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Abstract—The use of autonomous robots in urban search and 
rescue (USAR) missions has many potential benefits in terms of 
assisting rescue workers and increasing efficiency in these time-
critical environments. However, the cluttered and unknown 
nature of these environments introduces uncertainty in both the 
sensing and actuation capabilities of a rescue robot. Such 
uncertainty has not been directly incorporated into the modeling 
of the USAR problem for existing robots. In this paper, we 
present the novel use of a partially observable Markov Decision 
Process (POMDP) method which directly incorporates 
uncertainty within the decision-making layer of the controller for 
a rescue robot. A hierarchical task structure is used to 
decompose the overall exploration and victim identification task 
of a robot into smaller subtasks. These subtasks are modeled as 
POMDPs taking into account sensory and actuation uncertainty. 
Our proposed approach was tested in numerous experiments in 
unknown and cluttered USAR-like environments. The results 
should that the approach was able to successfully explore the 
environments and find victims, while dealing with sensor and 
actuator uncertainty.  

Keywords—Urban Search and Rescue, Unknown and Cluttered 
Environments, Robot Exploration, Decision Making with 
Uncertainty. 

I.  INTRODUCTION 
Urban search and rescue (USAR) is a time sensitive 

operation with the primary objective of exploring a disaster site 
containing cluttered rubble in order to find trapped victims [1]. 
Mobile robots can be deployed in these harsh environments to 
aid rescue workers [2]. To minimize workload, fatigue and the 
stress placed on robot operators, these robots are being 
designed to have some level of autonomy. Moreover, there is a 
need to move towards full robot autonomy as rescue workers 
are a scarce resource [3]. 

In USAR environments, uncertainty exists with respect to 
both robot perception and mobility. Due to the unstructured 
and unpredictable nature of the environment, sensory noise can 
be high, and the robot can slip while trying to navigate the 
rough terrain [3],[4]. Other environmental factors, such as 
smoke, dust and fire also reduce the sensing capabilities of the 
robot [5]. This uncertainty affects the robot’s ability to explore 
and map an unknown environment, while localizing and 
identifying victims.  

To date, a number of semi-autonomous [2],[6]-[15], and 
autonomous [4],[5],[16],[17] navigation and exploration 
techniques have been proposed for search and rescue scenarios. 
The semi-autonomous techniques deal with uncertainty, in the 
USAR environment, by requiring an operator to plan the robot 
tasks or directly control the robot via teleoperation.   

Our own previous work for USAR applications has focused 
on using learning-based semi-autonomous controllers in order 
for operators to share the USAR tasks of exploration and 
victim identification with either a single robot [13] or teams of 
robots [6],[15]. The robots were able to learn from their own 
experiences as well as those of the operator in order to 
effectively explore such unknown cluttered environments. 
Operator assistance was only requested by the robots when 
needed. These controllers used a MAXQ hierarchical 
reinforcement learning technique which models the problem as 
a Markov Decision Processes (MDP), and decomposed the 
overall USAR mission into smaller subtasks such as 
exploration, navigation and victim identification. These 
subtasks were individually learned and then combined into an 
overall task mission.   

Existing autonomous exploration and navigation 
techniques, on the other hand, have not directly considered the 
uncertainty associated with the robot in their modeling of the 
robot tasks, e.g. [4],[5],[16],[17].  

In order to improve autonomy of rescue robots in cluttered 
unknown environments, we present the novel use of a partially 
observable Markov Decision Process (POMDP) approach 
which directly incorporates uncertainty within the decision-
making layer of the robot controller. The robot chooses its 
actions based on its belief state of the environment. The belief 
state is updated as the robot moves in the environment based 
on the new sensory information available to it (i.e., new 
observations of the environment). This allows information 
about the features of the environment to be updated while the 
robot is exploring.  We utilize a hierarchical POMDP approach 
to allow for task abstraction of the multiple subtasks used 
during a USAR mission, which also reduces the number of 
state-action pairs needed. Each subtask is solved using its own 
POMDP. Exploration of the unknown cluttered USAR scenes 
is achieved using a direction-based exploration technique.  

