss. When objects were present, la-
bels for proposals were generated using the CNN’s object class 
prediction and spatially grouped region proposals. The object 
localization branch was trained using the classification loss by 
assigning objectness labels by comparing the discovery branch 
object probabilities to an empirically determined threshold.  

In (Wan et al. 2019), a weakly supervised approach using a 
continuation multiple instance learning loss function and image 
level labels was proposed. A CNN was trained with two 
branches: continuation instance selection and continuation de-
tector estimation. The branches were trained using a continua-
tion loss function, containing a continuation instance selection 
loss and continuation detector estimation loss. Selective search 
was used to generate region proposals for potential objects and 
these regions were sorted into bags based on their object scores 
and spatial locations. Objects were assigned into the same bag if 
their Intersection over Union (IoU) exceeded a certain value. A 
hinge loss was applied to the bag with the highest average class 
confidence, using the image level label, the estimated target 
value, and predictions from the first branch.  

2.4 Summary of Recent Work  

The aforementioned single modality (Y. Baek et al. 2019; 
Bonechi et al. 2019; Jing et al. 2020; Khoreva et al. 2017; Ma-
hendran and Vedaldi 2016; Niu et al. 2019; Simonyan et al. 
2014; C. Wang et al. 2021; B. Zhang et al. 2019; Zhao et al. 
2018; Y. Zhou et al. 2018) and ensemble (Hou et al. 2017; Ibra-
him et al. 2018; G. Li et al. 2018; Saleh et al. 2018; Selvaraju et 
al. 2020; Wan et al. 2018, 2019; L. Wang et al. 2017; Wei et al. 
2017, 2018) methods have shown that pseudo labels can be gen-
erated for CNN model training. However, they all require large 
datasets with diverse data to train PSL generation CNNs without 
overfitting, with the exception of (Mahendran and Vedaldi 2016; 
Simonyan et al. 2014). This may not always be feasible for ro-
bots obtaining information from their environments, as datasets 
of particular environments may be sparse and lack diversity (e.g. 
available only from one environment). Moreover, semi-super-
vised techniques require synthetic data or an expert user to fully 
manually label a large varied subset of data in order to generate 
labels, which can be a time consuming task (Y. Baek et al. 2019; 
Bonechi et al. 2019; Radosavovic et al. 2018; C. Wang et al. 
2021; Wei et al. 2018). Weakly supervised single modality and 
ensemble approaches require handcrafted heuristic rules, either 
for the binarization of masks (Khoreva et al. 2017), (G. Li et al. 
2018; Mahendran and Vedaldi 2016; Niu et al. 2019; Simonyan 
et al. 2014; Wei et al. 2017; B. Zhang et al. 2019), for distance 
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thresholding (Wu et al. 2020), or for manual network analysis to 
determine where to gather information from (Saleh et al. 2018).  

Methods that do not require additional training or large da-
tasets for PSL generation (Mahendran and Vedaldi 2016; 
Simonyan et al. 2014) are able to only select the largest con-
nected component of foreground pixels and thus, cannot gener-
ate PSLs whose foreground pixels are disjointed, which is com-
mon in robotics environments (e.g. separate characters in a text 
PSL, a group of similar objects, etc.). The approaches that have 
been designed for robotic applications cannot be transferred to 
different segmentation tasks, as their training process requires 
inputs related to their specific problem, e.g. terrain information 
(Barnes et al. 2017; Gregorio et al. 2020; Wellhausen et al. 
2019). However, weakly supervised methods can generate PSLs 
using new datasets that do not need to be fully labeled, thus re-
ducing the human time-cost of generating pseudo labels.  

In this paper, we present a novel weakly supervised architec-
ture, WeSuperMaDD, which autonomously generates PSLs. 
The architecture can use pre-existing networks that are not 
trained for a segmentation task to determine PSLs without re-
quiring any additional segmentation training in contrast to prior 
works. Furthermore, our approach does not assume the contex-
tual information being segmented is contained within a single 
connected component. Our approach allows the use of smaller 
datasets with limited diversity used in robotics as existing CNN 
models are used as a basis, where the already learned features 
can be applied to our segmentation task, regardless of their ap-
plication. To convert these learned features into pseudo labels, 
we introduce a new mask refinement system which incorporates 
an automated parameter search module that uniquely searches 
for the smallest PSL and also allows for disjointed mask ele-
ments to be found. Automating this search eliminates the need 
for handcrafted heuristic rules to generate PSLs. Therefore, un-
like previous methods, we do not require any problem-specific 
information, thus generalizing our method to wider applications 
of robot segmentation tasks for obstacle avoidance in cluttered 
environments, and for grasping and manipulation of objects etc. 

3 Weakly Supervised Mask Data Distillation 

Our proposed Weakly Supervised Mask Data Distillation archi-
tecture, WeSuperMaDD, is presented in Fig. 1 and consists of 
two sub-systems: 1) Mask Data Generation Sub-System, and 2) 
Mask Refinement. WeSuperMaDD generates instance level 
PSLs, 𝑀, from images of contextual information in an environ-
ment. The procedure takes as input a set of CNNs, ℱ, not spe-
cifically trained for the task of context segmentation (e.g. trained 
for object classification, image captioning, etc.), a maximum 
number of iterations 𝑡max, and a dataset containing a set of im-
ages, 𝐼. Each image in the dataset must have a set of bounding 
quadrilateral labels, and class label 𝒴. 

The Mask Data Generation sub-system uses the Image Crop 
module to transform each of the context instances within an in-
put image into a standard sized image crop 𝑐 ∈ 𝐶 using the 
bounding quadrilaterals as reference. A crop, 𝑐, is then provided 
to the Augment module to generate an augmented set of crops 
via random image transformations. This set is used in the Mask 
Discriminative Region Mining (MDRM) module to find segmen-
tation potential masks (SPMs), and the predictions made by the 
CNNs. SPMs are defined as 2D matrices containing the relative 
segmentation importance of every pixel in the input image.  

Both the SPMs and CNN predictions are provided to the Mask 
Refinement sub-system to iteratively generate and refine PSL 
candidates. The Segmentation Cost module determines the dis-
tance of each of the predictions with respect to the ground truth. 
An average SPM is generated via the weighted average of all the 
SPMs, where each SPM is weighted by its associated cost. A 
PSL candidate is then generated in the Pseudo Segmentation La-
bel Generation module using the initial parameters provided by 
the Mask Binary Search module and the average SPM. The 
Mask Attention module uses this PSL candidate to remove ex-
traneous information from the initial crop, 𝑐. This focused crop 
is sent to the Augment module to generate a new set of aug-
mented crops. The Ensemble uses the CNNs to generate predic-
tions of the content of each of the crops. The Segmentation Cost 
module then calculates the cost of the predictions. The average 
prediction cost is used by the Mask Binary Search module to 
update parameters in the Pseudo Segmentation Label Genera-
tion module. This process is iterated 𝑡max times and at each iter-
ation the current lowest costing PSL candidate is outputted. The 
two sub-systems are discussed in more detail below. 
 

 
Fig. 1 The WeSuperMaDD architecture. 



	 	 	 8 

3.1 Mask Data Generation Sub-System 

Given an input image and bounding quadrilateral labels repre-
senting the outer boundaries of all context instances, the Mask 
Data Generation sub-system produces SPMs, which contain re-
gions in the image that are determined to have discriminative 
potential. The overall process for the sub-system is as follows:  

3.1.1 Image Crop 

The Image Crop module takes as input the full image containing 
contextual information and the bounding quadrilateral labels, 
and produces images of cropped context instances, Fig. 2. This 
is achieved using the perspective transformation that changes 
the context boundary coordinates from the input image into a 
standard size container, i.e. the input size expected by ℱ. The 
transform is applied to each of the bounding quadrilaterals to 
attain the set of crops, 𝐶. The output cropped context instances 
are sent to the Augment module. 

 
(a) (b) 

Fig. 2 Image Crop module: a source image from ICDAR-15 dataset with 
bounding quadrilateral highlighted in red; and b a cropped sample. 

3.1.2 Augment 

The Augment module takes as input a single crop, 𝑐, and gener-
ates new samples representing the same context instance with 
different viewing perspectives and added noise. The objective is 
to force the CNNs to not rely on a single set of image features to 
complete the task they were trained for by randomly altering 
each image. The image augmentation process is adapted from 
(Radosavovic et al. 2018), where a single crop, 𝑐, is randomly 
augmented to generate a set of crops 𝐶! and inverse transforms, 
𝒯"#. Augmentations that change the location or shape of context 
instances must be invertible so predictions can be merged after 
the inverse is applied. Fig. 3a presents sample crops obtained 
from this process. The augmented crops and their inverse trans-
forms are provided to the MDRM module or the Ensemble mod-
ule in the Mask Refinement sub-system. 

