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Abstract—The application of unmanned aerial vehicles 

(UAVs) to searches of lost persons in the wilderness can 

significantly contribute to the success of the missions. 

Maximizing the effectiveness of an autonomous multi-UAV 

search team, however, requires optimal task allocation between 

the team members, as well as the planning of the individual 

flight trajectories. This paper addresses this constrained 

resource-allocation optimization problem via the use of iso-

probability curves that represent probabilistic target-location 

information in a search region growing with time. The 

optimization metric used is the allocation of the search effort 

proportional to the target location likelihood. The proposed 

method also avoids redundancy in coverage while planning the 

UAV trajectories.  

Numerous simulated search experiments, two of which are 

detail herein, were carried out to demonstrate our method’s 

effectiveness in wilderness search and rescue (WiSAR) 

planning using a multi-UAV team. Extensive comparative 

studies were also conducted to validate the tangible superiority 

of our proposed method when compared to existing WiSAR 

techniques in the literature. 
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I. INTRODUCTION 

Unmanned aerial vehicles (UAVs) can be used for a wide 
range of applications, including archaeology [1]–[3], 
environmental monitoring [4]–[6], agriculture [7]–[9], 
structural health monitoring [10]–[12], surveillance [13]–
[15], and search and rescue [16]–[19]. Wilderness search and 
rescue (WiSAR) is of particular interest for UAVs, however, 
as it poses many challenges in terms of target detection, 
target motion prediction, and search planning. 

In general, research into UAV use in search and rescue 
has been primarily focused on target-detection methods [20]–
[22], system design and evaluation [23]–[26], and search 
path/trajectory planning [27]–[37]. Target-detection methods 
are concerned with how to recognize targets once they are in 
the field of view of the UAV. For example, in [20], a method 
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of detecting the target in images acquired from a UAV using 
two k-means classifiers was discussed.  

System design and evaluation literature is, typically, 
concerned with how UAV systems are used to perform 
WiSAR. For example, in [23],  the performance of a UAV-
based WiSAR support system was examined in a field 
experiment simulating a real-world search scenario. The 
study identified several issues that need to be resolved in 
order to improve search performance, including the high 
computational demand of analyzing data acquired from the 
UAVs and the high bandwidth demand for transferring UAV 
acquired data to a remote processing location.  

Since, in the WiSAR problem, the exact location of the 
target is unknown for the entirety of the search, most 
methods make use of a probabilistic model to represent 
possible target locations [27]–[30]. A UAV trajectory is, 
then, planned to maximize the probability of target detection 
given this model. For example, in [27], UAV search utilized 
a target location likelihood function defined over the search 
area. The likelihood function was modified in a Bayesian 
manner based on latest UAV observations. Other works aim 
to achieve coverage or detection guarantees through a 
specifically designed trajectory. For example, the work in 
[31] proposed an outward spiral trajectory that guaranteed the 
target was not within areas already searched by the UAV. In 
[32], an inward spiral trajectory is proposed which guarantees 
target detection within a bounded area. Others combine 
coverage and probabilistic path planning, in order to examine 
a set of high-probability areas as efficiently as possible. For 
example in [33], the problem of visiting and covering a set of 
disjoint search areas was formulated as a combined traveling-
sales-person and coverage-path planning problem.  

Similar work has been carried out regarding search 
planning using unmanned ground vehicles (UGVs) and 
wireless sensor networks (WSNs). For example, in [38], 
UGV paths were planned to search for a lost person and 
made use of a novel target location likelihood representation 
[39]. The work in [40], [41] presented a method for planning 
a time-phased WSN for maximizing target detection in 
mobile-target search. The work was extended in [42], [43] by 
additionally planning UGV delivery of sensors according to 
the optimal sensor-network deployment plan.  

In this paper, we propose a new multi-UAV motion 
planning method for WiSAR. The method’s novelty includes 
optimal task allocation as well as trajectory planning via the 
extension of the use of iso-probability curves into the 
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continuous domain, where the UAVs traverse a range of iso-
probability curves throughout the search. The proposed 
method also considers pseudo-redundant coverage, a 
dynamic analog of redundant coverage, to improve search 
effectiveness.  