II. ROBOT EXPLORATION IN UNKNOWN AND CLUTTERED 
ENVIRONMENTS 

When moving from a structured and known environment to 
a cluttered and unknown environment, standard path planning 
algorithms cannot be used. This is due to the incomplete map 
of the environment and the existence of unknown regions 
within the map [18]. To allow exploration in unknown 
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environments, the most commonly used exploration technique 
is frontier-based exploration [19]. In this technique, a robot 
navigates regions on the boundary between open visited space 
and unknown space to explore new regions [19]. Occupancy 
grids can be used to represent the environment for this 
technique [20]. The majority of semi-autonomous [11]-
[13],[15] and autonomous [4],[5],[15]-[20] rescue robots utilize 
frontier-based exploration or a modified version to explore 
USAR environments. What makes these approaches different 
from each other is their specific path planning techniques, 
exploration strategies and how uncertainty is handled. 

In [20], seven frontier-based exploration techniques were 
compared. These techniques were either cost-based or utility-
based approaches which either determined to traverse to: 1) the 
nearest frontier, 2) the frontier that provided the most 
information about the environment, or 3) a hybrid of both. In 
simulated experiments of a robot in office-like environments, 
the exploration time, quality of map, and computation time for 
each technique were compared. It was found that the specific 
demands of the problem governed which strategy was best to 
use. For example, for time sensitive applications, a cost-based 
approach was recommended while utility-based approaches 
were recommended for applications requiring the most 
knowledge of the environment in the shortest amount of time.  

A Multi-Criteria Decision Making exploration strategy was 
presented in [16] which considered the amount of free area 
beyond the frontier, probability that the robot can communicate 
information from the frontier back to the base station, and the 
distance between the frontier and the robot. The objective of 
this approach was to find the best frontier candidate based on 
the aforementioned criteria, and formulate a path to it based on 
the current map information. The strategy was tested in a 
simulated USAR-like approach against other exploration 
strategies which used hybrid distance and information gain, 
and nearest frontier methods. One or two robots were deployed 
to explore indoor environments with different levels of clutter. 
At various time intervals, the quality of the map for each 
strategy was recorded. Results showed that, on average, the 
multi-criteria exploration strategy outperformed the other 
strategies. 

In [17], a modified version of frontier-based exploration 
was used. Each cell in the occupancy grid was assigned a 
distance transform and an obstacle transform value. The 
distance transform was the cost of navigating to a cell and the 
obstacle transform was the proximity of obstacles to the cell. A 
path transform was computed from these two values and by 
combining it with the frontier-based exploration, the robot 
moved to the shortest safest frontier available. This approach 
was successfully tested on a physical robot which was able to 
explore and map an indoor environment. By inspecting the 
quality of the map and the sequence of the exploration, it was 
concluded that the robot was following a sub-optimal strategy 
but had a behavior which kept it from colliding with obstacles.  

In general, frontier-based exploration techniques do not 
inherently model uncertainty during decision making. To 
address this, a small number of techniques have been 
developed to be used with frontier-based exploration to avoid 
specific uncertain situations when navigating [4],[11]. For 
example, in [4] the frontier-based exploration technique was 
used with a two-level navigation method based on modified 

versions of the Probabilistic Roadmap and Randomized 
Kinodynamic Planning techniques. This approach allowed a 
robot to generate a global path and locally adjust the robot’s 
trajectory to safely follow the path. A set of movement 
constraints were defined to help the robot navigate the 
environment. Additionally, the movement of the robot was 
restricted at certain known parts of a rescue environment to 
prevent the robot from getting into situations such as being 
stuck or crashing. In both simulated and robot experiments, the 
approach was able to safely navigate a robot in a cluttered and 
partially unknown environment.  