3.1.3 Mask Discriminative Region Mining (MDRM) 

Given the set of augmented crops, the MDRM module produces 
masks representing the discriminative regions of each crop in 
the form of SPMs. This module uses the features extracted by 
existing CNNs to generate SPMs for PSL generation. The 

module begins by performing a forward pass through each of the 
CNNs in ℱ, and storing their predictions for their respective 
tasks, 𝑌", where: 

Y+ = [y/$,&] ∀ (𝑐' , 𝑓() ∈ 𝐶! × ℱ, 𝑦/',( = 𝑓((𝑐'). (1) 

We use VisualBackProp (VBP) (Bojarski et al. 2018), which 
examines activations in intermediate CNN layers to determine 
the discriminative regions in an input crop to form an SPM. The 
regions estimate the relative contribution of each of the pixels to 
the network output y%!,#. This value is used to estimate the relative 
importance of each pixel for segmentation. VBP has a fast 
runtime, high visualization quality, and can be easily applied to 
common network backbones e.g. ResNets (He et al. 2016), VGG 
(Simonyan and Zisserman 2014), etc. Sample SPMs obtained 
using VBP are shown in Fig. 3b. 

After obtaining the SPMs from VBP, the inverse transform 
corresponding to the crop that was used to generate the mask is 
applied to attain the set of masks,	𝑀;,	where: 

𝑀; = [𝑚',(]∀(𝑐' , 𝑓() ∈ 𝐶! × ℱ,𝑚',( = 𝒯'"#(𝑉𝐵𝑃(𝑐' , 𝑓()). (2) 

and sent to the Pseudo Segmentation Label Generation module 
in the Mask Refinement sub-system. Additionally, the predic-
tions, 𝑌A, are passed to the Segmentation Cost module. 

 
(a) (b) 

Fig. 3 Fig. 2b after processing by: a the Augment module; and b the SPMs 
generated by VBP from a. 

3.1.4 Segmentation Cost 

The Segmentation Cost module takes as input both a task pre-
diction, 𝑦/, and a ground truth label, 𝑦, and assigns a segmenta-
tion accuracy cost to each prediction. In particular, we use a cost 
function, 𝑠 = 𝒮(𝑦, 𝑦/), to compare the predicted output of a net-
work with the ground truth. The output of this module is either 
passed to the Pseudo Segmentation Label Generation module for 
mask weighting or the Mask Binary Search module to update 
parameters controlling the creation of PSL candidates, both 
within the Mask Refinement sub-system. 

3.2 Mask Refinement Sub-System 

The mask refinement sub-system takes the SPMs, M; , the maxi-
mum number of search steps,	𝑡max, and the costs, 𝒮E𝑌A, 𝑦F, of 
each of the predictions made from the augmented data to gener-
ate and refine PSL candidate using the set of CNNs, ℱ, where: 

𝒮(𝑌A, 𝑦) = [𝑠',(]	∀𝑦/',( ∈ 𝑌A, 𝑠',( = 𝒮(𝑦/',( , 𝑦). (3) 

The process for the Mask Refinement sub-system is as follows: 
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3.2.1 Ensemble 

The Ensemble module uses the ensemble technique in (Rados-
avovic et al. 2018) to reduce variance in the SPMs. It takes as 
input a set of crops provided by the Augment module, and the 
CNN set, ℱ, and generates predictions, 𝑌A, made by its members 
to measure the quality of a PSL candidate. Given the set of crops 
received from the Augment module, a prediction set is created, 
𝑌A = [𝑦/',(]. The output of this module is sent to the Segmentation 
Cost module to inform the Mask Binary Search module.  

3.2.2 Mask Binary Search 

The Mask Binary Search module uniquely uses the current av-
erage prediction cost of the Ensemble, 𝒮(𝑌A, 𝑦), calculated from 
the cropped images from the Mask Attention module. This mod-
ule autonomously selects the per-image segmentation control 
parameters. Namely, it updates the current gain,	𝛼(*), for the 
Pseudo Segmentation Label Generation module to find the PSL 
candidate with fewest foreground pixels where the ensemble at-
tains, on average, a cost less than the threshold 𝑠𝟙. The initial 
bounds 𝑢(-) = max(𝑚L) Otsu(𝑚L)⁄ , and 𝑙(-) = 0, of the search 
are set such that the segmentation thresholds can reach the high-
est and lowest pixel activation of the average mask 𝑚L . Otsu(⋅) 
(Otsu 1979) is a function that returns a value representing the 
binarization threshold which minimizes the intra-class variance 
between the foreground and background classes. The initial 
gain, 𝛼(-) = 1, is set such that the search process initialization 
is unbiased, however, the value can be user selected to incorpo-
rate a prior to the search process. 

The module tracks and updates the best-known gain α∗ and 
cost 𝑠∗ according to: 

α∗ ← 𝟙/∗α(*) + (1 − 𝟙/∗)α∗, (4) 
𝑠∗ ← 𝟙/∗𝑠(*) + (1 − 𝟙/∗)𝑠∗, (5) 
where 𝟙/∗= 𝟙E𝑠(*) < 𝑠∗F, and 𝟙(⋅) is the indicator function. After 
finding a PSL candidate that satisfies 𝑠∗ < 𝑠𝟙, the optimization 
procedure is updated to be: 

α∗  ← X𝛼
(*),	if 𝑠(*) < 𝑠𝟙 ∧ 𝛼(*) > 𝛼∗

𝛼∗ ,	else
, (6) 

in order to store the largest gain adhering to the cost function. 
The gain is updated every iteration using: 

𝛼(*0#) = 𝟙/𝟙(𝛼
(*) + 𝑢(*))/2 + (1 − 𝟙/𝟙)(𝛼

(*) + 𝑙(*))/2, (7)      

where 𝟙/𝟙 = 𝟙(𝑠(*) > 𝑠𝟙). The upper,	𝑢(*), and lower, 𝑙(*), limits 
are also updated based on the prediction quality: 

𝑙(*0#) = (1 − 𝟙/𝟙)α
(*) + 𝟙/𝟙𝑙

(*), (8) 

𝑢(*0#) = 𝟙/𝟙α
(*) + (1 − 𝟙/𝟙)𝑢

(*). (9) 

The increase or decrease in the gain corresponds to increasing 
or decreasing the number of foreground pixels in the generated 

PSL. Fig. 4a shows the evolution of PSL candidates generated 
using the parameters provided by the Mask Binary Search mod-
ule. When the cost given the current PSL candidate is less than 
𝑠𝟙, the number of foreground pixels in the PSL is decreased by 
increasing the gain to remove extraneous pixels. When the cost 
given the current PSL candidate is greater than 𝑠𝟙, the gain is 
decreased to increase the number of foreground pixels in the 
PSL candidate and incorporate additional image information. 
The module provides to the Pseudo Segmentation Label Gener-
ation module either the current calculated gain, α(*0#), or the 
best gain, α∗, when 𝑡 = 𝑡max	number of iterations have elapsed. 

 
 (a) (b) 
Fig. 4 Candidate PSLs: a obtained by the Pseudo Segmentation Label Gen-
eration module; and b Mask Attention applied to each input crop using the 
candidate PSLs after each parameter update. 

3.2.3 Pseudo Segmentation Label Generation  

The Pseudo Segmentation Label Generation module takes the 
SPMs,	𝑀;, and determines a candidate PSL. We first ensemble 
the potential masks to produce a single SPM for each crop using 
a weighted average using the prediction cost. This reduces the 
influence of predictions based on non-discriminative regions on 
the mask ensemble. Given that lower costs indicate a better 
match we invert the cost and then apply the SoftMax function, 
𝜎(⋅), to obtain the relative weighting of each mask: 

𝑤',( = σ(max(𝒮(𝑌A, 𝑦)) − 𝒮(𝑌A, 𝑦))',( . 
(10) 

A weighted average is used to combine all of the masks into an 
average SPM: 

𝑚L (1,/) =` 𝑤',(𝑀;',(
(1,/)

'∈[#,|5#|],(∈[#,|ℱ|]
, (11) 

where (𝑟, 𝑠) is a pixel coordinate. Fig. 5a presents a mask repre-
senting the weighted average of the SPMs in Fig. 3b.  

  
 (a) (b) 
Fig. 5: a The weighted average of the SPMs from the MDRM module; and 
b Pseudo label generated after 𝑡max steps based on a. 