 In Section II we begin describing our method by first 
outlining the assumptions made in the search scenario 
considered and some background on iso-probability curves 
and pseudo-redundant coverage. Then, the planning problem 
being addressed is formalized in Section III. The method of 
UAV trajectory planning is described in Section IV and is 
followed by illustrative simulated experiments in Section V.  

II. ASSUMPTIONS AND BACKGROUND 

A. Assumptions 

In WiSAR, information known at the start of the search 
is, typically, limited to the lost person’s (target’s) 
demographic, his/her last known position (LKP), search-area 
terrain, and search-resources availability. Commonly, a 
(statistical) target mobility model can be generated based on 
this information. In such a model, the target would be 
assumed to wander randomly by, for example, moving along 
a fixed heading for a random distance before randomly 
changing directions [40].  

Two parameters define the characteristics of the target’s 
motion in the model used in this work: σθ and dmax. The 
former specifies the degree of wandering. Namely, it is the 
standard deviation of the headings chosen by the target. The 
latter characterizes the target’s indecisiveness. Namely, it 
represents the maximum distance the target would continue 
traveling along a given heading. Since the model assumes 
that the target is always mobile, the search area (the region 
wherein the target could be) increases in size over time.  

Several assumptions need to also be made regarding the 
search agents’ capabilities (UAVs in our case). First, it is 
assumed that all UAVs have global positioning and 
communication capabilities. Furthermore, a binary disk 
model of detection is assumed. Namely, if the target passes 
within the sensing radius of any UAV, it is assumed to have 
been detected. 

B. Background 

The UAV search-planning method proposed herein 
utilizes the concept of iso-probability curves to represent 
probabilistic target-location information, first presented by 
our group in [39]. It also uses the concept of pseudo-
redundant coverage to increase the effectiveness of search 
planning [31].  

1) Iso-Probability Curves 
Iso-probability curves encircle the target’s LKP and 

denote the farthest that the slowest Pth percentile target could 
reach after a given amount of time in any given direction 
[39]. Since the target is assumed to be dynamic, these curves 
grow with time. Fig. 1 shows an example set of iso-
probability curves for a target with an assumed normally-
distributed outward propagation rate, at times t and t + Δt. 
The red, green, and blue curves represent the 30%, 50%, and 
70% curves, respectively. The non-uniformity of the curves is 
due to terrain variability.  

In this paper, iso-probability curves are used to guide 
search planning. Namely, UAVs are assigned to track a set of 
iso-probability curves for the duration of the search. The 
range of curves assigned to each UAV, individually, need to 
be optimally selected to maximize the probability of 
successful target detection. 

2) Pseudo-Redundant Coverage 
One of our goals, herein, is also to avoid redundant 

coverage, in order to increase the effectiveness of the search. 
Redundant coverage is, typically, defined as revisiting an 
area that has already been searched. However, since in 
WiSAR, the target is often assumed to be mobile, repeated 
coverage of the same area is not always detrimental. Namely, 
the target can move back into an already searched area. Thus, 
true redundant coverage does not exist in a dynamic search 
problem. Instead, pseudo-redundant coverage is considered.  

In the above context, the confidence area was defined in 
[31] as one that we are confident the target is not located 
within. For example, let us consider a sensor, with a detection 
radius of rs, that can be polled to determine whether the target 
is within it. However, even if the target were not within the 
detection area initially, as time passes, this area would shrink 
in size due to the probability of the target revisiting the 
region. Psuedo-redundant coverage, then, occurs when a 
searcher revisits part of the confidence area. 

 Fig. 2 shows the confidence area around a UAV spiral 
trajectory. The area is a continuous collection of the 
confidence area circles around positions the UAV has passed 
at discrete times. In the figure, the UAV is, currently, at the t5 
position, where t0 < t1 < t2 < t3 < t4 < t5. One may note that all 
past circles have progressively diminished from their original 
size (with a detection radius of rs) shown at t5. Namely, as the 
UAV travels forward along its trajectory, the confidence 
circles around past locations shrink. The speed at which the 
overall confidence area shrinks is equal to the maximum 
speed at which the target can move.  