In [11], frontier-based exploration was used to enable a 
robot to explore an unknown environment. To overcome the 
challenge of navigating rough terrain, data from inertial sensors 
and wheel encoders were fused with the current drawn from the 
battery to classify the resistance of the terrain for robot 
movement. This allowed the robot to determine what it was 
able to traverse. In highly cluttered environments, a human 
operator controlled the robot and increased its navigation 
speed.   

In general, the majority of existing autonomous frontier-
based robot exploration techniques have not directly 
incorporated environment, sensor or actuator uncertainty 
within their decision making model. Therefore, the states of the 
environment are assumed to be fully observable by the robot 
when making navigation decisions. Some have dealt with this 
challenge by restricting a robot to only navigate and traverse 
known parts of the environment or terrain that it can climb 
over, however these approaches also do not directly consider 
sensor or actuator noise. In cluttered and unknown 
environments, such as USAR scenes, such uncertainty is 
prevalent, and needs to be considered at the modeling and 
decision making layer in the robot controller. In our work, we 
uniquely model sensor and actuator uncertainty directly when 
determining optimal robot actions in order to achieve improved 
exploration performance in unknown and cluttered 
environments. We do this by modeling the subtasks of the 
robot exploration problem using POMDPs. 

III. PROPOSED POMDP APPROARCH FOR ROBOTIC URBAN 
SEARCH AND RESCUE 

In USAR applications, a robot needs to explore an 
unknown and cluttered environment, while navigating the 
environment to find victims. This overall task can be 
decomposed into a group of discrete subtasks which are 
associated with each other through a hierarchical task structure. 
Each individual subtask is modeled as a POMDP.  

A. USAR Task Hierarchy  
The USAR problem can be described using the following 

four subtasks [13]: Root, Navigate to Unvisited Regions (NUR), 
Victim Identification (VI), and Navigation. This decomposition 
allows each subtask to only include the states and actions that 
are necessary only for that particular subtask. Therefore, 
reducing the computational complexity of the overall problem. 
Figure 1 shows how the subtasks are associated with each other 
within a task hierarchy.   
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1) State and Action Space of the Subtasks 
Root Task 

The Root subtask represents the overall USAR problem. As 
previously mentioned, this problem is defined as exploring an 
unknown environment while searching for victims. The state 
space for this task is defined as S(LR, Mxyz, V), where LR is the 
robot’s location with respect to the global coordinate system, 
Mxyz is the generated 3D map of the environment. In this work, 
the map is represented in an occupancy grid configuration with 
terrain information (open space, voids, non-climbable obstacles 
and climbable obstacles), and V is the presence of a potential 
victim. The robot starts in the Root task, and it can either 
implement the NUR subtask to globally explore unvisited 
regions or the VI subtask to identify potential victims. 

Navigate to Unvisited Regions (NUR) 
The NUR subtask allows the robot to explore the unknown 

environment while building a map. To enable the exploration 
of an unknown and cluttered environment, a direction-based 
exploration technique which we previously developed is 
employed [13]. This utility-based exploration technique takes 
into consideration the type of terrain, distance to the robot, and 
amount of unknown area to determine the exploration direction 
the robot should follow as defined by North, East, South, and 
West directions. The state space for this task is S(LR, Mxyz, V). 
The robot can either Navigate the local environment, or Exit 
the exploration subtask (when the robot has finished exploring 
the scene or when a potential victim is present in order for VI to 
take over). The Exit action signals the end of exploration, and 
the robot exits into the Root task.  

Victim Identification (VI)  
In this subtask, the robot identifies potential victims, and 

tags their locations within the map. The state space is defined 
as S(LR, LV/R, Mxyz) where LV/R is the relative location of a 
potential victim with respect to the robot’s location. The 
available actions are Navigate and Tag. Navigate will allow the 
robot to move closer to the victim’s location if needed to do 
victim identification, and Tag will tag the victim location in the 
map.  

 

 
 The task hierarchy for the overall USAR task. 