We make the assumption that the regions of the image that 
contain the context instance are within the pixels of the SPM 
whose activation is greater than some value. We use Otsu’s 
method (Otsu 1979) as the basis for the segmentation thresholds 
since the mask would be properly segmented if the two classes 
were clustered in activation. We use the gain parameter, α(*), 
from the Mask Binary Search module to control mask 
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binarization. Therefore, the threshold is set to be: 

ϵ(*) = 𝜀α(*) ⋅ Otsu(𝑚L). (12) 

We binarize the SPM given the current threshold ϵ(*), using a 
threshold operation at each pixel in 𝑚L : 

𝑚d (*,1,/) = 𝟙(𝑚L (1,/) > ϵ(*)). (13) 

We then use the GrabCut algorithm (Rother et al. 2004) to 
clean the boundary between the foreground and background. 
GrabCut uses the input crop image, a Gaussian Mixture Model 
(GMM), and color to predict the labels of unknown regions of 
space given an initial foreground and background segmentation. 
Using the binarized mask, 𝑚L (*), we generate the unknown re-
gion using erosion, er(·), and dilation, dl(·), operations. Specif-
ically, we generate our known foreground and background as: 

𝑚fg
(*) = er(𝑚d (*)), (14) 

𝑚bg
(*) = ¬dl(𝑚d (*)). (15) 

Lastly the probable foreground and background regions are: 

𝑚pfg
(*) = 𝑚(*) ∧ ¬𝑚fg

(*), (16) 

𝑚pbg
(*) = ¬𝑚bg

(*) ∧ ¬𝑚fg
(*). (17) 

We apply the GrabCut algorithm using these masks and with an 
additional set of masks where the probable foreground also in-
cludes the foreground mask, selecting the latter if a minimum 
number of pixels are detected as foreground. We obtain the PSL 
candidate, 𝑚(*), that predicts the class of the pixels in the bound-
ary region shown in Fig. 5b. The process stops when 𝑡 = 𝑡max, 
then the mask is provided as the output PSL, 𝑚. If 𝑡 < 𝑡max, then 
the PSL candidate is passed to the Mask Attention module, con-
tinuing the iterative process of PSL generation and evaluation. 

3.2.4 Mask Attention 

The Mask Attention module is a hard attention operation, that 
removes pixels of the input crop that are not estimated to be part 
of the foreground class. In particular, for crop 𝑐(*) the PSL is 
applied as a mask to the input crop as: 

𝑐(*,1,/) = 𝑐(1,/)𝑚(*,1,/) + µ(1 −𝑚(*,1,/)), (18) 
thus, leaving only information from discriminative regions by 
setting the background to a default color µ. Fig. 4b shows the 
evolution of the selected image region using subsequent PSL 
candidates from the Pseudo Segmentation Label Generation 
module. The masked crops 𝐶8 are sent to the Augment module 
to generate samples to evaluate the quality of the PSL candidate. 

4 WeSuperMaDD Algorithm 

The overall architecture is summarized within Algorithm 1 and 
the Pseudo Segmentation Label Generation module (the 

PSLGEN function) is detailed in Algorithm 2: 
 
Algorithm 1 WeSuperMaDD procedure for a single image. 
inputs:  
𝑡max: the number of search iterations,	𝛼(%): the initial gain, fgmin: the mini-
mum number of foreground pixels in a PSL, ℱ: the set of pre-trained 
CNNs,	ℐ: image, task labels and bounding quadrilaterals. 
output: 
(𝐼, 𝒴, 𝒴', = ℐ #Image, task label and bounding quadrilateral label  
ℳℐ = ∅	#Empty set to hold the new labels for an image 
for 𝑦 ∈ 𝒴, 𝑔' ∈ 𝒴𝓆 do #For all context instances in the image 
ℎ*!
+! = 𝐻(𝑔' , 𝑐') #Calculate homography 

𝑐 = Interpolate(𝐼, ℎ*!
+!) #Interpolate 𝐼 to perform crop 

(𝐶,, 𝒯-.) = Augment(𝑐) #Generate augmentation samples 
#MDRM module 
𝑌; = [𝑦=/,1]∀(𝑐/ , 𝑓1) ∈ 𝐶, × ℱ, 𝑦=/,1 = 𝑓1(𝑐/) #CNN predictions 
𝑀C = [𝑚/,1]∀(𝑐/ , 𝑓1) ∈ 𝐶, × ℱ,𝑚/,1 = 𝒯𝒿-.(VBP(𝑐/ , 𝑓1)) #VBP masks 
𝑆 = [𝑠/,1]∀𝑦/,1 ∈ 𝑌;, 𝑠/,1 = 𝒮(𝑦=, 𝑦) #Cost of the predictions 
𝑚H = ∑ 𝑀C/,1/∈[.,|6"|],1∈[.,|ℱ|] ⋅ σ(max(𝑆) − 𝑆)/,1 #Weighted average 
mask 
𝑙(%) = 0 # Initialize search parameters 
𝑢(%) = max(𝑚H) Otsu(𝑚H)⁄  
𝑠∗ = −∞ 
for 𝑡 ∈ [0, 𝑡max] do #Mask binary search loop 
𝑚(9) = 𝑃𝑆𝐿𝐺𝐸𝑁(𝑐, α(9), 𝑚H , fgmin) 
𝑐(9) = 𝑐 ⋅ 𝑚(9) + µ ⋅ (1 − 𝑚(9)) #Attention 
(C:, _) = Augment(𝑐(9)) 
𝑌; = [𝑦=/,1], 𝑦=/,1 = 𝑓1(𝑐/)∀(𝑐/ , 𝑓1) ∈ 𝐶, × ℱ #Ensemble 
𝑠(9) = 𝔼[𝑆(𝑌;, 𝑦)] #Segmentation cost  
#Binary search based on average prediction cost 
α(9;.) = 𝟙<𝟙(α

(9) + 𝑢(9))/2 + (1 − 𝟙<𝟙)(α
(9) + 𝑙(9))/2 

𝑙(9;.) = (1 − 𝟙<𝟙)α
(9) + 𝟙<𝟙𝑙

(9)	
𝑢(9;.) = 𝟙<𝟙α

(9) + (1 − 𝟙<𝟙)𝑢
(9)	

𝑠∗ ← 𝟙<∗𝑠(9) + (1 − 𝟙<∗)𝑠∗ 
if 𝑠∗ < 𝑠𝟙 then  

α∗  ← g𝛼
(9),	if 𝑠(9) < 𝑠𝟙 ∧ 𝛼(9) > 𝛼∗

𝛼∗ ,	else
 

else 
α∗ ← 𝟙<∗α(9) + (1 − 𝟙<∗)α∗ 

end if 
end for  
𝑚 = 𝑃𝑆𝐿𝐺𝐸𝑁(𝑐, α∗, 𝑚H, fgmin) #Final PSL 
ℳℐ ←ℳℐ ∪ {(𝑚, 𝑦, 𝑔')} #Update the dataset 
end for 

return ℳℐ 
 
 
Algorithm 2 The Pseudo Segmentation Label Generation module 
(PSLGEN).  
inputs: c: image crop, α: current gain, 𝑚H : weighted average of the SPMs, 
fgmin: minimum number of foreground pixels in a PSL. 
output: 
ϵ = α ⋅ Otsu(𝑚H) #Calculate segmentation threshold  
𝑚n = 𝟙(𝑚H > ϵ) #Binarize mask with the threshold 
𝑚fg = er(𝑚n) #Known foreground 
𝑚bg = ¬dl(𝑚n) #Known background	
𝑚pfg = 𝑚 ∧ ¬𝑚fg #Probable foreground	
𝑚pbg = ¬𝑚bg ∧ ¬𝑚fg #Probable background 
#Perform GrabCut optimization to generate PSL candidate m, where 
0 indicates a mask with only 0’s	
𝑚 = GrabCut(𝑐, 𝟎,𝑚bg, 𝑚pfg ∨ 𝑚fg, 𝑚pbg)  
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if ∑𝑚(=,>)   < fgmin then #Check number of foreground pixels 
𝑚 = GrabCut(𝑐,𝑚fg, 𝑚bg, 𝑚pfg, 𝑚pbg)  

end if  
return m  

5 Experiments 

Our experiments focus on the Optical Character Recognition 
(OCR) task of the simultaneous detection and segmentation of 
text in environments due to: 1) its applicability in robotics ap-
plications for the detection of text signs to aid for exploration 
and navigation in unknown cluttered structured environments, 
and 2) the limitation of existing weakly supervised PSL genera-
tion methods as they are not generalizable to text segmentation 
since they require the inclusion of additional problem specific 
NN layers. The weakly supervised generation of text PSLs thus 
represents a challenging problem not well explored in the exist-
ing literature.  

The majority of existing publicly available text detection da-
tasets do not have segmentation labels, therefore, to train an in-
stance segmentation CNN for the simultaneous detection and 
segmentation of text would require segmentation labels to be 
manually generated by a human expert or by an autonomous 
PSL generation method. In these experiments, we investigate the 
performance of our WeSuperMaDD method in autonomously 
generating the needed PSLs when only bounding quadrilateral 
and class label data are available for training.  