 

Fig. 1. An example set of iso-probability curves at (a) t, and (b) t + Δt. 

 
Fig. 2. The confidence area around a UAV path. 
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III. PROBLEM FORMULATION 

The specific problem we address is to plan UAV search 
trajectories that maximize the probability of target detection. 
This is a constrained resource-allocation optimization 
problem. It is assumed the search effort should be allocated 
proportional to the target location likelihood. This conjecture 
is based on the definition of the probability of successful 
target detection (POS). Namely, POS is a product of the 
probability of the target being in the area (POA) and the 
probability of detecting the target (POD), if it is in the area 
[44]: 

 POS = POA × POD. (1) 

Above, the total probability of successful target detection is, 
then, the sum of POS over all locations in the search area.  

 If POD were proportional to the search effort expended at 
a location, the problem of maximizing the total POS would 
have a greedy solution. Namely, exhaustively searching 
locations with high POA before moving onto locations with 
lower POA. However, in a dynamic problem, there exist 
diminishing returns to spending more search effort at a given 
location. Namely, POD increases sub-linearly with the 
amount of search effort expended at a location. As such, it 
would be beneficial to diversify by searching a variety of 
possible target locations instead of exhaustively searching 
where the target is most likely to be found. 

A balance between exploiting locations with high POA 
and exploring a range of locations can be struck by allocating 
search effort in a way that is proportional to the POA. Thus, 
the problem addressed herein is one of planning a search 
which distributes search effort proportionally to the target 
location likelihood.  

IV. PROPOSED UAV SEARCH PLANNING METHOD 

The proposed UAV search planning method is based on 
the optimal search of a range of iso-probability curves. 
Namely, the UAVs traverse across iso-probability curves 
continuously throughout the search, as opposed to remaining 
on any given one curve as time progresses.  

A. Single-UAV Search Planning 

As noted above, in Section III, an optimal search for a 
dynamic problem is one in which the search effort is 
distributed over the search area proportionally to the target 
location likelihood. Iso-probability curves, by definition, 
employ such proportionality. Thus, an optimal way to 
distribute search effort on iso-probability curves would be to 
spend an equal amount of search effort on all curves.  

1) Equal-Effort Search  
Let us consider, first, the discrete case where there exists 

a finite set of equally spaced (in terms of percentile) iso-
probability curves to search. Optimal search by a single UAV 
could be achieved by having the UAV switch between these 
curves while spending an equal amount of search effort on 
each one. Herein, we extend this idea to the continuous 
domain. Namely, the equivalent of spending continuously an 
equal amount of search effort on discrete curves is traversing 
a continuum of curves at a constant rate with respect to 
search effort expended. Thus, we propose to plan UAV 

motion such that the UAV traverses iso-probability curves at 
an equal rate with respect to search effort expended.  

Let p(E(t)) denote the percentile iso-probability curve 
upon which the UAV is on after expending a time-cumulative 
search effort E(t). UAV motion can, then, be planned such 
that the change in target percentile being searched, dp(E(t)), 
is proportional to the change in effort expended, dE(t): 

 dp(E(t)) = CdE(t),  (2) 

where C is the constant rate of curve progression with respect 
to search effort expended.  

 In order to consider all possible target motions, the UAV 
must start on the 0% iso-probability curve and end on the 
100% curve. Integrating (2) with these boundary conditions, 
an explicit expression of p(E(t)) can be determined: 

 p(E(t)) = CE(t), (3) 

where 

 E(tstart) = 0 and E(tend) = 1/C.  (4) 

Above, tstart is the start time of the search and tend is the end 
time. 

Effort expended searching for the target can be expressed 
in terms of the proportion of possible target propagation 
directions the UAV searches. Thus, the cumulative effort 
expended, E(t), can be expressed as being proportional to the 
cumulative angular motion of the UAV. However, if it is 
assumed that the UAV’s angular position increases 
monotonically (i.e., it only moves clockwise) as in [38], this 
can be further simplified. Namely, the cumulative effort 
expended can be expressed as being proportional to the 
angular position of the UAV: 

 E(t) ∝ θ(t), (5) 

where θ(t) is the UAV’s angular position over time. 