Navigate  
The Navigate subtask allows the robot to traverse the 

terrain in the environment by performing local navigation. If 
the robot has implemented the NUR subtask first, then the 
robot tries to move in the exploration direction. If it is coming 
from the VI subtask, Navigate is used to move the robot closer 
towards the victim location for improved identification. The 
state space is defined as S(LR, Mxyz, DE, LV/R) where DE is the 
desired exploration direction. The robot’s navigation actions 
are Forward and Rotate. The move forward allows the robot to 
move from one cell to an adjacent cell in the environment, and 
the rotate allows the robot to turn in order to access cells to the 
left, right and behind the robot. 

B. POMDP Modeling of the Subtasks  
A POMDP model is used here to allow a robot to make 

decisions when uncertain scenarios exist, which can be 
common in unknown and cluttered USAR environments. In 
general, a POMDP is represented as a tuple <S, A, Ω, T, O, R>, 
where S is the finite set of states, A is the finite set of actions, Ω 
is a finite set of observations, T is the transition probability 
function, O is the observation function and R is the reward 
function [21]. Moreover, a belief state is represented as a 
probability distribution over the state space [21]. In POMDP, a 
policy is formulated which maps the belief state to an action. In 
the proposed USAR task hierarchy, a POMDP is used to model 
each of the subtasks.   

Observation 
Whenever the robot attempts an action, an observation of 

its surrounding environment is made. The observation includes 
the sensed information of the cells surrounding the robot, and 
the existence of potential unidentified victims in close 
proximity to the robot.   

Transition Probability and Observation Functions 
The transition probability function helps define the 

probability of going from state s to state s′, after taking action 
a. The observation function defines the likelihood that the 
robot makes observation o, after taking action a and enters state 
s′. These functions are used to directly incorporate actuation, 
and sensor uncertainty.  

The transition and observation probabilities can be 
represented as [22]: 

𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) = Pr(𝑠𝑠′|𝑠𝑠, 𝑎𝑎)        ,                   (1) 

𝑂𝑂(𝑠𝑠′, 𝑎𝑎, 𝑜𝑜) = Pr(𝑜𝑜|𝑠𝑠′, 𝑎𝑎)        .                   (2) 

Reward Function 
After taking specific actions, the robot is either rewarded or 

punished. R(s) is the immediate reward that the robot receives 
for being in state s and executing action a. Table I contains the 
different actions and their associated rewards for the reward 
function. 
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TABLE I.  THE REWARD FUNCTION USED BY POMDP FOR THE USAR 
TASK.  

Actions Rewards 

Finished USAR mission +100 

Exit NUR (incompleted exploration) -25 

Navigate to unvisited cell +10 

Tag Victim Correctly +25 

Collision with obstabcle while Navigating -20 

Navigate to already visisted cell -1 

 
Belief State 

The robot starts out with an initial belief state b0. In the 
USAR exploration problem, the initial belief favors a single 
state, as the robot’s actual state is known. If the robot takes 
action a to go from state s to s′, it will make an observation o ∈ 
Ω of state s′. From this observation, it will update its belief 
state.  When an observation is made, the belief state is updated 
using Bayes’ rule [21]: 

 𝑏𝑏𝑎𝑎𝑎𝑎(𝑠𝑠′) =
Pr�𝑜𝑜�𝑠𝑠′, 𝑎𝑎�
Pr�𝑜𝑜�𝑏𝑏, 𝑎𝑎� ∑ Pr(𝑠𝑠′|𝑠𝑠, 𝑎𝑎) 𝑏𝑏(𝑠𝑠)𝑠𝑠∈𝑆𝑆    ,       (3) 

where  

Pr(𝑜𝑜|𝑏𝑏, 𝑎𝑎) = ∑ Pr(𝑜𝑜|𝑠𝑠′, 𝑎𝑎)𝑠𝑠′∈𝑆𝑆 ∑ Pr(𝑠𝑠′|𝑠𝑠, 𝑎𝑎) 𝑏𝑏(𝑠𝑠)𝑠𝑠∈𝑆𝑆  .   (4) 