Herein, we perform three experiments: 1) an Ablation Study, 
2) a comparison study of WeSuperMaDD’s performance in the 
generation of PSLs versus other standard methods, and 3) a de-
tailed investigation of instance segmentation of various context 
images using numerous datasets. The performance metrics used 
in these experiments are defined as: 1) Precision (𝑃), 2) Recall 
(𝑅), and 3) 𝐹# score. Experiments were conducted on a server 
with a Titan V GPU, an AMD 2990WX CPU, and 128GB of 
memory. 

5.1 Ablation Study  

We performed an ablation study to examine the relative im-
portance of the hyper-parameters used by WeSuperMaDD with 
respect to segmentation 𝐹# scores. Namely, we evaluate the per-
formance of our segmentation method by comparing the class of 
each pixel of the predicted PSLs and the ground truth masks 
available in the ICDAR-13 dataset (Karatzas et al. 2013).Within 
the dataset, pixels overlapping text characters are labeled as 
foreground, and those not overlapping text characters are labeled 
as background. We use the ICDAR-13 dataset (Karatzas et al. 
2013) as it is the only real-world dataset with a per-character text 
segmentation ground truth with quadrilateral labels for straight 
text. Here we define a positive detection as a predicted PSL pixel 

matching a ground truth mask pixel (e.g.	𝑚(1,/) = 𝑚gt
(1,/)). The 

following subsections provide the details on the ensemble of 
SPMs (5.1.1), the segmentation cost function (5.1.2), and the 
training and testing datasets used in the ablation study (5.1.3 and 
5.1.4,), respectively.  

5.1.1 Ensemble of SPMs 

To validate the ability of the WeSuperMaDD approach to en-
semble SPMs from multiple sources, we generate our CNN set, 
ℱ, with the following text recognition CNNs which identify the 
text string contained in an image: 1) a Character Recognition 
Neural Network (CRNN) (Shi et al. 2016) for straight text, and 
2) a case-insensitive Thin Plate Spline (TPS) CNN with bidirec-
tional long short-term memory and attention (J. Baek et al. 2019) 
for both straight and curved text. These CNNs were selected as 
they use standard structures and are known to be top performers 
in the text recognition task. To ensemble the SPM predictions 
we must invert the TPS layer prior to using it in the Mask Gen-
eration module.  

5.1.2 Segmentation Cost Function 

 The cost function, 𝒮(𝑦/, 𝑦), is modeled using the Edit Distance 
(ED) between the string predicted by the ensemble and the 
ground truth string. ED is defined as the minimum number of 
elementary string operations required to transform one string 
into the other. We set the threshold, 𝑠𝟙 to 1. A cost below this 
value indicates the CNN was able to identify the text contained 
within an input image. 

5.1.3 Training Datasets 

We train the CRNN with a union of synthetic data from the 
MJSynth dataset (Jaderberg et al. 2014) and cropped ground 
truth regions from the 800,000 images of the SynthText dataset 
(Gupta et al. 2016), with a combined total of approximately 14 
million synthetic English text instances. We also use the union 
of both the IIIT5k (Mishra et al. 2012) and cropped ground truth 
text instances from the ICDAR-15 (Karatzas et al. 2015) dataset, 
containing approximately 6,600 text instances from 1,500 im-
ages of scene text. For the TPS model, we use an available pre-
trained model (“What Is Wrong With Scene Text Recognition 
Model Comparisons? Dataset and Model Analysis” 2020), 
which was trained using both the MJSynth (Jaderberg et al. 
2014) and SynthText (Gupta et al. 2016) datasets. 

5.1.4 Testing Dataset 

Performance was evaluated on the ICDAR-13 dataset (Karatzas 
et al. 2013). The dataset contains 462 images of focused real 
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scene text, with a total of 1,944 text instances. All generated 
PSLs are resized and compared individually to maintain equal 
weighting between large and small text instances. 

5.1.5 Procedure 

To perform the ablation study, we used the ICDAR-13 training 
set and recorded the 𝐹# score obtained using each set of param-
eters. In particular, we varied: 1) the number of samples gener-
ated by the Augment module, i.e. |C9| = {1,2,4,8,32}, 2) the 
number of models used in the ensemble, i.e. |ℱ| = {1,2}, with 
only the CRNN (|ℱ| = 1), or both CRNN and TPS (|ℱ| = 2), 
and 3) the number of binary search iterations, i.e. 𝑡max =
{1,2,3,4,5,6}, where 𝑡max = 1 corresponds to no search steps 
performed, i.e. only the mask generation step is implemented 
(with no mask refinements).    

The results of the ablation study are summarized in Fig. 6. In 
general, increasing the value of any of the hyper-parameters in-
creases the overall 𝐹# score. As can be seen with one search step 
including 2 models and increasing the number of samples to 32 
significantly increases the 𝐹# score from 38 to 58. Increasing ei-
ther of these parameters improves PSL generation performance 
as the activation value of text regions is increased in the SPMs. 
Thus, the increased activation improves the likelihood that the 
feature locations will be included in the PSLs. 

 
Fig. 6 Ablation of number of models, augmentation samples, and search 
steps. 

When increasing the number of search steps to 6 (i.e., five 
iterations of mask refinement) from 1 step (i.e., no mask refine-
ment), the 𝐹# score performance improves by 40% when also 
using 2 models and 32 samples, and 210% when using 1 model 
and 1 sample. Performance gains are between these two values 
for all other combinations of the number of models and samples. 
The increased number of search steps improves the ability of the 
mask binary search to remove extraneous features from the PSLs 
as more segmentation parameters are tested. Based on the over-
all trend, the number of search steps is the most significant 

determining factor for PSL generation performance.   
However, it can be seen that the performance gain decreases 

as the number of samples increases. For example, only small 
performance gains are observed with increasing the number of 
search steps beyond 4 while also increasing the number of sam-
ples or models. As can be seen in Fig. 6, when using both 32 
samples and 2 models, increasing the number of search steps 
past 4 to 5 or 6 no longer provides performance gains after reach-
ing a peak 𝐹# score of approximately 81 at 4 steps and plat-
eauing. After 4 search steps the CNNs can no longer reduce the 
size of the segmentation masks while satisfying the cost con-
straints. Using the knowledge gained from these results, we use 
4 steps (mask generation step and 3 iterations of the mask re-
finement step), 32 samples, and 2 models, to reduce the compu-
tational cost of generating PSLs in our next experiments. 

5.2 PSL Generation Experiments 

We compare the performance of the WeSuperMaDD method 
against several standard methods. Performance is calculated 
similarly to the ablation study where the class of each pixel of 
the PSLs predicted by each method is compared to the ground 
truth masks in the ICDAR-13 test dataset (Karatzas et al. 2013) 
for straight text, and in the Total-Text dataset (Ch’ng and Chan 
2017) for curved text. The Total-Text dataset consists of 1,555 
images of real scene text containing a total of 11,459 text in-
stances. The overall evaluation procedure for individual PSLs is 
the same as in the ablation study in Section 5.1.  

5.2.1 Methods for Comparison  

We compare our method with PSLs generated using the follow-
ing common weakly supervised techniques: 1) GrabCut (Rother 
et al. 2004), 2) Pyramid (J. Liu et al. 2019), and 3) Naive (Ibra-
him et al. 2018). These methods were chosen since they repre-
sent typical gradient free methods that: 1) can be directly applied 
to an OCR task without the need for training, and 2) have similar 
label requirements as our proposed method. The methods are ap-
plied to generate a PSL for all the context instances for straight 
text from the ICDAR-13 dataset and curved text from the Total-
Text dataset. The GrabCut generation method (Rother et al. 
2004) takes the full image and a bounding box representing the 
outer edges of a text instance and trains a GMM to segment the 
background colors from the unknown region inside the bound-
ing quadrilateral which is used as the PSL. The Pyramid gener-
ation method generates PSLs using a soft label in the form of a 
pyramid, the pseudo label peaks at a value of one in the center 
of a ground truth quadrilateral and decays to a label of zero at 
the edges (J. Liu et al. 2019). In the Naive generation method, 
PSLs are generated by labeling the interior of a ground truth 
quadrilateral text region as foreground (Ibrahim et al. 2018).  
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5.2.2 State-of-the-Art Techniques  

We additionally compare against the current state-of-the-art 
semi-supervised Supervision Generation Procedure (SGP) 
method, whose results are reported in (Bonechi et al. 2019), and 
weakly supervised Simple Does It (SDI) method (Khoreva et al. 
2017). For the state-of-the-art methods which do not require ad-
ditional training, we compare against Saliency Maps with 
GrabCut (SMG) (Simonyan et al. 2014). We also compare 
against the fully supervised Character Attention Fully Con-
nected Network (CA-FCN) method (Liao, Zhang, et al. 2018), 
and the semi-supervised Bounding Box Supervision (BBS) 
method (Wu et al. 2020). In (Bonechi et al. 2019) a segmentation 
CNN was trained using text segmentation masks generated us-
ing a synthetic dataset generation procedure. The segmentation 
CNN was then applied to cropped images of real text from the 
ICDAR-13 dataset in order to generate PSLs. For SDI, we our-
selves pre-train a segmentation CNN on the SynthText dataset. 
For fine-tuning, we use the ICDAR-15 dataset with initial masks 
generated from GrabCut. Furthermore, we also fine-tune with 
masks generated from our first stage Mask Data Generation 
which we name SDI* herein. The CNN was recursively trained 
by applying the model over the training set as segmentation la-
bels for the subsequent training rounds. PSLs were generated by 
applying the final trained model on the ICDAR-13 dataset.  