Since any constant factor differentiating E(t) from θ(t) 
can be absorbed into C, we can define a new constant C′ and 
determine an explicit equation for p(θ(t)) as a function of 
θ(t): 

 p(θ(t)) = C′θ(t). (6) 

 Thus, for an optimal search, a UAV is required to traverse 
the iso-probability curves at a constant rate with respect to its 
angular position.  

a) The Static Iso-probability Curve Case 

For simplicity, let us first consider the static iso-
probability curve case, where it remains frozen in its position 
at some time t0. In this case, the radial position of the UAV is 
given by: 

    r(θ) = rp(θ)(θ, t0), (7) 

where rp(θ)(θ, t0) is the intersection point between the p(θ)% 
iso-probability curve at time t0 and a ray in direction θ. The 
optimal search path in polar coordinates is, then: 

    xu(θ) = (θ, r(θ)). (8) 

Namely, the UAV search path is expressed independently of 
time. A trajectory can, then, be defined by assuming the 
UAV traverses this path as fast as possible.  
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 Eq. (8) is a description of the path traversed by the UAV, 
given p(θ). The rate of curve progression, C, used in p(θ) 
must be optimized such that the UAV arrives at the 100% 
iso-probability curve at tend (i.e., to satisfy (4)). Qualitatively, 
C influences how tightly wound the UAV search trajectory is. 
A lower C results in a more tightly wound and thorough 
search and, thus, a later arrival by the UAV at the 100% iso-
probability curve. The opposite is true for higher C values. 
Optimization methods such as gradient descent or Newton’s 
method could be used to obtain the optimal C value. 

An example search path and a plot of the UAV’s radial 
position over time are shown in Fig. 3. 

 
Fig. 3. An example UAV search trajectory for the static case.  

b) The Dynamic Iso-probability Curve Case 

The actual UAV search-planning problem is more 
complex since the iso-probability curves are dynamic. 
Namely, the UAV is required to traverse iso-probability 
curves that are propagating outward away from the LKP. In 
order to formulate this problem, let us first consider a general 
description of the path the UAV would need to follow. Since 
the iso-probability curve positions vary with time, the desired 
radial position of a UAV is also time dependent. Namely it is 
a function of the UAV’s time-dependent angular position, 
θ(t), as well as the time at which it is at that angular position: 

 r(t) = rp(θ(t))(θ(t), t). (9) 

 The overall trajectory in polar coordinates can, thus, be 
described as: 

    xu(t) = (θ(t), rp(θ(t))(θ(t), t)). (10) 

Due to UAV velocity constraints, the UAV trajectory 
additionally needs to be planned such that it always moves at 
its maximum velocity: 

    ||dxu(t)/dt|| = vu, (11) 

where ||⋅|| is the Cartesian norm.  

 The search planning problem is, then, one of determining 
a trajectory wherein in the UAV traverses across iso-
probability curves in the prescribed manner, (10), while 
always moving at its maximum velocity, (11). For simplicity, 
let us consider the discrete case, in which the UAV switches 
between discrete iso-probability curves. This converts the 
trajectory-following problem into a series of interception 
problems.  

The interception problem at hand is one of planning UAV 
motion to intercept the next iso-probability curve after 
expending some amount of search effort on the current curve. 
Since search effort expended is proportional to the amount of 

angular motion, this equates to intercepting the next (moving) 
iso-probability curve after moving a fixed amount in the 
angular direction. Namely, the problem can also be expressed 
as one of planning UAV motion to intercept a point defined 
by the intersection of the next iso-probability curve and a ray 
extending from the LKP.  

Let us examine the scenario presented in Fig. 4, where a 
UAV is required to move from its current position on the 
p(θ1)% iso-probability curve (blue dashed line), at xu1 = (θ1, 
rp(θ1)(θ1, t1)) (black circle), to a position on the next iso-
probability curve, the p(θ2)% iso-probability curve (red 
dotted line), at xu2 = (θ2, rp(θ2)(θ2, t2)) (black square). In this 
case, the interception problem is one of planning UAV 
motion to reach the destination, xu2, as it moves radially 
outwards along the θ2 ray with the starting point xu1.  