Based on the state transition, the robot receives a reward as 
described in Table I. In POMDP, the robot chooses an action 
that maximizes its value function. At belief b, the value of a 
policy 𝜋𝜋 is defined by the expected total discounted reward 
[21]: 

𝑉𝑉𝜋𝜋(𝑏𝑏) = 𝐸𝐸(∑𝑡𝑡=0
∞ 𝛾𝛾𝑡𝑡𝑅𝑅�𝑏𝑏𝑡𝑡 ,𝜋𝜋(𝑏𝑏𝑡𝑡)�|𝑏𝑏0 = 𝑏𝑏)    ,      (5) 

where 𝛾𝛾 is the discount factor and t is the time step.  

Policy Computation 
The policy that maximizes 𝑉𝑉𝜋𝜋 is the optimal policy 𝜋𝜋∗. To 

solve the POMDP models for the subtasks, an optimal policy 
which satisfies the Bellman optimality equation needs to be 
computed [21]. There are several offline and online techniques 
which can be used to compute a policy.  

Although POMDP has the benefit of being able to handle 
uncertainty, the process of formulating a policy can be 
computationally expensive. The belief space grows 
exponentially with the number of states and so does the 
observation-action history considered for planning [22]. This is 
especially evident in offline techniques where all future 

scenarios must be considered. Moreover, in offline policy 
computation, prior knowledge of the environment is required.  

In online policy computation, the robot searches for a single 
best action, executes that action and updates its belief [22]. For 
this reason, prior knowledge of the environment is not 
necessary, but most online solvers still suffer from the large 
belief space and observation-action history of the POMDP 
[22]. The Determinized Sparse Partially Observable Tree 
(DESPOT) [22] is chosen in this work as our online solver. 
DESPOT overcomes the abovementioned problem by 
searching only a set of randomly selected scenarios. A scenario 
is defined as an abstract trajectory (𝑠𝑠0, 𝑎𝑎1, 𝑠𝑠1, 𝑜𝑜1, 𝑎𝑎2, 𝑠𝑠2, 𝑜𝑜2, … ). 

A common online policy computation approach is to 
construct a belief tree, where the tree branches off at each level 
based on the number of available actions and then observations 
[22]. This approach searches ahead for a policy that maximizes 
the value function. DESPOT operates in a similar manner, but 
with several observation branches removed based on the 
sampled scenarios [22]. At each time step, the optimal policy is 
computed and the first action of the policy is taken. The robot 
makes an observation and updates it belief. Then, the process is 
repeated under a new set of random scenarios. 

IV. SIMULATED EXPERIMENTS 
To validate the performance of our proposed POMDP 

approach in exploring and finding victims in unknown and 
cluttered environments, we conducted 132 trials in simulated 
USAR-like environments. Namely, we developed a 2.5D 
simulator using Qt 5.9 to represent varying environments for a 
robot to explore. Randomly generated scenes using the three 
different scene sizes of 10x10 m2, 20x20 m2 and 30x30 m2 
were generated, with each cell size being 1x1 m2. The number 
of victims in the scenes varied from 4-8 and the amount of 
clutter (climbable and non-climbable obstacles) was also varied 
from 20%-50%, respectively. Examples of the environments 
are shown in Fig. 2.   

Each cell was classified as open, climbable obstacle, non-
climbable obstacle, a non-traversable void, or containing a 
victim. Climbable obstacle cells had varying heights. The 
higher the obstacle height, the more likely that the robot would 
fail to navigate into that particular cell. This actuation 
uncertainty was modelled as a decreasing linear relationship 
between actuation success rate and obstacle height.     

Sensory information from a thermal camera for victim 
identification, and a 3D sensor for obstacle height detection 
and mapping were modeled with added noise. For the added 
noise, pseudo-random numbers were generated and added to 
the probability of the sensors to correctly classify a victim or a 
cell type in the map. This introduced uncertainty to the sensor 
classifications.  