The CA-FCN method trains a segmentation CNN to predict 
segmentation masks representing the locations and classes of 
each character in a word. The method consists of a label gener-
ation pre-processing step in which per-character ground truth 
bounding boxes are converted into Naïve masks of half the size. 
To generate PSLs from CA-FCN, we use the optimal masks ex-
pected from the network by evaluating directly on the ground 
truth per-character bounding boxes. The BBS method trains a 
segmentation CNN to generate PSLs using word-level mask la-
bels. Similar to CA-FCN, we use the optimal masks by evaluat-
ing directly on the word-level masks. The SMG method takes 
the full image, class label, and a pre-trained CNN to generate a 
class saliency map through backpropagation. We use the same 
CRNN model in WeSuperMaDD as the pre-trained CNN. To 
adapt the method for instance segmentation, we backpropagate 
the largest predicted correct class for each vector in the ex-
tracted feature sequence to create a sequence of saliency maps 
corresponding to each extracted feature. The responses from 
each saliency map are pooled together using logical OR to pro-
duce a final binary saliency map. Regions in the saliency map 
corresponding to text are cropped and then segmented by 
Grabcut. 

5.2.3 Segmentation Results  

We generate PSLs for the images in both the ICDAR-13 and 
Total-Text test set using each of the GrabCut, Pyramid, Naive, 

and our WeSuperMaDD approaches and determine the 𝐹# score 
for each PSL. The average scores for all four methods are sum-
marized in Table 1. For the ICDAR-13 dataset, a non-parametric 
Kruskal-Wallis test, n = 1095, showed a statistically significant 
difference in 𝐹# between all methods (𝐻 = 1817, 𝑝 < 0.001). 
Posthoc Dunn tests were conducted between our WeSuper-
MaDD method and the other three methods and showed that our 
method has a statistically significant higher 𝐹#	with respect to 
the GrabCut, (𝑍 = 7.68, 𝑝 < 0.001), Pyramid (𝑍 = 26.22, 𝑝 <
0.001),  and Naive (𝑍 = 18.54, 𝑝 < 0.001), methods, respec-
tively. For the Total-Text dataset, a non-parametric Kruksal-
Wallis test, n = 2,543, showed a statistically significant differ-
ence in 𝐹# between all methods (𝐻 = 4429, 𝑝 < 0.001). 
Posthoc Dunn tests were conducted between our WeSuper-
MaDD method and the other three methods and showed that our 
method has a statistically significant higher 𝐹# with respect to 
the GrabCut, (𝑍 = 20.31, 𝑝 < 0.001), Pyramid (𝑍 =
35.18, 𝑝 < 0.001), and Naive (𝑍 = 39.11, 𝑝 < 0.001), meth-
ods, respectively. 

Sample PSLs (in red) obtained from the methods are also pre-
sented in Fig. 7 on the ICDAR-13 dataset, and in Fig. 8 on the 
Total-Text dataset, where each image is overlaid atop of the 
ground truth segmentation label. Our WeSuperMaDD approach, 
Fig. 7a and Fig. 8a, is able to find all characters with some small 
amounts of background information incorporated into the label. 
The GrabCut result in Fig. 7b and Fig. 8b highlights the problem 
with using an unsupervised approach, as it only finds a few of 
the characters rather than considering groups of characters con-
currently. On the other hand, the pyramid PSL in Fig. 7c and 
Fig. 8c is conservative, selecting a fairly small amount of the 
image as foreground, particularly near the edges of the crop, 
which significantly reduces the overall score. In the case of the 
Naive approach, Fig. 7d and Fig. 8d, all foreground pixels are 
included in the PSL, resulting in a 1.0 R, however, significantly 
more background pixels were labeled as the foreground class 
giving it one of the lowest P scores (Table 1). The inclusion of 
significant amounts of background pixels is typical to this ap-
proach, as it assumes all pixels are part of a foreground object.  

Fig. 7 Sample PSLs overlaid in red on an ICDAR-13 ground truth sample 
using the following weakly-supervised segmentation methods: a WeSuper-
MaDD; b GrabCut; c Pyramid; d Naive; e SDI; f SDI*; g SMG; h CA-FCN; 
and i BBS.  

      
(a)                        (b)                         (c)                    (d)                                                

    
   (e)                           (f)                         (g)                        (h)                                                                               

                                        
             (i) 
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Fig. 8 Sample PSLs overlaid in red on a Total-Text ground truth sample 
using the following weakly-supervised segmentation methods: a WeSuper-
MaDD; b GrabCut; c Pyramid; d Naive; e SDI; f SDI*; g SMG; and h BBS. 

Table 1 Comparison of segmentation methods on the ICDAR-13 and Total-
Text test sets. 

Dataset 
Method 

ICDAR-13 Total-Text 
P R 𝐹. P R 𝐹. 

GrabCut 52.71 72.62 57.25 27.49 43.26 33.62 
Pyramid 54.28 35.76 43.12 40.01 36.20 38.04 
Naive 50.88 100.00 67.44 32.71 100.00 47.74 
Simple Does It (round 1) 50.10 98.37 66.39 33.54 85.49 48.17 
Simple Does It (round 2) 50.27 99.12 66.71 33.97 83.00 48.21 
Simple Does It (round 3) 50.53 99.33 66.98 33.41 86.59 48.22 

 
 
 

Simple Does It* (round 1) 57.46 89.92 69.13 33.06 88.16 48.09 
Simple Does It* (round 2) 57.70 92.93 69.74 33.14 88.13 48.17 
Simple Does It* (round 3) 57.32 93.77 69.25 33.39 88.04 48.42 
CA-FCN 60.98 35.76 45.08 - - - 
Bounding Box Supervision 50.88 100.00 67.44 41.80 82.82 55.56 
Saliency Maps with GrabCut 33.88 29.69 31.65 11.00 19.80 14.15 
WeSuperMaDD (ours) 73.91 88.83 80.69 54.67 76.09 63.62 

  

5.2.4 Comparison with State-of-the-Art Techniques  

Additionally, we compared the 𝐹# scores of the PSLs generated 
by WeSuperMaDD with the 𝐹# scores from the semi-supervised 
SGP trained with text segmentation labels published in (Bonechi 
et al. 2019) using images and the same evaluation procedure 
from the ICDAR-13 test set. The evaluation procedure provides 
a weighted 𝐹#	score for each mask based on the size of the orig-
inal input image. Our WeSuperMaDD obtained 𝑃, 𝑅, and 
𝐹#	scores of 71.58, 88.15, and 79.00, while the SGP had pub-
lished results of 𝑃, 𝑅, and 𝐹# scores of 89.10, 70.74, and 78.87, 
respectively. SGP had a higher 𝑃, while WeSuperMaDD has a 
higher 𝑅. However, the overall 𝐹# scores are comparable. We 
postulate that this performance difference in 𝑃 and 𝑅 could be 
related to the training procedures of the CNNs used within each 
method. In SGP the training data for the segmentation CNN can 
have more background pixels than foreground pixels in their 
segmentation labels, therefore, the CNN can be biased towards 
predicting a pixel as background in the presence of uncertainty 
(Kotsiantis et al. 2005). The bias results in SGP predicting fewer 
pixels as foreground, focusing only on obvious true positives as 
reflected in the results, i.e. higher precision, lower recall. In con-
trast, WeSuperMaDD is designed to predict pixels as foreground 
rather than the background as the CNNs incorporated are trained 
for a text recognition task, where the CNNs must identify all 

characters in an image to recognize text contained within it. 
Therefore, the features extracted by the CNNs used in WeSu-
perMaDD must be from the full character sequence. Conse-
quently, the combination of the Mask Refinement and Mask Bi-
nary Search modules would likely create PSLs that assign more 
pixels as foreground resulting in a higher recall than precision. 
This would help to ensure CNNs trained with WeSuperMaDD 