 
Fig. 4. The interception problem in the dynamic curve case. 

Let us suppose that xu2 is propagating radially outwards 
along the θ2 ray with a speed of v2 at time t1. The position of 
xu2 at a later time, t2, can, then, be approximated as: 

 xu2(t2) = xu2(t1) + v2 (t2 – t1) (cos(θ2), sin(θ2)). (12) 

Assuming that the UAV will move in a straight line with 
speed vu from xu1 to intercept xu2, we need: 

 | xu2(t2) – xu1 | = vu (t2 – t1),  (13) 

where |⋅| is the Cartesian norm. Since this is quadratic in t2, it 
is possible to solve for the interception time and, therefore, 
the interception location. Once it is known when the UAV 
will be at xu2, the process can be repeated for the UAV 
traversing between xu2 and xu3, and, then, for xu3 and xu4, etc., 
until the end of the search time is reached.  

 One can note that, as in the static case, the rate of curve 
progression C needs to be optimized, such that the UAV 
arrives at the 100% iso-probability curve at tend.  

 Fig. 5 shows an example search trajectory and a plot of 
the UAV’s radial position over time in the dynamic case.  

 
Fig. 5. An example UAV search trajectory for the dynamic case.  
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2) Pseudo-Redundant Coverage 
In addition to following an optimal search trajectory, 

UAV motion must be planned to minimize redundancy in 
coverage. In our case, pseudo-redundant coverage would 
occur when a UAV goes around, on an iso-probability curve, 
and revisits areas still in the confidence area. Such coverage 
can be avoided by shifting the UAV’s trajectory.  

a) The Static Iso-probability Curve Case 

For simplicity, let us first consider the static iso-
probability curve case, where it remains frozen in its position 
at some time t0. In this case, an iso-probability curve of 
length l is searched by a UAV with speed vu and a detection 
radius of ru. Given a maximum target speed of vtmax, pseudo-
redundant coverage would occur if, after the UAV makes one 
round of the curve, the confidence area has not disappeared 
at the UAV’s original location, Fig. 2.  

Since the confidence area at the UAV’s initial location 
starts as a circle of radius ru and diminishes at a rate of vtmax, 
pseudo-redundant coverage would occur if the time it takes 
for the UAV to make one round of the iso-probability curve 
is less than the time it takes for the confidence area to 
disappear: 

 l/vu < ru/vtmax. (14) 

Given that pseudo-redundant coverage would occur if the 
UAV continues searching on the same curve, some offset 
perpendicular to the curve is required for the UAV, Fig 6. 
The offset required to avoid pseudo-redundant coverage is 
such that the UAV’s sensing radius does not cover any part 
of the confidence area. Namely, it would be equal to the 
radius of the confidence circle at the UAV starting position 
left over by the time the UAV returned added to the UAV’s 
sensing radius, Fig. 7: 

 d⊥min = (ru - vtmaxl/vu) + ru. (15) 

Let us, now, suppose that the UAV gradually moves 
outward while making its way around the curve. The UAV 
must achieve the minimum offset, d⊥min, by the time it makes 
one round of the iso-probability curve. Thus, the offset 
required can be divided by the time it takes for the UAV to 
make one round of the curve to obtain the minimum 
perpendicular speed necessary to avoid pseudo-redundant 
coverage: 

 v⊥min = d⊥min/(l/vu) = 2ruvu/l - vtmax (16) 

 

Fig. 6. The confidence area for a UAV searching on a (static) iso-

probability curve of length l.  

 

Fig. 7. A close-up look at the offset the UAV needs to achieve by the time 

it makes one full round of the (static) iso-probability curve.  

b) The Dynamic Iso-probability Curve Case 

When searching across a set of propagating iso-
probability curves, the UAV must traverse these with the aim 
of intercepting the next curve after some amount of search 
effort is spent. Thus, the UAV would have a velocity 
perpendicular to the curve being searched at any instant. In 
order to avoid pseudo-redundant coverage, then, this velocity 

must be at least v⊥min as is defined in (16).  