A. Performance Metrics 
The performance metrics utilized were defined as: 1) the 

number of victims found and tagged, 2) the percentage of 
environment that was covered by the robot, and 3) the number 
of collisions the robot had with non-climbable obstacles.  
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 Four different scene setups for measuring the performance of the POMDP approach (top row) and a sample of their corresponding 

generated map that the robot generated (bottom row).  

B. Results 
Table II presents the experimental results for each scene 

size and clutter level.  

Number of Victims Found 
On average, the robot found 100%, 99.2%, and 97.5% of 

the victims for the scene sizes of 10x10 m2, 20x20 m2, and 
30x30 m2, respectively. In the cases where not all victims were 
tagged, the robot failed to formulate a path which allowed it to 
explore the local area where the victims were located. These 
areas were highly cluttered when compared to the rest of the 
environment and the obstacle layout made it so that the robot 
had only a tight entry to the area.    

TABLE II.  AVERAGE PERFORAMNCE METRIC RESULTS FOR DIFFERENT 
SCENE SIZES AND LEVEL OF CLUTTER. 

 Scene Size 
(m2) 

Level of Clutter (%) 
20 30 40 50 

Average 
Number of 

Victims 
Found 

10x10 4/4 4/4 4/4 4/4 
20x20 6/6 5.9/6 5.9/6 6/6 

30x30 8/8 7.9/8 7.5/8 7.8/8 

Average 
Percent 

Coverage 

10x10 98.5 100.0 99.7 99.4 
20x20 98.8 98.4 99.6 99.0 
30x30 99.6 97.2 93.4 95.6 

Average 
Number of 
Collisions 

10x10 10.6 7.3 10.7 7.5 
20x20 18.3 24.5 19.8 18.5 
30x30 25.7 26.4 18.9 13.2 

 

 
 

Percent Coverage  
The average percent coverage for varying levels of clutter 

based on scene size is presented in Fig. 3. Overall, the robot 
was able to explore on average 98% of the scenes. The 
coverage of the robot was slightly lower for some of the 30x30 
m2 cases with 40% and 50% clutter. This is due to the robot 
exiting the exploration subtask before it had explored the entire 
scene. Additionally, the effect of robot starting location on the 
coverage was investigated, with the robot starting at 1-4 
different starting locations in the scenes. There was no effect of 
starting location on exploration found. 

Number of Collisions 

Normalizing the number of collisions based on the number 
of movement steps in each trial, for scene sizes of 10x10 m2, 
20x20 m2, and 30x30 m2, there were on average 4.1, 2.2, and 
0.8 collisions per 100 steps, Fig. 4. The decreasing trend in the 
number of collisions as the scene size increases is due to the 
fact that in larger scenes there are more open spaces for the 
robot to safely navigate to.   

V. CONCLUSION 
In this paper, we present a novel POMDP approach for 

robot exploration and victim identification in cluttered and 
unknown environments. The approach is able to incorporate 
sensor and actuator uncertainty in order to autonomously 
explore USAR-like environments and identify victims in these 
environments. The overall USAR task was decomposed into 
four subtasks Root Task, Navigate to Unvisited Regions, Victim 
Identification, and Navigation. Each subtask was modeled as a 
POMDP and the subtasks were related to one another within a 
hierarchical task structure. The online POMDP solver, 
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DESPOT, was used to determine the robot actions for each 
subtask. Simulated experiments in cluttered USAR-like 
environments were conducted with varying scene sizes, 
obstacle layouts, and level of clutter. The results showed that 
the robot was able to identify victims while exploring the 
majority of the scenes, regardless of the scene size and amount 
of clutter. Future work will include integrating our approach 
and testing it in larger real environments.  

 

 
 Average percent coverage for different scene setups. 

 

 
 Average normalized number of collisions for different scene setups. 
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