identify full character sequences. Overall, the average quality 
measured using the 𝐹# score of the PSLs generated by WeSuper-
MaDD and the SGP (Bonechi et al. 2019), are comparable as a 
result. Our weakly supervised method, however, has the clear 
advantage of not requiring any segmentation labels for training 
and can be thus directly applied to a wide variety of datasets 
without any human time-effort.  
  We compare the 𝐹# scores of the PSLs generated by WeSu-
perMaDD with the 𝐹# scores from rounds 1, 2, and 3 of SDI and 
SDI* on both the ICDAR-13 and Total-Text datasets, Table 1. 
The 𝐹# scores of both SDI and SDI* improve marginally with 
the number of training rounds. SDI has a lower 𝐹# score com-
pared to both the Naive method and our proposed WeSuper-
MaDD method. SDI also achieves a higher 𝑅 but lower 𝑃 com-
pared to our method. This is observed in the generated PSLs, as 
SDI is unable to create masks of individual characters and in-
stead creates one continuous mask for the entire text, Fig. 7e and 
Fig. 8e. Thus, it greedily predicts both foreground and back-
ground pixels as foreground, trading 𝑃 for 𝑅. In subsequent 
training rounds SDI uses the predicted CNN labels as supervi-
sion for the next round. Thus, the PSLs become increasingly bi-
ased towards entire text groupings as one continuous object, and 
cannot handle disjoint objects. SDI*, initialized using the first 
stage masks from WeSuperMaDD, provides an improvement 
with respect to SDI with higher 𝑃 and 𝐹# score, but still greedily 
predicts many background pixels as foreground (Fig. 7f), and 
has difficulty segmenting disjointed letters (e.g., is not able to 
segment the upper hole in the letter ‘R’ in Fig. 8f). Overall, our 
proposed method achieves a higher 𝐹# score compared to both 
SDI and SDI* without requiring iterative training. 

We compare the 𝑃, 𝑅	R, and 𝐹# scores of the PSLs generated 
by CA-FCN, Table 1. We only report results on the ICDAR-13 
test set, as the Total-Text dataset does not provide per-character 
ground truth bounding boxes required by this method’s label 
generation pre-processing step. CA-FCN has a higher 𝐹# score 
compared to the Naive method, but a lower score when com-
pared to the others. This is observed in the generated PSLs in 
Fig. 7h, as the reduction in mask size during the pre-processing 
step results in masks which only capture a small portion of each 
character.  

Additionally, we compare the 𝑃, 𝑅, and 𝐹# scores of the PSLs 
generated by BBS, Table 1. On the ICDAR-13 dataset with 
straight text, BBS generates 𝑃, 𝑅, and 𝐹# scores which are iden-
tical to the Naïve method. This is due to the generated PSLs 

      
           (a)                             (b)                      (c)                    (d)                                                

     
    (e)                            (f)                         (g)                        (h)     
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which are word-level masks being the same as the rectangular 
crops used for evaluation for straight text, Fig. 7i. However, on 
the Total-Text dataset with curved text, the 𝐹# score for BBS is 
better than the Naive method, but still lower than the 𝐹# score 
for our WeSuperMaDD method. This is due to BBS considering 
background pixels surrounding the text as foreground, Fig. 8h.  

We also compare the 𝑃, 𝑅, and 𝐹# scores of the PSLs gener-
ated by SMG, Table 1. SMG performs considerably worse com-
pared to the other methods. In some cases, SMG finds only a 
few of the text characters from each text crop, Fig. 7g, as sali-
ency maps can only capture the most discriminative parts of the 
object rather than the entire object (Simonyan et al. 2014). 
Moreover, after GrabCut, the largest connected component set 
of foreground pixels are chosen as a PSL. In particular, in Fig. 
8g, SMG greedily segments the entire text groupings as one con-
tinuous object. Thus, SMG is unable to segment disjointed ele-
ments. In contrary, our method does not assume the contextual 
information is a single connected component which allows for 
disjointed elements to be found. 

 For the ICDAR-13 dataset, a non-parametric Kruskal-Wallis 
test, n = 1095, showed a statistically significant difference in 𝐹# 

between these weakly-supervised methods (𝐻 = 1871, 𝑝 <
0.001). Posthoc Dunn tests were conducted between our WeSu-
perMaDD method and the other five methods and showed that 
our method has a statistically significant higher 𝐹# with respect 
to the SMG, (𝑍 = 42.69, 𝑝 < 0.001), SDI (𝑍 = 16.97, 𝑝 <
0.001), SDI* (𝑍 = 16.45, 𝑝 < 0.001), CA-FCN (𝑍 =
15.14, 𝑝 < 0.001), and BBS (𝑍 = 42.51, 𝑝 < 0.001) methods, 
respectively. For the Total-Text dataset, a non-parametric Krus-
kal-Wallis test, n = 2,543, also showed a statistically significant 
difference in 𝐹# between these weakly-supervised methods 
(𝐻 = 3496, 𝑝 < 0.001). Posthoc Dunn tests conducted be-
tween our WeSuperMaDD method and the other four methods 
and showed that our method has a statistically significant higher 
𝐹# with respect to the SMG, (𝑍 = 60.03, 𝑝 < 0.001), SDI (𝑍 =
19.72, 𝑝 < 0.001), SDI* (𝑍 = 18.81, 𝑝 < 0.001), and CA-
FCN (𝑍 = 21.92, 𝑝 < 0.001) methods, respectively. 

5.3 Context Detection and Segmentation Experiments 

The objective of the Context Detection and Segmentation Ex-
periments is to evaluate the full text detection and segmentation 
performance of our WeSuperMaDD architecture.  

5.3.1 Training Datasets 

We used the SynthText (Gupta et al. 2016) for pre-training due 
to its large size and data diversity. The following datasets were 
then used for fine tuning: 1) ICDAR-13 (Karatzas et al. 2013), 
2) ICDAR-15 (Karatzas et al. 2015), and 3) ICDAR-17 multi-
language text (Nayef et al. 2017). The ICDAR-17 dataset 

contains 9,000 training/validation images of text from nine lan-
guages and six different scripts. 

5.3.2 Testing Datasets  

We use: 1) ICDAR-13 (Karatzas et al. 2013), 2) ICDAR-15 
(Karatzas et al. 2015), 3) ICDAR-17 multi-language text (Nayef 
et al. 2017) datasets, and 4) our own grocery dataset for perfor-
mance evaluation. The grocery dataset contains 2,226 images 
that were collected using our mobile interactive Blueberry robot 
navigating aisles in a real grocery store and focuses on the con-
text detection task of determining real text on aisle signs in the 
environment. Both the detection and segmentation results in Ta-
ble 2 are reported using a procedure similar to the ICDAR-15 
evaluation procedure (Karatzas et al. 2015). In this case, a posi-
tive detection is defined as a predicted quadrilateral with IoU 
greater than 0.5 with a ground truth quadrilateral, with the addi-
tional restriction that a ground truth quadrilateral must be asso-
ciated with at most one positive detection. In particular, to obtain 
the segmentation results, an additional refinement step, dis-
cussed in Section 5.3.7, is used to convert predicted segmenta-
tion masks to a quadrilateral. The 𝑃, 𝑅, 𝐹# , and IoU scores are 
then computed between the predicted and ground truth quadri-
laterals. 

The datasets provide quadrilateral labels of the locations of 
text instances and text labels for text contained within the im-
ages. These datasets provide a variety of real text data in several 
environments e.g. malls, roads, etc., with varying fonts, scales, 
and languages, therefore being a useful representation of what a 
robot may encounter in human-centered environments.  

5.3.3 Text Instance Segmentation Model 

WeSuperMaDD uses a modified RetinaNet (Lin et al. 2017) ar-
chitecture with a ResNeXt-50 (Xie et al. 2017) backbone with 
pyramid levels 𝑃= to 𝑃> for features were used for text detection 
and segmentation. The selection of a small CNN backbone and 
a one-stage detection framework reflects the common need of 
using CNNs for robotics context detection tasks, as small CNNs 
allow for shorter training time, and faster inference. We modify 
the RetinaNet architecture to include additional horizontal prior 
boxes to improve multi-line text detection performance (Liao, 
Shi, et al. 2018). The bounding quadrilaterals are formed 
through the prediction of the parameters of a homography matrix 
that transforms the prior box to a predicted text instance loca-
tion. The text mask detection branch was shared across all fea-
ture maps (He et al. 2017) and uses the rotated RoI-Align mod-
ule to retrieve features from the backbone (Huang et al. 2018). 

5.3.4 Methods for Comparison 

We compare a text instance segmentation CNN trained with 
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PSLs generated by WeSuperMaDD, referred to as WCNN 
herein, against a text instance segmentation CNN trained with 
PSLs generated by the aforementioned Naive approach, referred 
to as NCNN. The Naive approach was selected as the weakly 
supervised alternative as it is the PSL method designed for text 
(Wu et al. 2020) with the highest 𝐹# score after WeSuperMaDD 
in Table 1. Both WCNN and NCNN are based on the aforemen-
tioned Text Instance Segmentation Model.  