When the UAV’s heading to intercept the next iso-
probability curve, on the next ray, is determined, the 
perpendicular component of the UAV’s velocity is checked 

to ensure it is greater than v⊥min. If true, no action is taken. 

Otherwise, the UAV’s heading is adjusted such that the 

perpendicular velocity is equal to v⊥min. The UAV, then, 

proceeds on the new heading until it intercepts its destination 
ray. Once achieved, search planning resumes as was 
described in Section IV.A.1.b.  

B. Multi-UAV Search Planning 

In single-UAV search planning described above, it was 
assumed that the UAV would search all the iso-probability 
curves. However, when there are multiple UAVs, the work 
needs to be divided between them to achieve a more efficient 
search. For example, let us consider that an ith UAV is 
designated to search from the Pi1% iso-probability curve to 
the Pi2% curve, where Pi1 < Pi2. In this case, the percentile 
function would need to be modified such that the ith UAV 
would start searching on the Pi1% iso-probability curve and 
end on the Pi2% iso-probability curve: 

 pi(E(t)) = CiEi(t) (Pi2 – Pi1) + Pi1, (17) 

where Ci and Ei are the ith UAV’s rate factor and cumulative 
effort function, respectively.  

One way of allocating work is by optimally assigning 
UAVs to search non-intersecting subsets of the iso-
probability curves in order to maximize the probability of 
target detection. Optimization can be carried out using 
methods such as gradient descent.  
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Fig. 8 shows an example set of search trajectories for two 
UAVs, respectively, planned to cooperatively search for a 
mobile target. Both starting their motion at the target’s LKP. 

 

Fig. 8. Two UAV search paths: (a) UAV-1 and (b) UAV-2. 

V. SIMULATED UAV EXPERIMENTS 

Extensive simulated experiments were performed to 
validate the proposed UAV search-planning method for 
WiSAR. This section presents two illustrative examples as 
well as results from experiments comparing the proposed 
equal-effort search method to two alternative methods. 

A. An Illustrative WiSAR Example 

In this example, it is assumed that a search is ordered to 
locate a lost person. Information provided suggests that the 
target is a novice hiker with a walking speed represented by a 
normal random variable with a mean of μ = 0.75 m/s and a 
standard deviation of σ = 0.25 m/s [44]. The target is also 
assumed to be modeled using the motion model presented in 
[40] with a wandering parameter of σθ = π/3 rad and a 
decisiveness parameter of dmax = 100 m. The pertinent terrain 
and obstacles information is also given, Fig. 9. In this figure, 
solid black regions denote impassable obstacles for the target. 
The actual target, in this example, was simulated to move 
with a walking speed of 0.72 m/s (unknown to the searchers). 

A search was planned for two UAVs both with a 
maximum speed of 50 m/s and a ground-sensing radius of 25 
m. Both UAVs were assumed to start their search at the LKP 
and move outward 3,600 s after the target was known to be 
there. The initial search was planned to run for 3,600 s such 
that the search would end 7,200 s after the target left its LKP. 
Optimal iso-probability curve assignments were determined 
to be 0-63% for UAV-1 and 63-100% for UAV-2, 
respectively.  

In this example, the target was found at 6,705 s by UAV-
1. Fig. 10 shows four snapshots of the search at 3,600 s, 
4,635 s, 5,670 s, and 6,705 s, respectively. The red dot 
denotes the target position, while the UAVs are denoted by 
different colored circles (UAV-1 blue and UAV-2 red). 

B. Another Illustrative Example 

In this example, the above search was planned for three 
UAVs, instead of two. Optimal iso-probability curve 
assignments were determined to be 0-47% for UAV-1, 47-
77% for UAV-2, and 77-100% for UAV-3, respectively.  

For the given scenario, the target was found at 5,605 s by 
UAV-2. Fig. 11 shows 4 snapshots of the search at 3,600 s, 
4,270 s, 4,935 s, and 5,605 s, respectively. The red dot 
denotes the target position, while the UAVs are denoted by 
different colored circles (UAV-1 blue, UAV-2 red, and 
UAV-3 yellow). 

 

Fig. 9. The search area within which the illustrative example takes place. 