5.3.5 State-of-the-Art-Methods 

Furthermore, we also compare our detection performance 
against the results reported in the literature for the following 
methods: 1) Lyu et al. (Lyu, Yao, et al. 2018), 2) CRPN (Linjie 
Deng et al. 2019), 3) FOTS (X. Liu et al. 2018), 4) Textboxes++ 
(Liao, Shi, et al. 2018), 5) STELA (L. Deng et al. 2019), 6) Mask 
TS (Lyu, Liao, et al. 2018), and 7) CRAFT (Y. Baek et al. 2019). 
Methods 1-5 are typical text detection CNNs that have been 
trained using fully supervised data, while methods 6 and 7 are 
semi-supervised text detection methods. Furthermore, methods 
1-3 and 6 are two-stage methods, and methods 4 and 5 are one-
stage methods. CRAFT is a text region segmentation-based 
method. One-stage methods directly predict bounding quadrilat-
erals from an image. Two-stage methods extend the one-stage 
formulation, by including a sub-network that refines the first 
stage’s text proposals. The segmentation method examines a text 
segmentation output to generate a text bounding quadrilateral. 
We have selected these methods to investigate the detection per-
formance of WCNN with respect to existing text detection tech-
niques, while uniquely being the only such CNN to provide 
character level segmentation. 

5.3.6 Training Procedure 

Both WCNN and NCNN were trained to output a set of bound-
ing quadrilaterals representing the locations of text within an in-
put image, and a mask highlighting the location of text within 
this quadrilateral. We used a weighted three-part loss, L, con-
taining a bounding box regression loss, a classification loss, and 
a mask loss, 𝐿8: 

𝐿 = (CE(𝑧?, 𝑧@) + αA𝐿A(ℎA?, ℎA@))/𝑛pos + 𝐿8, (19) 

where 𝑛pos is the number of matched prior boxes, and CE(𝑧?, 𝑧@) 
measures the classification loss of the predicted confidence 
logits 𝑧@, and the matching label 𝑧?. We rank the prior boxes 
using the Huber loss, 𝐿A, between each prior box and the ground 
truth quadrilaterals and select the top-𝑘, 𝑘 = 20 boxes with low-
est loss as positive matches in the label tensor 𝑧?. This selection 
method balances the number of matched prior boxes per ground 
truth quadrilateral. Out of the remaining prior boxes we select 
the top-3𝑛pos with the highest classification loss as the negative 

examples within 𝑧?	(Fu et al. 2019) to ensure that negative sam-
ples are not overrepresented in the loss. Prior boxes matched 
with ground truth marked as “illegible” within the dataset are 
not included in the loss calculation. 

The αA  hyper-parameter is used to reduce the influence of 
𝐿A(ℎA?, ℎA@) on the overall loss (Ren et al. 2016). The network is 
trained to predict the homography that transforms a prior box to 
a ground truth target. The ground truth homography, ℎA?, is the 
homography of a unit square prior box, u, centered at (0,0) to a 
normalized and centered ground truth quadrilateral, 𝑔/?, to main-
tain position invariance, ℎA? = 𝐻(𝑢, 𝑔/?). Here 𝐻(·,·) represents 
the solution to the set of linear equations describing the homog-
raphy between two quadrilaterals. To attain 𝑔/?, we normalize 
each of the coordinates of 𝑔B  as: 

𝑔/? = ~
?@AB

"CCA
CDDED

F ,
?@GB

"CCG
CHDEH

F � , ∀𝑖 ∈ [1,4], (20) 

using the center E𝑏EF , 𝑏EGF, side lengths (𝑏H , 𝑏I), and length var-
iances EσCD

= , σCH
= Fof the matched prior boxes. 

Instance segmentation is trained using the mask loss (He et al. 
2017): 

𝐿8 =
1
𝑘/
` 𝐶𝐸E𝑀?

((), 𝑀@
(()F

(I

(J#
/�𝑀?�, (21) 

where	CE(𝑀?
((), 𝑀@

(()) is a cross entropy loss between each pre-
dicted mask pixel and the PSLs. The loss function is applied to 
the masks generated from the top-𝑘/, 𝑘/ = 50 bounding quadri-
lateral predictions (Fu et al. 2019). 

Datasets with similar image distributions are grouped for fine-
tuning and testing similar to (Y. Baek et al. 2019). When testing 
on ICDAR-13, and ICDAR-17 we fine-tune using their training 
sets. When testing on the ICDAR-15, and our own real grocery 
store dataset we fine tune using the ICDAR-15 training set. We 
apply random color, perspective, rescaling, and cropping pertur-
bations during training and PSL generation. Before training ei-
ther WCNN or NCNN we generate PSLs by applying WeSuper-
MaDD or the Naive approach for each image in the dataset.  

5.3.7 Testing Procedure 

During testing, we resize the longer edges of images from 
ICDAR-13, 15, 17, to 960, 1,920, and 1,600, respectively. For 
our own grocery dataset, the image size of 1280x720 pixels is 
used to compare both the WCNN and NCNN to measure their 
detection and segmentation performance in a real robot context 
detection task. 

As the ICDAR-15, 17 and our grocery datasets do not provide 
instance segmentation labels, we compared the ability to local-
ize text with the masks generated by WCNN and NCNN using 
a Proposal Refinement Procedure (PRP) that we have 
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developed. In particular, we generate text detection quadrilateral 
predictions from segmentation masks using the minimum ro-
tated rectangle surrounding the mask. The procedure converts a 
quadrilateral text region proposal into a rotated rectangle and 
uses the text mask detection branch to segment the text con-
tained within it. We iteratively move each edge of the region 
proposal outwards, i.e., increasing the distance from the pro-
posal centroid to the edge center by 1%, until at least n of the 
pixels on that edge are foreground. After a specified number of 
iterations, we generate the final proposal using the minimum ro-
tated rectangle (minAreaRect function from OpenCV) surround-
ing the segmentation mask. The procedure tests whether the 
bounding rotated rectangle proposal can be recreated using the 
predicted mask. Given a predicted quadrilateral, if the quadrilat-
eral obtained from the procedure is larger than the corresponding 
ground truth quadrilateral, then background information was in-
corporated into the mask. If the quadrilateral is smaller, a part of 
the text instance was not detected. This process examines the 
ability of the CNN to 1) find the characters within a region, 2) 
to differentiate individual text instances, and 3) to detect the 
ability of the CNN to localize text. An example of this process 
applied to both methods is shown in Fig. 9, where initial masks, 
Fig. 9a and Fig. 9c, are refined using the described procedure to 
grow the initial mask proposals as shown in Fig. 9b and Fig. 9d. 

 (a) (b) 

 
 (c) (d) 

 
(e) 

 
(f) 

Fig. 9 Sample crops from ICDAR-13 dataset overlaid with: a masks gener-
ated from WCNN; b masks generated from NCNN; c masks from a after 
refinement; d masks generated from b after refinement; e randomly selected 
segmentation samples generated by WCNN overlaid on ICDAR-17 valida-
tion images; and f varying sample crops from our grocery dataset overlaid 
with WCNN masks. 

5.3.8 Text Detection Results 

The text detection results for WCNN and NCNN are presented 
in Table 2. For each of the ICDAR-13, 15, 17, and grocery da-
tasets, we observe an F1 score ranging from 68.85 to 89.56 for 
WCNN and an F1 score ranging from 68.56 to 89.44 for NCNN, 
respectively. The results show WCNN has only a slight im-
provement in 𝐹# scores between 0.12 and 1.50 higher than those 
achieved by NCNN for each of the datasets. The results also 
show that WCNN has an improvement in IoU scores between 

0.02 and 4.52 over NCNN for each of the datasets. The perfor-
mance improvements in 𝐹# and IoU are likely due to WCNN 
learning more robust features for instance segmentation due to 
the higher quality WeSuperMaDD masks used (compared to the 
Naïve masks used by NCNN), despite using the same ground 
truth detection labels to train both CNNs. Since the WeSuper-
MaDD PSLs provide more accurate localization information for 
text, they have better text segmentation output quality for local-
ization than NCNN, as is explored in the following section.  

5.3.9 Text Segmentation Results  

We also compare the segmentation performance of both WCNN 
and NCNN based on their final 𝐹#	scores after applying the PRP 
(Section 5.3.7). The results are summarized in Table 2. Since 
only WCNN and NCNN provide a text instance segmentation 
output, we, therefore, cannot compare against the existing state-
of-the-art techniques using this procedure. For each of the 
ICDAR-13, 15, 17, and grocery datasets we observed an 𝐹# score 
ranging from 67.10 to 85.24 for WCNN and an 𝐹# score ranging 
from 41.76 to 71.03 for NCNN, respectively. We note that 
WeSuperMaDD PSLs provide a gain of between 42% and 83% 
in terms of 𝐹# when compared to the Naive PSLs. We also ob-
served an IoU score ranging from 62.83 to 75.60 for WCNN, 
and an IoU score ranging from 54.50 to 65.33 for NCNN, for 
these four datasets, respectively. The lower 𝐹# and IoU scores 
obtained by NCNN can be attributed to the label quality of the 
naive PSLs. Namely, since the Naive method mislabels back-
ground pixels near the edges of ground truth bounding quadri-
laterals, the edges of text segmentation masks will also be inac-
curate. In contrast, WeSuperMaDD PSLs are designed to only 
label character font as foreground, reducing the ambiguity of the 
location of the edge of a text instance thereby improving the 𝐹# 
score. 

We further conducted a qualitative comparison of WCNN and 
NCNN. Fig. 9a and Fig. 9b show a segmentation proposal from 
WCNN before and after mask refinement. We note that there is 
minimal change to the bounding quadrilateral proposals since 
the initial segmentations were within the boundary of the pro-
posals. This contrasts to the masks generated by the NCNN 
which incorporates background pixels surrounding text as seen 
in Fig. 9c and results in the refinement procedure increasing the 
size of the bounding quadrilateral in Fig. 9d to the point that they 
no longer satisfy the IoU criteria for a positive detection. There-
fore, WCNN is able to produce instance segmentation masks 
that are more informative of the location and size of text than 
those generated by NCNN. WeSuperMaDD is able to generate 
PSLs that only segment characters within the text bounding 
boxes, providing higher precision guidance for WCNN to local-
ize text boundaries.  

We provide several examples of text instance segmentation 
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masks generated by WCNN on the ICDAR-17 validation set 
within Fig. 9e and on our grocery dataset in Fig. 9f for further 
qualitative analysis. It can be seen that WCNN provides seg-
mentation proposals (red) for multiple scripts and languages that 
overlap the text in the source image while incorporating minimal 
background pixels. It is interesting to note that this is despite 
using CNNs that have only been trained on English text and 
Latin script to generate the PSLs. The ability of WCNN to detect 
and segment important features in text in varying languages and 
scripts highlights the generalizability of the WeSuperMaDD 
pseudo label generation process. 

5.3.10 Comparison to State-of-the-Art Detection Techniques 

We compared the performance of our one-stage WCNN to seven 
other approaches presented in the literature with the ICDAR-13, 
15, and 17 datasets, Table 2. Our WCNN outperforms all exist-
ing one-stage detectors on the ICDAR-13 and 15 datasets with 
an 𝐹# score increase of 0.56 and 3.25. However, on the ICDAR-
17 dataset, it had an 𝐹# score 2.85 lower than STELA. We pos-
tulate that the reason that WCNN outperformed the other one-
stage detectors on the ICDAR-13 and 15 datasets was due to our 
unique use of the text instance segmentation training. This seg-
mentation training helps the network distinguish text regions 
from background regions due to the inherent per-pixel detail of 
PSLs. In contrast, the other one-stage methods only use bound-
ing quadrilaterals during training which only provide broad 
guidance of what image regions contain text. We hypothesize 
that the reason why the STELA had better performance on the 
ICDAR-17 dataset was due to it directly learning the shape and 
location of the prior boxes used during the detection task via re-
gression which can improve the number of prior boxes that sat-
isfy the ground truth bounding quadrilateral matching criteria. 
This is important for large sized bounding quadrilaterals since 
they typically only match with one prior box and are thereby 

underrepresented in training resulting in lower detection perfor-
mance. This was evident for the ICDAR-17 dataset since it con-
tains several text instances that are very large in area.  

When compared to the remaining two-stage and segmentation 
methods on the ICDAR-13, 15, and 17 datasets, WCNN had 
slightly lower 𝐹# scores of 5.64, 0.24, and 5.05 on each dataset, 
respectively. This is not unexpected given that two-stage models 
are known to outperform one-stage models (Fu et al. 2019), es-
pecially in the case of semi-supervised methods that are trained 
using a fully labeled subset of data. However, the clear ad-
vantage of our method with respect to all these two-stage meth-
ods is that WCNN can provide a segmentation output without 
the need for labeled data and with more accurate localization in-
formation, as it provides per-pixel segmentation, while other 
methods rely purely on using bounding quadrilaterals for text 
localization. Semi-supervised methods cannot be generalized to 
all datasets due to the need for a fully labeled subset of the da-
taset. Overall, it can be seen that WCNN has comparable perfor-
mance to existing detection models since it outperforms all of 
the alternative methods on at least one of the three datasets 
tested. 

6 Conclusion and Future Work 

 In this paper, we present the novel WeSuperMaDD method for 
the weakly supervised generation of PSLs of contextual infor-
mation datasets collected in various environments. The novelty 
of the method is that it can autonomously generate PSLs using 
pre-existing CNNs not specifically trained for the segmentation 
task. Our method uses learned image features to directly gener-
ate these labels for small and non-diverse datasets typically pre-
sent in robotic environments including grocery stores, malls, 
roads, etc. A new mask refinement system is introduced to find 
the PSL with fewest foreground pixels that satisfies constraints 
as measured by a cost function. The mask refinement system 

Table 2 Comparison of detection and segmentation methods on the test datasets. * indicates a one-stage detector, ** indicates a multi-stage, † indi-
cates a segmentation-based method. 

                                                      Dataset 

Method                     
ICDAR-13 ICDAR-15 ICDAR-17 Grocery 

P R 𝐹. IoU P R 𝐹. IoU P R 𝐹. IoU P R 𝐹. IoU 
Detection Results 

WCNN* 90.72 88.44 89.56 78.97 91.05 84.69 87.75 69.43 78.94 61.05 68.85 78.29 82.34 92.89 87.30 68.73 
NCNN* 90.05 88.84 89.44 78.61 89.36 83.34 86.25 69.41 75.77 62.60 68.56 78.03 82.64 91.94 87.04 64.21 

Segmentation Results 
WCNN* 85.41 81.97 83.65 75.60 81.42 88.21 84.68 62.83 79.64 57.98 67.10 70.38 80.21 90.94 85.24 63.64 
NCNN* 70.79 71.26 71.03 65.33 66.78 66.97 66.88 60.44 45.76 50.62 41.76 58.34 49.70 77.86 60.68 54.50 

Semi-Supervised Detection Results 
CRAFT† (Y. Baek et al. 2019) 97.40 93.10 95.20 - 89.80 84.30 86.90 - 80.60 68.20 73.90 - - - - - 
Mask TS** (Lyu, Liao, et al. 2018) 95.00 88.60 91.70 - 91.60 81.00 86.00 - - - - - - - - - 

One/Two-stage Fully Supervised Detection Results 
Lyu et al.** (Lyu, Yao, et al. 2018) 93.30 79.40 85.80 - 94.10 70.70 80.70 - 83.80 55.60 66.80 - - - - - 
CRPN** (Linjie Deng et al. 2019) 92.10 84.00 87.90 - 88.70 80.70 84.50 - - - - - - - - - 
FOTS** (X. Liu et al. 2018) - - 88.30 - 91.00 85.17 87.99 - 80.95 57.51 67.25 - - - - - 
Textboxes++* (Liao, Shi, et al. 2018) 88.00 74.00 81.00 - 87.20 76.70 81.70 - - - - - - - - - 
STELA* (L. Deng et al. 2019) 93.30 85.10 89.00 - 88.70 78.60 84.50 - 78.70 65.50 71.50 - - - - - 
Note: all missing values above (denoted ‘-’) were not reported.     
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removes the need for handcrafted heuristic rules typically 
needed by existing PSL generation methods. Experiments vali-
dating the performance of WeSuperMaDD were conducted us-
ing OCR datasets due to the wide applicability of detecting 
scene text for robotic applications such as navigating unknown 
environments, annotating maps, etc. The datasets contained im-
ages of text with varying languages, scripts, curves, and scales 
obtained from various environments including parks, border 
crossings, and shopping malls. The experiments showed that 
PSLs generated by WeSuperMaDD had: 1) significantly higher 
𝐹# scores for segmentation when compared to other weakly su-
pervised (GrabCut, Pyramid, Naive, SDI, SMG), semi-super-
vised (BBS), and fully supervised (CA-FCN) methods, and 2) 
comparable 𝐹# scores to the current state-of-the-art semi-super-
vised PSL generation method (SGP). We further validated our 
overall architecture for instance segmentation and detection of 
real text in varying indoor and outdoor environments. We found 
our CNN trained with WeSuperMaDD PSLs has a higher seg-
mentation 𝐹# scores than a context segmentation CNN trained 
with Naive PSLs and higher detection 𝐹# scores than existing 
state-of-the-art one-stage models.  

To further increase the applicability of our method to a variety 
of robotics tasks, future work will extend our approach for da-
tasets with only bounding boxes or class labels to reduce the 
burden of manual labeling. Future work will also include ex-
tending our experimental analysis to generic object segmenta-
tion such as on the MS COCO dataset through the selection of 
an ensemble of object classification models such as Efficient-
Nets, the extension of VBP to support these additional special-
ized layers, and the design of an appropriate object segmentation 
cost function.   
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