 
Fig. 10. Search at (a) 3,600 s, (b) 4,635 s, (c) 5,670 s, and (d) 6,705 s. 

 
Fig. 11. Search at (a) 3,600 s, (b) 4,270 s, (c) 4,935 s, and (d) 5,605 s. 

C. Evaluating the Equal-Effort Search Method 

In order to evaluate the performance of the proposed 
search planning method, it was compared to two alternative 
search algorithms: the constant-propagation method and the 
exhaustive method, respectively. In the former method, 
formulated in our laboratory, the (single) UAV moves 
radially outward at a constant rate. Unlike our method, this 
algorithm does not carry out any trajectory optimization as 
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per the use of iso-probability curves. It is a simple geometric 
approach. In the latter method, based on the work presented 
in [31], the UAV progresses outward at a rate that ensures 
complete (100%) coverage of the search area as time 
progresses.  

Fig. 12 below conceptually illustrates the radial position 
of the UAV as a function of time for all three methods.  

 

Fig. 12. Plot of UAV’s radial position over time for the three search 

methods. 

 Extensive simulations were performed for various search 
scenario parameters. A representative set is given herein for 
four scenarios, simulated for the search of 1,000 distinct 
(random) targets. The number of targets detected was used as 
a measure of performance for a method, Table I. All searches 
started after 3,600s of target motion away from the LKP. 

TABLE I.  NUMBER OF TARGET DETECTIONS (OUT OF 1,000) 

Search length (s) 1,600 3,200 4,800 6,400 

Proposed method 310 504 577 593 

Constant-propagation 203 333 388 414 

Exhaustive  15 15 15 15 

ANOVA:  F(2, 2,997) 171 379 494 526 

p < 0.0001 < 0.0001 < 0.0001 < 0.0001 

 

The above results validate that the proposed method 
outperforms the alternatives. One-way ANOVA tests showed 
that there was a statistical difference between the number of 
targets detected across all search lengths (F(2, 2997) = 
171.19, p<0.0001). In particular, post-hoc pairwise Tukey’s 
HSD criterion further validated that the difference between 
the proposed method and the constant-propagation method 
results was statistically significant regardless of the search 
length (p < 0.0001). As one would expect, however, the 
contrast between the proposed equal-effort and the constant-
propagation methods diminishes as the search time becomes 
longer. This can be attributed to target-detection saturation. 
Namely, as the search time becomes longer, all targets are 
(nearly) exhaustively searched in both methods such that 
their performances become more similar.  

One may note that the exhaustive search method performs 
poorly in the examples presented above since the target has 
ample time to move beyond the limits of where the method 
can maintain complete coverage. Thus, further experiments 
with earlier search start times and shorter search lengths were 
carried out, Table II. The results, as expected, showed that 
the exhaustive method can perform comparably to the 
proposed method when the start time is early enough that the 

UAV can completely cover an appreciable fraction of 
simulated targets. 

TABLE II.  NUMBER OF TARGET DETECTIONS (OUT OF 1,000) 

Start time (s) 600 900 

Search length (s) 150 700 150 700 

Proposed method 915 969 792 950 

Constant-propagation 559 955 295 812 

Exhaustive  522 629 241 346 

VI. CONCLUSIONS 

This paper presents a novel mobile-target search planning 
method for multi-UAV teams that utilizes target iso-
probability curves. It is novel in that it proposes to have 
UAVs search across a range of iso-probability curves, 
expending equal effort on every curve while also avoiding 
pseudo-redundant coverage. 

Several illustrative WiSAR experiments were presented 
to demonstrate how the method would perform under 
different scenarios. Further experiments comparing the 
proposed method to alternative UAV trajectory-planning 
algorithms, such as the constant-propagation and the 
exhaustive methods presented herein, were also performed. 
The results showed that the use of the proposed method 
results in a tangibly higher number of targets being detected.  

While the proposed method has been primarily presented 
in the context of lost person search in WiSAR scenarios, it is 
applicable to any mobile-target search problem. Namely, the 
proposed method can be used for any (growing-area) search, 
wherein a target-location likelihood function can be 
estimated.  
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